

The Executive Update is a publication of Cutter Consortium’s Business Agility & Software Engineering Excellence practice. ©2020 by Cutter Consortium, an

Arthur D. Little company. All rights reserved. Unauthorized reproduction in any form, including photocopying, downloading electronic copies, posting

on the Internet, image scanning, and faxing, is against the law. Reprints make an excellent training tool. For information about reprints and/or back

issues of Cutter Consortium publications, call +1 781 648 8700 or email service@cutter.com. ISSN: 2470-0835.

“There Is No Spoon”: Residuality Theory &
Rethinking Software Engineering
by Barry M. O’Reilly

While the software industry is currently grappling with ideas of complexity and resilience, there has been

very little in the way of concrete actions or activities that software engineers can use to actually design

systems. Residuality theory answers this need and draws on complexity science and the history of software

engineering to propose a new set of design techniques that make it possible to integrate these two fields.

It does this at the expense of two of the most important concepts in software design: processes and com-

ponents. Moreover, the embracing of complexity science quickly points out that the process-component

mapping that forms the backbone of conventional thinking in software engineering is, in fact, the reason

behind systemic failure in enterprise software.

Identifying processes, eliciting requirements, and the rapid mapping of these two components are akin to

designing cars based on tire tracks in a muddy field. Processes and components are what we see on the

surface, but they are a byproduct of the business system execution. The problem is that designing systems

has focused on trying to replicate the appearance of other established systems — much like the infamous

cargo cults building airplanes of straw — mimicking what was seen but without any real understanding.

Componentization can thus be categorized as sympathetic magic.

Residuality theory, conversely, introduces the residue as the alternative building block of software systems.

A residue is a collection of people, software functions, and the flows of information between them. It is

what we imagine to be left of the system when it is impacted by a particular stressor — an event such as a

fire, market crash, or product failure. For every stressor, a residue is created and augmented to be better

able to survive the stressor. Therefore, designing an entire business system involves the integration of

many, many residues. Processes and components previously believed to be first-order citizens of any model

emerge from the integration of these residues. This completely changes how one should think about the

design of systems. A software architecture can now be seen as a multidimensional structure of interrelated

https://www.cutter.com/experts/bm-oreilly
https://en.wikipedia.org/wiki/Cargo_cult
https://en.wikipedia.org/wiki/Sympathetic_magic

Page | 2

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE EXECUTIVE UPDATE | Vol. 21, No. 5

©2020 Cutter Consortium | www.cutter.com

residues, rather than as a two-dimensional diagram of component relationships. Furthermore, traditional,

linear risk management is superseded by early analysis of stress on the system with a focus on vulnerability

rather than prediction. The residue forces the designer to work consistently with the software and the

environment at the same time. This is a drastic change to the design process.

Residuality theory does the following:

• Models systems as collections of residues.

• Builds on complexity science.

• Assumes fat-tailed distributions and non-predictability.

• Assumes complex business environments and complicated software systems.

• Uses stress as the driver of design decisions.

• Analyzes contagion as residues are integrated.

• Allows processes and components to emerge rather than defining them straight away.

• Shows results directly.

Roots of Current Thinking
To understand the paradigm shift that residuality theory creates, it is imperative to take a step back and

look at how we think today and why we think in that way. For software engineers, the art of design is about

mapping processes to components. This has been accepted for a very long time. Indeed, lots of energy

has been spent on identifying the best way to describe processes and come up with components and

their boundaries. It is so accepted that few software engineers have taken the time to step back and ask

why this is done, why it’s the focus, and why they have never questioned the need to scratch this itch

so vehemently and furiously at the start of every design effort. To suggest to a business analyst (or

business/enterprise architect) that one should wait until after design before defining the processes seems

nonsensical; for the software engineer to not immediately think in terms of components seems equally

ridiculous. Take away these basic tasks and the work of defining and designing a software system grinds

to a halt. The industry has tried a thousand different ways to refine and adjust the work around the idea

of components, from OOP to SOA to DDD and microservices, but perhaps it is time to question the concept

of the component itself?

