
CUTTER CONSORTIUM

Thoughts on a
Project-Volatility
Metric:
Part I — Definitions and Assumptions

by Vince Kellen, Senior Consultant,
Cutter Consortium

Like the stock market, IT projects can be volatile: require-
ments can change; scope can creep; unknown dependen-
cies can appear; teams can get mired down in myriad
ways; technology can fail; executive sponsorship can
evaporate; schedules can jitter; and dates can slip.

Like a rodeo rider, anyone who has managed difficult
projects knows that some projects are just meaner and
more volatile than others. However, in all my years
of managing and sponsoring projects, I have rarely,
if ever, seen robust measures of project volatility rou-
tinely collected and evaluated. Sometimes, anecdotal
evidence may surface, but this is usually after mile-
stones have been missed. Normally, overoptimism
reigns, and project team members believe they are just
around the corner in providing deliverables on time,
when in actuality they are not.

The project management discipline does include
reviewing estimate and project variance; however,
these two analysis mechanisms don’t adequately cap-
ture the important notion of project volatility. Standard
task estimating calls for establishing an optimistic
estimate, a pessimistic estimate, and a most likely esti-
mate of completion time. Estimation variance analysis
involves identifying tasks that have large differences
between the optimistic and pessimistic estimates. All
this does is capture the uncertainty in the estimator’s
mind, not the variance in the team’s ability to deliver on

the estimate. Project-variance reporting (which looks at
overall, to-date budget and schedule performance) cal-
culates aggregate metrics, which by themselves don’t
pinpoint the source of volatility and may detect trends
too late in the project. Moreover, conventional project-
estimation and variance-analysis techniques can often
burden a handful of estimators and project managers
to the point where the cost of getting low-level and
detailed volatility metrics may exceed the perceived
benefits.

Obtaining automatic and systematic insight into project
volatility can help trigger management intervention
earlier when it can make a difference. If volatility can
be detected very early in the project lifecycle and
assigned to the right potential causes, managers can
alter the allocation of resources, architects can rethink
the solution design, and users can revisit their require-
ments without negatively impacting the business bene-
fit needed from the project. But how can managers
get a handle on project volatility early in the project’s
lifecycle?

Here in Part I of this two-part Executive Update series
on project volatility, I examine different notions of proj-
ect volatility and explore the assumptions that underlie
my own project planning approach.

DIFFERENT DEFINITIONS OF PROJECT VOLATILITY

As I am considering it, project volatility is different
than common notions of task-estimate variance. Task-
estimate variance, which is the difference between
optimistic and pessimistic completion times, does not
capture the variance in the actual effort the project team
expended to complete the task. For the purposes of this
Update, I am defining a key project-volatility metric as
the variance for the difference between the task esti-
mates and the actual effort expended to complete the
task. Project volatility, as I am conceiving of it, meas-
ures the difference between what the task estimators
anticipated would be the effort expended and how
much effort the project team actually expended.

Agile Product & Project Management Advisory Service
Executive Update Vol. 10, No. 3

AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE2

Vol. 10, No. 3 ©2009 Cutter Consortium

Defined this way, volatility then is a measure of estima-
tor accuracy.

Unless objectively measured, volatility is often hard to
detect. IT staff members often believe sincerely that the
project milestones will be met when they won’t. Senior
IT managers will often aggressively enforce delivery
dates, which can create an environment where staff
members capitulate and incorrectly state delivery
schedules to avoid confrontation. More experienced
IT staff will “sand bag” an estimate, making the task
appear longer than it actually is, which creates bias.
Experienced project managers certainly can develop an
intuitive feel for which projects are volatile and which
ones aren’t, but junior project managers are more easily
fooled. Worse still, senior IT managers who lack suffi-
cient project management expertise can jump to incor-
rect conclusions about a project’s volatility or realize
much too late that a project is more volatile than the
team thought it was.

Over the years, IT researchers and practitioners have
come up with several different ways of measuring
project volatility. One way is to count the number of
changes in requirements — be they additions, changes,
or deletions; changes in prioritization; or changes in the
delivery sequence.1, 2 Another method is to keep track
of low and high estimates for tasks (also called “work
packages”) and rank those tasks with a high range as
being more volatile.3 A third way is to classify projects
according to some size and duration estimates. For
example, a recent study classified projects likely to not
succeed (which we can consider as volatile) as those
with long duration (18 months or greater), large team
size (>20 FTE), or large effort (>380,000 hours or 2,400
person-months).4

All of these approaches for controlling volatility suffer
from limitations. For projects that do not follow more
linear (waterfall) paths to completion, requirements
may be ever-changing and evolving. Just monitoring
requirement changes, especially for highly flexible
and agile approaches, may not give project managers
enough insight to monitor ongoing volatility. On the
surface, because of the frequent requirement revisions,
these projects may look highly volatile even when they
are consistently delivered on time and on budget. The
level of requirement changes may not be a good predic-

tor of agile project volatility. In addition, teams and
individuals vary in their ability to accommodate project
requirement changes.

