
Cutter Consortium
Access to the Experts

“There Is No Spoon” —  
The Path to Residuality Theory
A Collection of Articles from 
Cutter Consortium, 2018-2021 

by Barry M O’Reilly

This collection of articles from Cutter Consortium has been scheduled to be released in 
time for the third anniversary of Black Tulip Technology. Black Tulip was formed with a 
very clear mission: to redefine the practice of software architecture as the bridge between 
complexity science and systems engineering. Essentially, the story of Black Tulip has 
become the story of reframing the decision-making role of the architect as the careful 
navigation of uncertainty. 

https://www.cutter.com/


The interface between two sciences or two concepts is 
a jagged shore, less a juncture to be controlled than an 
adventure to be had.

 — Michel Serres and Bruno Latour

The story behind this collection started out with a simple refram-
ing of my own personal architectural practices in the terms of 
uncertainty outlined by Nassim Nicholas Taleb and Ralph D. Stacey. 
My first piece published by Cutter Consortium, “No More Snake Oil,” 
became the article that defined antifragile systems design, along with 
the subsequent .NET Rocks interview (and DDD Europe session).

Rather than choosing the expected journey of the IT guru, I opted 
for a different path. Instead of publishing the typical IT book and 
launching a speaking tour, I chose to go back to university and actu-
ally pursue formalization and verification of the ideas in the form 
of a PhD. Across a period of years, I routinely published with Cutter 
Consortium on the thoughts and ideas that this journey provoked. 
“Dissent and the Art of ‘Hype Cycle’ Maintenance” describes the 
necessity of architects dissenting in order to grasp the uncertainty 
in their organizations and markets, while “Why There’s Probably 
No Such Thing as Digital Architecture” highlights the unstructured 
nature of our journey, one we haven’t even really started, never 
mind finished. “The Age of Complexity” is the naive realization 
that uncertainty defines our work and hints at the possibility that 
ignoring it might be what’s holding us back. “The Skills Crisis 4.0” 
reiterates the need for adaptive learning, accompanied by critical 
thinking, in order to allow architects to navigate the ever-faster 
pace of technology development in highly complex enterprise envi-
ronments. Throughout these pieces, I attempted to question the 
assumptions of our profession; sometimes, dearly held ideas on 
process, agility, and frameworks may truly be the things that stop 
us from dealing with the uncertainty in our midst. 

As the ideas grew and my formalization began to surface, I pub-
lished a number of academic articles on the subject of residuality 
theory. These were followed by versions written specifically for 
Cutter Consortium: “‘There Is No Spoon:’ Residuality Theory and 
Rethinking Engineering” and “Residuality Theory: Proactive Risk 
Management in the Design Phase.” By August 2020, the ideas 

https://www.cutter.com/article/no-more-snake-oil-architecting-agility-complex-environment-500536
https://www.dotnetrocks.com/?show=1554
https://www.youtube.com/watch?v=pMfzxmCzThI&list=PLf9p-N3ltMTuuYk1zpsjB-D-6pxPkGvwj&index=9
https://protect-eu.mimecast.com/s/BZneCqQPVCOp6PATgbQYq?domain=cutter.com
https://protect-eu.mimecast.com/s/vPD5CpZORizjENrs98JHq?domain=cutter.com
https://protect-eu.mimecast.com/s/vPD5CpZORizjENrs98JHq?domain=cutter.com
https://protect-eu.mimecast.com/s/6cLqClRKvfoBq5JhNdhoK?domain=cutter.com
https://protect-eu.mimecast.com/s/_sheCk2JwHnM36VC0ya_h?domain=cutter.com
https://protect-eu.mimecast.com/s/TduHCoZNviX7pLNUmOiwG?domain=cutter.com
https://protect-eu.mimecast.com/s/TduHCoZNviX7pLNUmOiwG?domain=cutter.com
https://protect-eu.mimecast.com/s/XdElC83woSj78ZVUMUY1v?domain=cutter.com
https://protect-eu.mimecast.com/s/XdElC83woSj78ZVUMUY1v?domain=cutter.com


behind residuality theory were fully formed. (For the academic 
articles, please follow these links: “No More Snake Oil” and “An 
Introduction to Residuality Theory”; an additional article, “The 
Philosophy of Residuality Theory” is TBA.)

Throughout this journey, Cutter Consortium has presented a 
fantastic opportunity to air ideas, gather perspectives, produce 
focused writing, and make things concrete. The editorial team of 
Cindy Swain, Christine Generali, Jennifer Flaxman, Linda Dias, and 
Tara K. Meads have been brilliant in bringing my writing from nov-
ice to something slightly better. Additionally, Tanya O’Reilly and  
Dr. Riccardo Bennett-Lovesy have provided invaluable input over 
many hours with their academic rigor and penchant for pedantry on 
each article. Many more have contributed with support and enthu-
siasm: Christer Berg, Helena Carlsson, and the team at the Swedish 
Computer Society; Robert Folkesson at Active Solution; Jeff Doolittle 
at Software Engineering Radio; Gar Mac Críosta, Dave Snowden, 
and, of course, my supervisory team at The Open University: Jeff 
Johnson, Jane Bromley, and Anthony Lucas-Smith. 

It is my hope for the future that residuality theory will find its place 
as the scientific foundation of software architecture and become 
the scientific platform from which software architects approach and 
analyze other ideas, escaping the eternal hamster wheel of trends, 
fads, and overhyped, under-researched tropes. I hope you enjoy 
this journey as much as I have. 