http://www.cutter.com/
https://en.wikipedia.org/wiki/Fat-tailed_distribution

Page | 3

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE EXECUTIVE UPDATE | Vol. 21, No. 5

©2020 Cutter Consortium | www.cutter.com

Software is seen as dynamic and exciting because it is young and because its possibilities have not yet been

exhausted. As with all things, properties are projected onto software that stakeholders would like to see,

rather than what is actually there. Software is seen as flexible, changeable, elastic, resilient, complex. A quick

look at the balance sheets of enterprise software projects would tell any thinking person that software is

none of these things: it is brittle, complicated, static, and very difficult to change.

Why Do Software Engineers Love Components?
The word “component” dates back to the mid-17th century but came into its own with the Industrial

Revolution. After initial flushes of success during the Industrial Revolution, processes were steadily revised

and reviewed with mass manufacturing subsequently becoming a reality. The idea of the component

chimed nicely with the scientific pursuit of reductionism: understanding the world by reducing it to its

smallest constituent parts and studying these in great detail.

The factory is always with us. The transformation of our society by the Industrial Revolution has left a very

clear imprint on us and on our culture. As pattern seekers, we strive to replicate the success of the Industrial

Revolution by reducing a whole to its component parts, every time we face a novel pattern. But the success

procured by reductionism proved to be a trap for software engineering. The analogy of components slipped

into the software world very quickly. Computer science pioneers such as Edsger Dijkstra observed and

endeavored to remedy the brittleness of software. They looked around and saw what was happening in the

world of manufacturing — the use of components to provide rapid configurations and divide labor seemed

a perfect solution; mapping the journey from cottage industry to Six Sigma–inspired excellence seems

so obvious. The concept of the component promised reuse, self-configuring systems, and, of course, the

bastion of the factory model, ever reducing costs and economies of scale. How spectacularly we have failed!

Componentization has delivered a lot of books, seminars, untested theories, cults, shamanistic rituals,

gurus, and many failed projects. It has not delivered elastic, changeable, complex software systems. And

the reason for this is that it probably can’t; there was never any reason to map the trajectory of software to

the trajectory of the factory. It was a lazy analogy and it has been carried too far.

Beyond Components
As undoubtedly successful as the Industrial Revolution proved to be, reductionism has not continued

to deliver on its early promise. The entire field of complexity science exists to solve the problem of

reductionism’s inability to address the behavior of systems with, among other properties, many, many

constituent parts. Factories are complicated endeavors, but, ultimately, predictable and understandable,

with methods that work in one factory often working in another. Complex systems, such as economies,

markets, societies, and organizational cultures, cannot be so easily reduced to components as they are

inherently unpredictable. Software is often complicated, but the environment it lives in, the business

http://www.cutter.com/

Page | 4

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE EXECUTIVE UPDATE | Vol. 21, No. 5

©2020 Cutter Consortium | www.cutter.com

system, is complex. Understanding the difference between complex and complicated systems is vital.

Complicated systems are the realm of simple component interactions, highly constrained and predictable

and repeatable. Complex systems are unpredictable, impossible to break down into simple components

with simple relationships. A huge part of the failure of software architecture and design practices is the

continual treatment of complex business contexts as merely complicated in order to make the process-

component mapping fit. However, complexity theory is vague and not concrete enough to be applied by

the software industry; residuality theory exists to close that gap.

It is not that components don’t exist. Everything is made of something. It is just that the rapid identification

of components is not the key to good software design; if it were, by now best practices would have been

developed that worked, instead of endless, meandering debates. Instead, brittle systems are produced that

fail regularly and become expensive and cumbersome to change.

The reasons for change — the complex, unpredictable stressors in the business environment — constitute

an enormous, insurmountable problem, so software designers do not even try to describe it, never mind

solve it. They try to engineer their way out with cleverer components and ever more convoluted patterns.