Projects with high and low estimates for tasks may be
only capturing the estimator’s volatility and not the
actual volatility of the project in action. In order to keep
a pulse on ongoing actual volatility, project managers
would need to update these high and low estimates.
Moreover, good project managers manage slack in the
schedule and work to keep as many steps off the critical
path as possible. Calculating volatility would require
keeping the complex critical path logic up to date as
well. Most project managers simplify their models and
do not capture all the details regarding critical path
changes and changes in estimate ranges.

While avoiding projects with large duration, team size,
or total effort is a best practice, how can you manage
project volatility for the remaining small-to-medium-
sized projects? Duration, team size, and total effort
are not specific enough measures and do not provide
guidance for medium-sized project intervention, which
some projects will still require. Team interactions, proj-
ect management skill, complexities within the IT archi-
tecture, and other factors can and do contribute to
excessive project volatility.

ASSUMPTIONS FOR A PROJECT-VOLATILITY METRIC

In my own work, I have developed a project planning
approach that perhaps can strike a balance between
the desire for project managers to have simpler project
plans that require less effort to maintain and the desire
for senior IT management to have measurable project
performance. A benefit of this approach has been the
ability to easily generate a project-volatility measure,
which can provide good insight into project volatility
early in a project’s lifecycle.

This approach has a number of assumptions that may
cause some project managers to hyperventilate as they
read it. The assumptions are somewhat counterconven-
tional project management approaches, but have their
merits. If you find yourself hyperventilating, just relax.
These assumptions include:

The Executive Update is a publication of the Agile Product & Project Management Advisory Service. ©2009 by Cutter Consortium. All rights
reserved. Unauthorized reproduction in any form, including photocopying, faxing, image scanning, and downloading electronic copies, is
against the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter Consortium publications,
call +1 781 648 8700 or e-mail service@cutter.com.

EXECUTIVE UPDATE 3

www.cutter.com Vol. 10, No. 3

 Work packages are independent of each other. If one
creates a project plan that removes all critical paths,
what remains are tasks or activities that can proceed
independently of each other. Moreover, project teams
can get creative in rethinking technical and organiza-
tional dependencies and frequently do so in the mid-
dle of the project. If work packages are represented in
the project management system as independent of
each other, the project manager does not have to
spend time modeling or monitoring dependencies.
Clearly, dependencies do exist, but I have been sur-
prised with how little of the dependencies need to be
captured in the project management system with
project management control not suffering.

 Work packages are small. The optimal size of work
packages varies. Small projects of a few hundred or
thousand hours can easily afford work packages
(individual tasks) that can be eight to 20 hours each,
or smaller. Large projects in the hundreds of thou-
sands of hours or more might not be able to afford
such small work packages. Conventional thought is
that work packages are about 80 hours in size and
two to four weeks in duration (or between 0.5 and
2.5% of the total project size).5 For the purposes of
this project-volatility metric, I advise an average
work package or task size of 20-40 hours for projects
up to about 10,000 hours and then increasing as
needed but not exceeding 0.5% of project size.
Many projects I have managed in the 10,000-50,000-
hour size have average task sizes of less than 0.1%
of the project size. For example, a 20,000-hour project
with a task-size average of 0.2% of the project has
500 tasks averaging 40 hours total. Projects in the
hundreds of thousands of hours will most likely
have larger tasks sizes.

 Projects may have large numbers of estimators. In
order to accommodate a small work package size,
estimation needs to be distributed across the various
teams. In extreme cases, each independent technician
can estimate work packages assigned to them. Those
who will actually carry out the work can estimate
the effort required. This has a side effect of increasing
buy-in to the overall estimate, since the individual
estimates are generated bottom up across the project
team. For example, a large two-year project of one
million hours, 300 people, and an 80-hour average
task size will have 12,500 tasks, with each task on
average at 0.008% of the total project size. Clearly,
these are very small task sizes and a large number
of tasks. If one uses a decentralized, bottom-up
approach to managing estimates and each estimator

can handle about 500 tasks (which my experiences
indicates is reasonable), this project will require 25
estimators, again reasonable given the 300-person
project team.

 Work packages are estimated without conscious bias.
Project estimators should develop a work package
estimate that reflects the belief that the teams have
just as much of a chance of coming under as they do
going over the estimate. Sometimes this is called a
50/50 estimate. Project estimators do not need to
worry about high or low ranges for the estimate.

 Everybody enters time on a daily basis. In order
to capture the difference between the estimated
effort and the actual effort expended, project team
members need to enter time against specific work
packages. In order to provide timely and accurate
reporting, team members need to log their time daily.
In prior work, I have measured the effort required to
enter time and have found when time entry is facili-
tated with a simple and easy software package, less
than 2% of the total project time is spent on entering,
reviewing, and altering time records and adjusting
the project plan. As work packages are completed,
they are closed immediately. In this approach, the
key insight is the difference between the estimated
effort of the work package and the actual effort
expended. As work packages are completed, IT man-
agers, project managers, and project team members
can begin assessing project volatility. If work pack-
ages are small, many work packages will be closed
out weekly and enough will be closed out early in the
project, allowing managers to more accurately infer
volatility.