Barry M. O’Reilly, 
Stockholm, April 2021 

https://www.sciencedirect.com/science/article/pii/S1877050919305861
https://www.sciencedirect.com/science/article/pii/S1877050920305585
https://www.sciencedirect.com/science/article/pii/S1877050920305585


o:::: B . 
, , , us1ness
I Technology 
cJ Journal 
Vol. 31, No. 7, 2018 

Business Architecture• Agile= 
Doing the Right Things, Fast 
by Whynde Kuehn and William UI ch p. 6 

Agilifying Your 
Digital Organlzal 
6 Steps to Get Started 
by Yesha Sivan and 
Raz Heiferman p. 14 

No More Snake 011: 
Architecting Agility in a 
Complex Environment 
by Barry O'Reilly and 
Gar Mac Crfosta p. 21 

Agile Architecture o 
Architectural Agilit 
2 Fundamentally Different 
Paradigms Come Together 
by Jan-Willem Sieben, Jan-Paul FU 
and Cristina Popescu p. 27 

9 Rules of Agile Arch 
by Bob Galen p. 34 

A Light-Touch Architectu 
Governance Approach 
by Miklos Janoska p. 39 



Get The Cutter Edge free  www.cutter.com Vol. 31, No. 7     CUTTER BUSINESS TECHNOLOGY JOURNAL 21 

The confusion surrounding the role of architecture 
when aiming for agility isn’t simply a labored talking 
point — it’s part of the reason Agile initiatives fail and 
architecture teams are losing influence. As it stands, it 
appears Agile and architecture are struggling to find a 
fit. This article considers the possible effects of a third 
way: agility through “antifragility.” Rather than aiming 
to control, or to remove control, we should seek to build 
systems, both technical and business, that aim to be 
antifragile to change. This allows the production of 
business and technical architectures that enable agility 
through design rather than process or mindset. Taking 
ideas from systems engineering, complexity science, 
and recent survey data, we explore how the inherent 
interconnectedness of architecture and agility can be 
leveraged — via the Antifragile Systems Design process 
— to make the management of complexity something 
all organizations can do. 

Enterprise Software and VUCA: 
The Need for a New Approach 
The modern business environment is a strange place, if 
visited by the manuals and best practices of yesteryear. 
The end of Taylorist management science1 is, according 
to some, clearly in view.2 Indeed, the complexities of the 
modern world refute the join-the-dots MBA business 
playbook. The world of VUCA (volatility, uncertainty, 
complexity, ambiguity)3 requires a new approach. 
Disintermediation, globalization, market upheaval, 
disruption, and technological advance all combine to 
produce an effect that is difficult to mitigate, impossible 
to predict, and arduous to detect. The software crisis,4 
first defined in 1968, is entering a new phase, and the 
consequences of continued shoulder shrugging are 
becoming ever more serious. 

Witness the growth of the Agile industry, with its 
ceremonies, high priests, and rituals. It has, quite 
rightly, found the zeitgeist: the decline of management 
science and the pseudo-scientific pretense of order in 
the domain of complex human systems. This is what 

causes Agile mysticism; we know that waterfall will not 
work, so we reject it based on past experience but do 
not replace it with anything demonstrably better. This 
creates the gap for “snake oil.” The diagnosis of the 
multiple failings of waterfall is completely correct; yet 
the results of the Agile cure do not seem to bear the 
weight of investigation.  

A 2017 report of 300 UK-based CIOs demonstrates 
the problem: 21% of Agile projects end in complete 
failure (i.e., nothing delivered), and 68% of CIOs 
want to see more architects involved in Agile projects.5 
Moreover, the projected cost of Agile failure is 37 billion 
British pounds (US $48 billion). Yet, a recent IASA 
Global survey6 reveals that over 75% of 260 responding 
organizations are implementing some form of Agile 
practice, and 50% are implementing Agile-at-scale. 
However, less than 50% of all respondents have 
integrated architecture into their Agile process.  

In an environment where both inflexible and unstable 
software can lead to business failure, modern busi-
nesses need both the flexibility espoused by Agile 
practitioners and the rigor of more structured systems 
engineering methodologies. This contention is the 
source of much debate and confusion between the  
Agile and architecture camps and requires an alter-
native architectural approach. Thus, we propose that  
by architecting for antifragility, businesses can gain real 
agility and deliver systems with a higher level of 
quality. NYU Distinguished Professor Nassim Nicholas 
Taleb describes an antifragile system as one that gains 
from disorder; a system that becomes stronger when 
exposed to stressors (even unpredictable or unknown 
stressors).7 An antifragile system is by definition agile 
and resilient.  

Accepting Complexity 
Complex systems, under which most contemporary 
business-critical systems would be classified, are not 
merely complicated. They are systems that cannot be 

No More Snake Oil: Architecting Agility in a  
Complex Environment 

THERE’S GOTTA BE A BETTER WAY 

by Barry O’Reilly and Gar Mac Críosta 

http://www.cutter.com


22  ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL 

assumed to behave in a certain way and have nonlinear 
responses to changes in input. Consider the concept of 
the Platonic fold,8 which tells us that the act of model-
ing the world simplifies it to the point where any 
decisions made based on that model are misinformed 
due to details omitted for the sake of hiding complexity. 
Thus, dynamic real-world problems twist and bend, 
while the static solution cannot keep up, causing the 
demise of quality. In software, this leads to a multitude 
of problems, including shortened life span, patching, 
and quality issues. 

When humans build complex systems, they tend to fail, 
often catastrophically, because of Platonic folding. The 
solution to the Platonic fold requires accepting com-
plexity as something we can neither predict nor control, 
along with accepting the limitations of modeling and 
risk management. Instead of pursuing correctness in 
these areas, we should aim to build systems that are 
antifragile to fluctuations in the VUCA elements (i.e., 
the system becomes stronger as the business environ-
ment warps and changes with time).  