That has not worked, as no way to do this has been found that demonstrably works over different business

systems. Residuality theory starts with addressing this problem directly.

Residuality Theory
Let’s take a closer look at each aspect of residuality theory introduced earlier in this Update:

• Models systems as collections of residues. Considering the limitations with components, we need a

new model. The residue embraces complexity science, viewing software components as agents in a

system of people, external organizations, and information flows. The residue in a complex environment

is equivalent to the component in a complicated environment.

• Builds on complexity science. Residuality theory is built on the idea that business environments

are inherently complex and, therefore, unpredictable, resistant to best practices or pattern-based

approaches, and are not static in their nature.

• Assumes fat-tailed distributions and non-predictability. The external stressors that impact a

business environment are too numerous to list, and the probabilities so intertwined that they are

impossible to establish; therefore, risk management as practiced by most organizations will fail to

identify the risks that will impact the system and does not contribute well to the design effort.

• Assumes complex business environments and complicated software systems. In complex busi-

ness environments and markets, the behavior of a complicated software system is defined by events in

the surrounding, complex business system. This is where complexity science has much to add to the

http://www.cutter.com/
https://blog.usejournal.com/7-differences-between-complex-and-complicated-fa44e0844606

Page | 5

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE EXECUTIVE UPDATE | Vol. 21, No. 5

©2020 Cutter Consortium | www.cutter.com

software industry’s understanding of the world. The vast majority of software solutions are complicated;

they can be understood, modeled, and mapped and are constrained by design. However, these software

systems exist inside complex environments, the business system, which cannot be predicted, modeled,

or mapped, as the variations are simply too many. The fluctuations in the wider, complex business

system are what determines whether component choices are wise or not. Too often, it is believed that

complexity is in the software, or that this complexity can be simplified by simplifying the software. But

this complexity actually forms the shape of the complicated solution and will do so naturally over time,

patch by patch, if the software solution survives the stress it is exposed to in its naive form. There are

so many stressors that can cause a program to change that it is impossible to identify and describe all

of them. The programmer quickly becomes overwhelmed and retreats to the shamanistic rituals of

component divination. Residuality theory recognizes that software involves complicated systems in

complex environments, and the difficulties that this causes when expertise in one area tries to diminish

the importance of the other, and overcomes this issue by using residues, collections of elements that

span the divide and encourage analysis that consistently amplifies the risks in treating complex systems

as complicated in order to quickly identify solutions.

• Uses stress as the driver of design. Huge problems in enterprise software are often caused by

ignoring nonfunctional requirements until the functional design is complete. Residuality theory quickly

identifies these requirements by analyzing stress and vulnerability rather than probability. Each stressor

hits the system in a particular way. Flooding destroys the basement, but the upper floors are OK. Fire

destroys the entire building, but the fireproof safes are OK. Each stressor has a related residue — the

bits that are still working afterward. Residual analysis examines each residue in turn and asks, “What is

needed here to make sure that the system is still working, or that the largest possible part of the system

is still working?” The result of analysis is the augmentation of each residue in turn. Eventually, there

are dozens of augmented residues, each one surviving a particular form of stress. There is no need to

establish the probabilities for these stressors, or identify all of them, or even identify which are more

likely. The design effort requires just enough stressors to arrive at a resilient design, not the mitigation

of individual risks.

Software functions exist inside these residues, and the residual augmentation will cause redrawing of

boundaries between these functions to protect the software from the contagion, limiting the impact of

a stressor as far as possible so that the flooding in the software basement doesn’t destroy the fireproof

safes. These residues will seem unconventionally inefficient from the factory perspective. There is a

great deal of repetition. Residues can be very similar to each other. The work of designers of software

systems is now to integrate the residues to produce the final design. Here, architecturally significant

decisions are made about which functions should be general and which should remain isolated inside

the residue to prevent contagion.

http://www.cutter.com/

Page | 6

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE EXECUTIVE UPDATE | Vol. 21, No. 5