 Work breakdown structures can vary. The mecha-
nism for this project volatility metric lies in the vari-
ance between effort estimates and actual effort spent
at the work-package level. How project managers
choose to break down the work into the packages
can vary and, from the perspective of project volatil-
ity, are merely convenient ways of aggregating and
analyzing volatility at levels between the work pack-
age and the project overall or across multiple proj-
ects. The project-volatility metric doesn’t care about
how work is hierarchically broken down. In fact,
project managers can apply multiple work break-
down structures (WBSs) to the same work packages.
In this regard, a WBS is an example of a taxonomy.
A project that contains a set of tasks (work packages)
can be assigned multiple work breakdown
taxonomies.

AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE4

Vol. 10, No. 3 ©2009 Cutter Consortium

 Infer project volatility statistically, not causally. This
assumption follows from the first. If work packages
are modeled without dependencies, project managers
won’t be able to describe slippages in dates based on
the logic of dependencies. While this may seem to be
a fatal flaw, as capturing dependencies in the project
management system is considered primary in pre-
dicting project completion, it does not have to be.
Another way to think about this is to consider the fol-
lowing question: could an observer totally unfamiliar
with the causal logic in the project dependencies infer
the project completion date from looking at task-
volatility and completion rates alone? In many proj-
ects, because of short business opportunity windows
and limited operational time frames to accommodate
IT change, the project completion date is fixed. Given
the plasticity of IT and myriad alternate approaches
to the same problem, project teams can often radi-
cally alter the critical path to reduce it or remove it.
Project managers can then consider critical path
manipulations as additional (or reduced) resources
within the above set of assumptions rather than as a
recalculation of how those resources depend on each
other. Project volatility then can be used as a key
metric to infer what resources need to be added or
what parts of the project plan need to be removed or
deferred to achieve the promised delivery date.

 Ideal projects have low volatility and high
predictability. Conventional wisdom says that one
should underpromise and overdeliver, and good
projects are ones that are ahead of schedule and
undercost. In the approach advocated here, good
projects have low volatility and are ones that are
delivered as close to the estimated date and esti-
mated cost as possible. Expert management control
is about getting the results that are intended with
minimal variation. Teams can improve their control
over projects only when they are motivated to reduce
error, not increase it with underpromised project
plans. Experienced IT managers and business execu-
tives find out who consistently underpromises and
factor this deviation into their expectations. In the
approach discussed in this Update, underpromising
can be easily detected and corrected by analyzing
project volatility, which will clearly indicate the
degree to which underpromising is occurring.

In Part II, I will define project volatility in more detail
and show how a project-volatility metric can be put into
practice.

ACKNOWLEDGMENT

The author would like to thank John Stewart for
his suggestions on volatility trading and project-
management volatility.

ENDNOTES
1Loconsole, Annabella, and Jurgen Borstler. “Are Size Measures
Better than Expert Judgment? An Industrial Case Study on
Requirements Volatility.” Proceedings of the 14th Asia-Pacific
Software Engineering Conference, IEEE Computer Society,
December 2007, pp. 238-245.

2Lam, W., and V. Shankararaman. “Requirements Change:
A Dissection of Management Issues.” Proceedings of the 25th
EUROMICRO Workshop on Software Process and Product
Improvement, IEEE Computer Society, 1999, pp. 244-251.

3Kerzner, Harold. Project Management: A Systems Approach to
Planning, Scheduling, and Controlling. 9th Edition. Wiley,
2006.

4Sauer, Chris, Andrew Gemino, and Blaize Horner Reich.
“The Impact of Size and Volatility on IT Project Performance.”
Communications of the ACM, Vol. 50, No. 11, 2007, pp. 79-84.

5Kerzner. See 3.

ABOUT THE AUTHOR

Vince Kellen is a Senior Consultant with Cutter’s Business-IT
Strategies and Business Intelligence practices. Mr. Kellen’s
25-year experience involves a rare combination of IT operations
management, strategic consulting, and entrepreneurialism.
He is currently CIO at the University of Kentucky, one of the
top public research institutions and academic medical centers
in the US.

Mr. Kellen previously served as VP for Information Services
(CIO) at DePaul University, where he won CIO magazine’s
coveted Top 100 award in 2007. He also served as a partner
with strategy consulting firms, where he helped Fortune 500
and midsized companies with business and IT strategies, IT
organizational development, customer experience management,
customer relationship management (CRM), and data ware-
housing and analytics.

A national and international speaker on business and IT strat-
egy issues, Mr. Kellen has authored four books on database
technology and more than 120 articles and presentations on IT
and business strategy topics. He holds a master’s degree from
DePaul’s College of Computing and Digital Media and is
currently completing his PhD in computer science at DePaul.
Mr. Kellen was also an adjunct faculty member at DePaul for
10 years, where he helped launch the graduate program in
e-commerce — one of the nation’s first graduate programs
concentrating on e-commerce — and designed and taught
graduate courses in enterprise architecture, CRM technologies,
and portals. He can be reached at vkellen@cutter.com.