Antifragility in Software 
Due to extensive research being carried out on the 
subject of computational antifragility, many solutions 
to this kind of problem will emerge in the future.9 It 
is important to realize that the degree of fragility of a 
system is often a function of its internal structure. The 
ability of a system to change under stress is governed 
by the interconnectedness of its parts, how strongly 
they are tied to each other, and how much change 
ripples through the system. Therefore, there is a need 
to ensure that we match the level of interconnectedness 
of a system’s components with the effort required to 
reorganize them in the face of change. This is something 
that architects are well qualified to do.  

For many years, the decomposition of software systems 
has been held captive by the latest technological trends, 

vendor interests, and a slow-shifting mindscape. Many 
students of software engineering still hold fast to ideas 
of elegance and reuse, often making software unneces-
sarily complex in the process. There has, however, been 
a broad library of dissent against these methods, dating 
back to 1972. Software engineering pioneer David 
Parnas’s ideas on nonconventional decomposition10 
tell us that we can build better systems by focusing 
on what will change rather than what will happen 
functionally, while software architect Juval Löwy’s 
important distinction between functional- and  
volatility-based decomposition via the IDesign  
Method11 provides some ideas and techniques 
that make this easier.  

Each of these methods relies on focusing on the 
elements that can change, rather than on concrete 
requirements. By building a system where the primary 
requirement is the ability to handle change, a very 
different piece of software is constructed than would 
happen otherwise. This need for change in design 
philosophy — away from building to specific require-
ments and toward building systems that are antifragile 
— has been expressed elsewhere, including at NASA.12 
Kjell Jørgen Hole’s book Anti-Fragile ICT Systems 
illustrates that systems demonstrating high levels 
of antifragility have the following four properties:13 

1. Modularity (consisting of separate, linked  
components) 

2. Weak links (a low level of interconnectedness 
between components) 

3. Redundancy (the presence of more than one 
component to cope with failure) 

4. Diversity (the ability to solve a problem in more 
than one way with different components) 

Antifragile Systems Design 
The Antifragile Systems Design process guides the 
architect to optimize and balance the four antifragile 
properties mentioned above with the VUCA elements 
present in a project. With a few days of analysis and 
design work, we can shift any project in the direction of 
antifragility, without incurring a great deal of overhead. 
The Antifragile Systems Design process mixes ideas 

Dynamic real-world problems twist and bend, 
while the static solution cannot keep up, 
causing the demise of quality.  



Get The Cutter Edge free  www.cutter.com Vol. 31, No. 7     CUTTER BUSINESS TECHNOLOGY JOURNAL 23 

from complexity science and systems engineering to 
create a method to guide the design effort.  

This process embraces the complexity in building 
dynamic systems. Following the advice of Taleb, 
Parnas, Löwy, and others, we need to focus on what 
we do not know before focusing on what we do know 
— accepting our limitations and our inability to predict 
the future. Indeed, the Antifragile Systems Design 
process is not fixed but can grow and change with 
every project. With this new architectural approach, 
the intention is not to create yet another framework or 
silver bullet, but to provide a starting point for a new 
type of design process. This process follows several 
simple steps and requires no more tooling than an 
Excel spreadsheet.  

Who Takes This On? 
The steps outlined below require a mix of skills within 
business, business architecture, and software engineer-
ing. However, this is not simply a business activity 
or a software design activity and cannot be divided 
into different tasks for different silos; each step in the 
process creates feedback loops to ensure that answers 
arrived at are coherent. Antifragile Systems Design 
requires an organization to move as one toward solving 
the problem of complexity, which means changing the 
perspective from “us versus them” (IT versus business) 
to simply “us” (business). Business leaders, business/
enterprise architects, and software architects all need 
to engage with the process to make it work. This 
requires a new approach from both architects and 
business leaders.   

Architects need to work with the business to describe 
the VUCA environment, translate the impacts on the 
software decomposition, and even assist in business-
level mitigations. Currently, few architects span this 
range; therefore, a business architect and a software 
architect often must work together to guide the process. 
However, it is possible for a single architect (business/
architecture-focused or software-focused) who com-
bines business understanding and software engineering 
knowledge to guide the process.  

Business leadership plays an important role in enabling 
the architects and the project to embrace this approach. 
By employing Antifragile Systems Design at a high 
level, business leaders can learn to ask the right 

questions of their software teams and quickly assess the 
stability of an initiative.  

Step 1: VUCA Analysis  
In the first step, we describe the VUCA environment  
for this particular initiative, listing the VUCA elements 
with regards to the business model, and begin to sketch 
our architecture. We design the system to cope with 
fluctuations based on the VUCA elements identified 
in the business model, meeting each challenge with a 
change in one or more of the four antifragile properties 
of the system.  

This exercise starts at the business level, with input 
from business leaders. It identifies VUCA elements 
in the business model and clarifies what business 
mitigations, if any, are in place or need to be in place. 
This step can actually help improve the business 
processes or organizational structure behind the 
initiative. This kind of work is usually carried out by 
the business, but rarely shared in detail with architects. 
VUCA analysis requires the following actions: 

• Represent the initiative’s business model using the 
Business Model Canvas14 and its standard building 
blocks.  

• Perform a VUCA analysis, noting everything con-
sidered volatile. For example, what can change? What 
happens if a partner is acquired or ceases trading? 
What happens if a cost escalates? This is a useful 
exercise for the organization and can educate the 
architect in how the wider market works.  

• Run through everything that is uncertain. For 
example, what do we not know? What is purely 
guesswork? What impact can a lack of knowledge 
have on the system?  