©2020 Cutter Consortium | www.cutter.com

• Analyzes contagion as residues are integrated. Linear risk management is dangerous in complex

environments as it reduces risk to a number of singular impacts based on bias-fueled probabilities and

impact assessments. In truth, stressors can impact a system more than one at a time and in any order;

contagion analysis forces the analysis of interaction between residues in terms of the interplay between

stressors. This involves investigating how stress impacts other residues and how it influences decisions

about shared logic across residues. Using simple matrices to investigate contagion and dependency

drives decisions about the structure of the software system based on the reality of the business envi-

ronment and the stress it may suffer, not based on dividing along functional or organizational lines.

• Allows processes and components to emerge. Rather than matching problems to patterns or using

best practices intended for different business environments, components and process emerge during

the process of residual analysis. They become products of the stress the system will be exposed to, as

they would naturally over time.

• Shows results directly. Using residuality theory instead of standard methods of componentization

would see a massive increase in quality in software architecture. It turns out that systems built like

this can have abilities to withstand unknown unknowns — stressors that they have not been built to

withstand. This potential property is essential for systems that will spend their existence in complex

domains. Once a design is established, the concept of stressors can be used to continue to test the

design, showing that the system performs better when exposed to unknown stressors, so the process

provides immediate, quantitative feedback that the technique has worked.

The result is a stack of residues that have relationships to each other, and a new model, or view, of

the system emerges. Residual analysis arrives at groupings of functions, components that allow for the

execution of business processes. We haven’t partaken in any of the rituals of componentization, yet we

have designed something that is responsive to the environment around it.

Residue Is to Complex as Component Is to Complicated
Using residuality theory increases the chances of designing systems that avoid the major flaws of modern

fragile systems: naive componentization, ignored or misconstrued nonfunctional requirements, and rigid

processes and linear risk management techniques that reflect bias rather than complex reality. While

complicated systems, which are predictable, reusable, and repeatable, can be described and designed

with components as the key metaphor, complex systems need something more, and that ’s residues.

Residuality theory touches on probability, systems engineering, complexity science, algebraic topology, set

theory, and much more. It is best, however, to keep that low key, as the wailing and gnashing of teeth over

the statement that components are a false god tends to make people tetchy, and the last thing they need is

more math.

http://www.cutter.com/
https://www.sciencedirect.com/science/article/pii/S1877050920305585

Page | 7

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE EXECUTIVE UPDATE | Vol. 21, No. 5

©2020 Cutter Consortium | www.cutter.com

The bottom line is this: applications are not comprised of little components that do things. That is an illu-

sion that causes developers to build them badly. An application is comprised of millions of interconnected

residues, massive overlapping sets all trying to live in the same space. A few simple tricks can make an

application much more resilient, much more responsive to the complex environment in which it will live.

Without residuality theory, architecture is a component metaphor extrapolated to complex environments

with which it cannot cope.

For now, just know that components are not a “good enough” metaphor to describe something that will

exist in a complex environment, and that there is something else out there that can help. To get started with

residuality, you simply need to carry out a stressor analysis; the rest will fall into place quite naturally. It’s

really very simple, but if you want to dive into the details there’s more here. It is possible to use residuality

theory alongside any other methodology or framework, and it does not demand complete adherence or

acceptance of all the ideas to give positive results. Residuality theory is applied complexity — with actual

concrete steps you can take to make things easier.

About the Author
Barry M. O’Reilly is the founder of Black Tulip Technology and creator of Antifragile System

Design. Previously, he held positions as Chief Architect for Microsoft's Western Europe

practice and IDesign, IOT TAP Lead for Microsoft’s Western Europe practice, Worldwide Lead

for Microsoft’s Solution Architecture Community, and startup CTO. Mr. O’Reilly can be

reached at barry@blacktulip.se.

http://www.cutter.com/
https://www.sciencedirect.com/science/article/pii/S1877050920305585
mailto:barry@blacktulip.se