• Run through all complexities (processes that have 
nonlinear responses to input) and ambiguities. 
Explore the impact of being wrong about something 
and what would need to change to accommodate 
the error.  

• Record this in a spreadsheet, with a list of VUCA 
elements and the corresponding mitigations.  

• Choose the most appropriate mitigation for each 
VUCA element, excluding those too expensive or 
unrealistic.  

http://www.cutter.com


24  ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL 

• Continue the exercise until the mitigations start to 
become repetitive.  

Note that this exercise does not involve trying to predict 
the future, but rather having an awareness of the types 
of change that can happen to a system. We cannot 
predict all change, but we can work with what we 
know.  

Step 2: System Decomposition — Flow First Design 
The next step is to propose a system design. Here, 
we use Black Tulip’s Flow First Design, a design process 
for distributed systems, described briefly below: 

• Describe the software as a series of data flows 
enabling the functional requirements. 

• Create a component decomposition for each flow that 
is completely decoupled from all others and all data 
sources; the flow is its own system. This creates a 
system with very low levels of interconnectedness.  

• Subject each data flow to the fluctuations described 
in the VUCA analysis. 

• Ensure that the mitigations listed in the VUCA 
analysis are represented in the software. 

• Consolidate different flows, reducing the level of 
interconnectedness; aim for minimum disruption 
when each VUCA element changes, as described by 
Parnas.15 

This allows the architect to refine system decomposition 
by measuring the system’s ability to meet changes likely 
to happen based on the VUCA analysis. The system 
decomposition now relates to both functionality and 
system behavior. This step establishes the right level 
of modularity and weak links, the first two properties 
of systems demonstrating high levels of antifragility, 
and connects them to the VUCA elements identified 
previously.   

This step requires knowledge of software engineering 
patterns and the management of coupling; however, 
it does not require a detailed knowledge of software 
development. It is enough to be able to ascertain that a 
VUCA fluctuation will have a minimal level of impact 
on the system.  

Step 3: Design Testing 
In this step, we present the architecture to various 
stakeholder groups through an exercise such as the 

Architecture Trade-Off Analysis Method (ATAM).16 
This ensures that all concerns have been addressed and 
that the VUCA analysis was accurate and promotes 
confidence in the role the architect has played by 
providing a sense of rigor and demonstrating a 
potentially robust and resilient system. 

Step 4: Modified FMEA 
Failure Mode Effects Analysis (FMEA)17 is a Six Sigma 
technique that helps manage quality in a system by 
investigating how the system will cope with failure. 
Using FMEA, we can investigate system behavior and 
adjust the architecture to be resilient to failure during 
operations. However, in this step, we do not attempt 
to prioritize or predict risks or criticality, as this pro-
vides little benefit when dealing with complex systems. 
FMEA includes the following actions: 

• Create a FMEA spreadsheet listing the different ways 
each component can fail. 

• Record how failure is detected and mitigated and 
the impact of component failure. 

• Aim for a high level of automation. 

• Change the system design to accommodate  
mitigation of these failures. 

• Repeat the process for any number of failure 
modes until the mitigations become repetitive. 

This step in the process tunes the system to have the 
right balance of redundancy and diversity (the last 
two properties of systems demonstrating high levels of 
antifragility), pushing the system toward antifragility. 
This step also protects against the risk that too many 
mitigations can produce an overcomplicated system. In 
such a case, FMEA will struggle to mitigate all known 
errors at a reasonable cost and will send the architect 
back to the VUCA analysis for a more realistic take on 
what can change or to the decomposition step to redraw 
the system scope.  

Why This Process Works 
To make this process work, we can leverage the idea of 
exaptation,18 where an element of a system developed for 
one purpose can have serendipitous effects for another 
purpose. Building a wall in your house, for example, 
allows spreading the load of the roof, but also provides 
the basis for rooms, stops noise traveling between 
rooms, and gives privacy. A wall also stops fire from 



Get The Cutter Edge free  www.cutter.com Vol. 31, No. 7     CUTTER BUSINESS TECHNOLOGY JOURNAL 25 

spreading, provides somewhere to hang paintings, and 
a place to bang your head against when dealing with 
Agile coaches. When we combine two separate mitiga-
tions, say the wall and the fact that we added a space 
in the wall for insulation, we suddenly create the 
conditions for dealing with something we did not 
see coming — hiding electrical wires in the wall!  

In working through the list of VUCA elements, tweak-
ing the design, and adding mitigations, with each 
mitigation the system becomes antifragile to that 
particular VUCA element. The first 10 are usually 
tricky, but after 50 mitigations, a pattern emerges: 
many of the VUCA elements in the list are resolved by 
previous mitigations and the effect of mitigations can 
be said to be nonlinear. By following this process, the 
system trends toward antifragility, which is the only 
possible good result in a complex environment that 
we do not control. When this process repeats as part 
of the FMEA step, the likelihood of future exaptation 
increases. The VUCA analysis also builds confidence 
among stakeholders that the system will be “robust,” 
but, as architects, we know that we are doing much 
more than that: we are providing the bedrock for 
antifragility! We call this pattern nonlinear system 
responsiveness.  

Once a system is in place, the Antifragile Systems 
Design process becomes iterative. Every failure is 
considered feedback and the system should be strength-
ened by the team by rerunning the process. The best 
example of this kind of system is Microsoft’s Azure or 
Amazon’s AWS cloud platforms — outages are used to 
strengthen the platform, with these two platforms 
becoming some of the most resilient in the world.  

While the idea of nonlinear system responsiveness 
seems intuitive, it has as of yet no proven mathematical 
basis and is not guaranteed to occur. However, by 
aiming to induce it, we at least make the system less 
fragile and provide the basis for a positive, nonlinear 
response. The actual degree of exaptation can never 
be predicted and will never be complete (all systems 
will die someday), but this process actively encourages 
exaptation as the premier focus of the design effort.  

Concrete Actions for Business Leaders 
Going forward, business leaders should consider the 
following actions: 

• Understand that complexity is the key cause of 
software failure. 

• Don’t waste time and take unnecessary risks by 
trying to predict and control the unpredictable and 
uncontrollable. 

• See software execution as a business task with 
varying results that requires constant monitoring 
beyond status reports.  

• Use VUCA analysis to understand the stability of 
IT delivery. “What happens if?” questions tell you 
all you need to know about a software project’s 
quality. Bring the architect into the core business 
team and make VUCA analysis a natural part of 
your execution.  

• Enable your architects to embrace antifragility as 
the key to real agility. 

• Understand that current industry trends around 
Agile cannot deliver in the face of complexity. Use 
the VUCA analysis process to have a voice and 
influence in the direction of software projects and 
ensure quality is there from the start.  

• Demand traceability in architectural decision making. 

• Ensure that technical decisions are grounded in a 
shared understanding of the VUCA environment 
and are FMEA-tested.  

Concrete Actions for Architects 
Going forward, architects should consider the following 
actions: 

• Practice VUCA analysis on the initiative’s business 
model. A thorough grounding in business basics is 
required, which can be a challenge for technically 
focused solution architects. This is a necessary 
evolution of the role of the architect and cannot 
be avoided.   

• Become an expert in software decomposition. 

• Learn different methods for software decomposition, 
the difference between service-oriented architecture 
and microservices, the IDesign Method, and Flow 
First Design. Learn how modern cloud applications 
are composed and the major components involved.  

• Learn to use modified FMEA to improve system 
designs. 

http://www.cutter.com


26  ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL 

Conclusion 
The result of this work is a business with a better 
understanding of its own fragility and a software 
system capable of bending and meeting the needs  
of the changing business environment. This kind of 
process calls for a new type of architect and a new type 
of architecture. It requires a solid understanding of 
the business environment, the effects of change on the 
business architecture, and a thorough understanding of 
how software can be decomposed, rather than written. 
This cross-set of skills can allow architecture to contrib-
ute by designing antifragile systems that enable agility 
and answers the business question of how to become 
resilient to the VUCA world.  

There is no guaranteed result from this process, so the 
Taylorist approach of measurement, prediction, and 
comparison will not provide any benefit here. Over 
time, this approach will succeed for some and fail for 
others, and this lack of certainty may cause many to 
resist the approach. The alternative — to do nothing 
and wait for machine learning and complexity science 
to solve problems — is not a viable option for today’s 
enterprises.  

Acknowledgments 
Many thanks to Dr. Riccardo Bennett-Lovsey and 
Tanya O’Reilly for their valuable comments and 
suggestions on the drafts of this article. 

Endnotes 
1”Taylorism.” Encyclopaedia Britannica (https://
www.britannica.com/science/Taylorism). 

2Stacey, Ralph D. Complexity and Organizational Reality: 
Uncertainty and the Need to Rethink Management After the 
Collapse of Investment Capitalism. 2nd edition. Routledge, 2010. 

3Bennett, Nathan, and G. James Lemoine. “What VUCA Really 
Means for You.” Harvard Business Review, January-February, 
2014 (https://hbr.org/2014/01/what-vuca-really-means-for-you). 

4”Software crisis.” Wikipedia (https://en.wikipedia.org/wiki/
Software_crisis). 

5Porter, Chris. “An Agile Agenda: How CIOs Can Navigate 
The Post-Agile Era.” 6point6, April 2017 (https://
cdn2.hubspot.net/hubfs/2915542/White%20Papers/ 
6point6-AnAgileAgenda-DXWP.2017.pdf). 

6Mac Críosta, Gar. ”IASA State of Architect Engagement 2018.” 
LinkedIn, 20 August 2018 (https://www.slideshare.net/
Garmaccriosta/iasa-state-of-architect-engagement-2018-prelim). 

7Taleb, Nassim Nicholas. Antifragile: How to Live in a World 
We Don't Understand. Allen Lane, 2012. 

8Taleb, Nassim Nicholas. The Black Swan: The Impact of the Highly 
Improbable. 2nd edition. Random House, 2010. 

9De Florio, Vincenzo. “Antifragility = Elasticity + Resilience + 
Machine Learning Models and Algorithms for Open System 
Fidelity.” Procedia Computer Science, Vol. 32, 2014 (https://
www.sciencedirect.com/science/article/pii/S1877050914006991). 

10Parnas, David L. “On the Criteria to be Used in Decomposing 
Systems into Modules.” Communications of the ACM, Vol. 15, 
No. 12, 1972 (https://dl.acm.org/citation.cfm?id=361623). 

11Löwy, Juval. “Volatility-Based Decomposition.” IDesignIncTV, 
22 November 2013 (https://www.youtube.com/watch?
v=VIC7QW62-Tw). 

12Jones, Kennie H. “Engineering Antifragile Systems: A Change 
in Design Philosophy.” Procedia Computer Science, Vol. 32, 
2014 (https://www.sciencedirect.com/science/article/pii/
S1877050914007042). 

13Hole, Kjell Jørgen. Anti-Fragile ICT Systems. Springer, 2016. 

14”The Business Model Canvas.” Strategyzer, 2018 (https://
strategyzer.com/canvas/business-model-canvas). 

15Parnas (see 10). 

16Kazman, Rick, Mark H. Klein, and Paul C. Clements. 
“ATAM: Method for Architecture Evaluation.” Technical 
Report, Software Engineering Institute/Carnegie Mellon 
University, August 2002 (https://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=5177). 

17”FMEA — Failure Mode and Effect Analysis.” Six-Sigma.se, 
2007 (http://www.six-sigma.se/FMEA.html). 

18”Exaptations.” Understanding Evolution, 2018 (https://
evolution.berkeley.edu/evolibrary/article/exaptations_01). 

Barry O’Reilly is the founder of Black Tulip Technology and creator 
of Antifragile System Design. Previously, he held positions as Chief 
Architect for Microsoft's Western Europe practice and IDesign, IOT 
TAP Lead for Microsoft’s Western Europe practice, Worldwide Lead 
for Microsoft’s Solution Architecture Community, and startup CTO. 
He can be reached at barry@blacktulip.se. 

Gar Mac Críosta is the founder of Business Model Adventures 
and leads IASA Global’s Next Architecture Practice Group. He 
has facilitated the development of change programs with C-level 
executives, senior managers, technology leaders, and executives in  
the areas of business model innovation, digital strategy, architecture, 
and organizational effectiveness (Lean/Agile) across various indus-
tries. Mr. Mac Críosta is a Certified Architect Professional (IASA 
CITAP), a Fellow of the Irish Computer Society, and a LEGO  
Serious Play Practitioner (LSP). He can be reached at 
gar@businessmodeladventures.com. 

 

https://www.britannica.com/science/Taylorism
https://www.britannica.com/science/Taylorism
https://hbr.org/2014/01/what-vuca-really-means-for-you
https://en.wikipedia.org/wiki/Software_crisis
https://en.wikipedia.org/wiki/Software_crisis
https://cdn2.hubspot.net/hubfs/2915542/White%20Papers/6point6-AnAgileAgenda-DXWP.2017.pdf
https://cdn2.hubspot.net/hubfs/2915542/White%20Papers/6point6-AnAgileAgenda-DXWP.2017.pdf
https://cdn2.hubspot.net/hubfs/2915542/White%20Papers/6point6-AnAgileAgenda-DXWP.2017.pdf
https://www.slideshare.net/Garmaccriosta/iasa-state-of-architect-engagement-2018-prelim
https://www.slideshare.net/Garmaccriosta/iasa-state-of-architect-engagement-2018-prelim
https://www.sciencedirect.com/science/article/pii/S1877050914006991
https://www.sciencedirect.com/science/article/pii/S1877050914006991
https://dl.acm.org/citation.cfm?id=361623
https://www.youtube.com/watch?v=VIC7QW62-Tw
https://www.youtube.com/watch?v=VIC7QW62-Tw
https://www.sciencedirect.com/science/article/pii/S1877050914007042
https://www.sciencedirect.com/science/article/pii/S1877050914007042
https://strategyzer.com/canvas/business-model-canvas
https://strategyzer.com/canvas/business-model-canvas
https://dl.acm.org/citation.cfm?id=361623
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
http://www.six-sigma.se/FMEA.html
https://evolution.berkeley.edu/evolibrary/article/exaptations_01
https://evolution.berkeley.edu/evolibrary/article/exaptations_01


 

  

The Executive Update is a publication of Cutter’s Business & Enterprise Architecture practice. ©2019 by Cutter Consortium. All rights reserved. 

Unauthorized reproduction in any form, including photocopying, downloading electronic copies, posting on the Internet, image scanning, and 

faxing, is against the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter Consortium 

publications, call +1 781 648 8700 or email service@cutter.com. ISSN: 2470-0894. 

 

Dissent and the Art of “Hype-Cycle” Maintenance 
by Barry O’Reilly 

An examination of historical decision making shows that rigid plans formed in an environment 

that discourages voicing of dissent has led to failure — often disastrous failure.  

— John D. Stanley, “Dissent in Organizations” 

There is a growing realization today that we are living in an increasingly complex world. This places 

challenges on us all, not least the software architect. Where we once could rely on established patterns 

and best practices, more and more projects are unpredictable, uncontrollable, and not suited to traditional 

architectural techniques. These projects require a nuanced and sophisticated approach to be successful. No 

longer can we budget, schedule, or control risk as we could do in simpler times. Solving complex problems 

requires a great deal of probing and experimenting to establish patterns of behavior, not just in software 

but also in the wider system of users, customers, and markets in which business solutions exist.  

One aspect of complexity is increasing interconnectedness — and a feature of modern software projects 

is this interconnectedness between markets, customers, and applications, which means that software 

becomes sensitive to changes and failures across these domains. This makes for a natural change in 

an architect’s design heuristics — instead of designing a solution once and executing on that design, 

the design must be exposed to stress in the form of changes and fluctuations in its environment before 

it reaches a level of fluidity that shows it can survive in the flux of a complex environment.  

Learning to do this is challenging enough for most architects, but there are greater hazards ahead. 

Conventional business practices, governed by the thinking behind scientific management, tend to favor 

simplicity, certainty, and control. The necessary approach to complexity conflicts directly with conventional 

business practices — as constant experimentation and changing your mind do not fit in with the command-

and-control approach of most business environments. Whereas architecture courses of old taught the need 

to influence without authority, complex projects require constant influencing, admission of failure, and 

influencing again. At a certain point, however, influencing becomes extremely difficult. This makes the 

mailto:service@cutter.com
https://www.cutter.com/experts/barry-oreilly
https://journals.aom.org/doi/abs/10.5465/amr.1981.4287977
https://hbr.org/2007/11/a-leaders-framework-for-decision-making
https://www.amazon.com/Complexity-Organizational-Reality-Uncertainty-Management/dp/0415556473


 

Page | 2  
 

BUSINESS & ENTERPRISE ARCHITECTURE                                                                                     EXECUTIVE UPDATE | Vol. 22. No. 2 

©2019 Cutter Consortium  |  www.cutter.com   

 

traditional architectural approach impossible and sets the architect up for a role that involves continuous 

dissent against the need for simple solutions to complex problems. Once architects learn to handle 

uncertainty, however, the bigger challenge awaits: working with a business world that isn’t prepared to 

countenance uncertainty.  

Continuous dissent is necessary and extremely valuable — but also incredibly tough for the architect to 

participate in. This Executive Update seeks to find a balance that allows architects to engage in dissent while 

preserving their careers — and their sanity.  

Rising Complexity and the Need for Dissent 
The rise of the Internet, and the instantaneous access to information and connection to people on the other 

side of the world that it provides, has had a profound impact on society. Globalization and the Internet have 

combined to make everything faster, cheaper, and more direct. This speed and connectivity have, however, 

come at a price: we have yet to figure out how to navigate the new challenges created.  

One challenge is a much greater degree of interconnectedness and dependency, in, for example, supply 

chains; relationships; and economic, social, and even political systems. This makes the world much more 

difficult to predict and control (or to give the impression of prediction and control) and means that 

businesses are operating in ever-more connected and intertwined markets.  

As the level of interdependency increases, we become more susceptible to serious failures, with impacts 

cascading from actor to actor where there once were boundaries that isolated and protected organizations 

from each other. The potential for catastrophic failures increases beyond our control and understanding — 

and we are poorly equipped to meet this challenge. This degree of interconnectedness is often cited as the 

initial and amplifying factor in the global financial crisis of 2008. 

Herein lies the need for dissent, the act of challenging an accepted opinion. In complex technology projects, 

this involves pushing back against biases, oversimplifications, and the need for certainty that will inform 

many proposed solutions. The role of dissent is to harden and strengthen these proposals and to identify 

the right course of action among them. Dissent is what provides another view and forces a team to step 

back and consider another reality; the more often a team presents dissent, the more likely it will explore the 

complex interdependencies that define modern enterprise technology projects.  

Given the architect’s role of relating technical decisions to business reality, this places the architect in the 

eye of the storm. With the ability to understand and formulate the impact of business or technical decision 

making on each other, architects are well placed to help drive projects to better results through the effective 

use of their own and others’ dissenting opinions.  

http://www.cutter.com/


 

Page | 3  
 

BUSINESS & ENTERPRISE ARCHITECTURE                                                                                     EXECUTIVE UPDATE | Vol. 22. No. 2 

©2019 Cutter Consortium  |  www.cutter.com   

 

By dissenting, architects will often find themselves faced with tough decisions. On one side, there is a great 

deal of research showing the positive effects of dissent on projects; however, on the other side, that same 

research has long shown the human tendency to isolate and punish dissenters. This places architects in a 

predicament: to voice dissent with the goal of navigating the complexity of modern projects or to stay silent 

and make progress in their career.  

The Benefits of Dissent 
A wide body of research supports the idea of the positive benefits of allowing and encouraging dissent 

in organizations. A group’s understanding of a complex issue and the relationship between the different 

aspects of that issue increases as dissent is presented to the group. It has also been argued, notably in 

the book Meltdown: Why Our Systems Fail and What We Can Do About It, that dissent is necessary in avoiding 

catastrophic failure in complex systems. Minority dissent is also shown to be effective in defeating group-

think, shifting the information search toward less confirmatory sources and encouraging divergent thought 

in the group. 

When dissent is presented in a consistent way without dogma and with strong reasoning, it can influence 

decision making. Research shows that a group exposed to minority dissent: 

• Utilizes more strategies in the pursuit of performance 

• Recalls more information 

• Manifests more flexibility in thought 

• Shows more originality 

• Detects solutions that would have otherwise gone undetected 

Dissent is also shown in many cases to be a form of loyalty to an organization, and successfully dissenting 

employees are happier and have better relationships with management. Finally, research reveals that 

dissent can lead to higher levels of innovation. The lesson gleaned from all this research is that dissent 

is useful, and we should welcome it. The architect, then, as the interpreter of decision impact across the 

business/technology boundary, should seek to become the arbiter of dissent, as every dissenting voice 

potentially exposes more hidden complexity that helps harden and improve the quality of the system. The 

dissenting opinions of architects themselves and those around them are a goldmine of information that 

teams can use to produce more resilient systems.  

Good architects are familiar with dissent. Architectural review, design testing by external architects to gather 

more opinions, and security penetration testing are all forms of dissent that good architects encourage and 

use regularly. By paying even more attention to dissenting ideas around us, even outside the technology 

http://www.cutter.com/
https://journals.sagepub.com/doi/abs/10.1177/1046496418755510?journalCode=sgrd
https://www.amazon.com/Meltdown-Systems-Fail-What-About/dp/0735222630
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1559-1816.2001.tb02481.x
https://journals.sagepub.com/doi/abs/10.1177/1046496418755510?journalCode=sgrd
https://journals.sagepub.com/doi/abs/10.1177/1046496418755510?journalCode=sgrd
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1559-1816.2001.tb02481.x
https://journals.sagepub.com/doi/10.1177/089331802237234
https://pdfs.semanticscholar.org/09af/fd83fb0c4ffa029ff1ec18f9ffe313a69159.pdf


 

Page | 4  
 

BUSINESS & ENTERPRISE ARCHITECTURE                                                                                     EXECUTIVE UPDATE | Vol. 22. No. 2 

©2019 Cutter Consortium  |  www.cutter.com   

 

domain, we can capture more of the complex reality that defines how our systems will interact with the 

world.  

Higher levels of innovation, wider shared understanding of complex issues, fewer catastrophic failures, 

better relationships with management, more originality, and novel solution discovery are all sought-after 

goals when navigating complex business environments. By enabling dissenting architects, organizations 

can potentially unleash these benefits. Capturing this potential — often kept hidden by the need for 

certainty — is the desire of many currently engaged in digital transformation and, as such, could present 

serious competitive advantage. So why aren’t we doing this already? 

The Necessity for Conflict  
As things become more complex, which, by definition, means beyond our current ability to predict and 

control, more conflict is inevitable. The answer isn’t empathy or understanding or the avoidance or removal 

of conflict, but rather the recognition that conflict is absolutely necessary in navigating complex, interwoven 

problem spaces and that conflict actually promotes better results. Conflict in a complex scenario indicates 

the presence of dissent; a lack of conflict may indicate that a team is rushing toward a simplified solution. 

This is not to say that all conflict is good. There are many reasons for conflict, and if it is not driven by 

authentic dissent then it can damage the ability of a group to perform well — so we need a mechanism 

for filtering the reasons behind dissent. Daring to dissent against group opinion may increase the risk for 

conflict, but it also decreases the risk of failure. Whether conflict is more or less acceptable than failure in 

each case is left up to you, but in safety critical systems the answer should be obvious.  

Given that dissent increases the risk for conflict, the natural reaction in business environments is to sup-

press, limit, or shorten conflict, as we have come to assume that conflict is bad. Conflict suppression can 

pose a much greater risk than the conflict itself. (HBO’s recent dramatization of the events at Chernobyl 

provides a fascinating insight into what can happen when dissent is suppressed by hierarchy.) A powerful 

driving factor behind conflict suppression is the need for consensus — usually consensus around a plan 

of action driven by the need for simplicity and certainty — and the urgency to act quickly and decisively. 

Consensus stands in direct contradiction to dissent, and often we can come to believe that consensus, 

rather than what we are trying to achieve, is the goal. This is a natural human reaction — dissent is 

exhausting, while consensus is reaffirming and secure.  

The challenge facing the dissenter is the natural defensiveness of those proposing a solution. Whereas in 

an ideal world, architectural dissent would be welcomed as well intentioned, in the world where the illusion 

of certainty holds sway, any dissent makes for a crisis of competence and emotional reactions in those 

proposing the solution. The requirement is then placed on the dissenter to dissent without hurting feelings, 

something that is not always in the control of the dissenter, who rarely has the intention to hurt anyone’s 

feelings. Modern discourse puts this responsibility of not emotionally hurting others, viewed as an aspect of 

http://www.cutter.com/
https://en.wikipedia.org/wiki/Chernobyl_(miniseries)


 

Page | 5  
 

BUSINESS & ENTERPRISE ARCHITECTURE                                                                                     EXECUTIVE UPDATE | Vol. 22. No. 2 

©2019 Cutter Consortium  |  www.cutter.com   

 

emotional intelligence, on the shoulders of the dissenter, rather than the dissented, who are nevertheless 

usually unconstrained in exercising the ostracizing of dissenters since the dissented are in the majority or 

hold the power in the relationship.  

While the argument for using dissent to improve quality is easy to make, the reality is that most 

organizations do not tolerate dissent.  

Strategies for Dissenting 
When architects find themselves in the position of needing to dissent, there are many ways of presenting 

this dissent. The most effective form of dissent is authentic dissent; that is, the dissenter genuinely believes 

in what he or she is saying. Research shows that inauthentic dissent does not produce the same benefits 

as authentic dissent. Some researchers have suggested the role of a devil’s advocate, dissenting in order 

to gain in quality — but if the dissent is only for dissent’s sake, the results are often poorer. Dissent should 

also be unemotional, fact-based, and presented directly to stakeholders.  

Choosing a dissent strategy is difficult and the strategy chosen will vary from organization to organization. 

It is easy to slip into destructive behaviors when trying to assert a dissenting opinion. Expert opinion is often 

dismissed, as it has a tendency to exclude the simplistic, easy solution. This can be frustrating, and when a 

group ignores authentic, direct, and fact-based dissent, it is a natural human tendency to try other forms of 

dissent. Other alternative ways to present dissent are through repetition, constantly making the same point 

over time, presenting solutions directly, or even extreme presentations such as escalating to more senior 

management or threatening resignation if the dissent is not addressed. Even more damaging is displaced 

dissent, where dissenting is carried out at the lunch table, at home, or with friends. Engaging in these other 

forms of dissent can lead to genuine, constructive ideas being categorized as complaining.  

Constant repetition of an issue or escalation may be considered antagonistic. The natural response of 

those in the wider group who favor simplicity is to remove the dissenting opinion rather than face it. 

The architect’s dissenting opinion, in the political games of organizations, is easy to paint as arrogance, 

disloyalty, or pedantry, thus taking focus away from the actual dissenting opinion. The dissenter may be 

seen as creating tension, being negative or arrogant, or not caring about the feelings of the group — and 

suppression or, perhaps even worse, “draconian sanctions” await the dissenter. Research and experiments 

going as far back as 1951 have shown that those who deviate from group opinion are punished through 

exclusion from future activity, and this has not been shown to have changed over time. 

The truth is that encouraging and engaging with dissent is difficult, much more difficult than quickly 

choosing a path and executing predictably, the marker of competence in the old, less complex world. 

Dissent can be seen as conflict seeking, when, in fact, authentic dissent is considered an expression of 

loyalty to the organization. Architects thus learn quickly to stop dissenting before being excluded from 

http://www.cutter.com/
http://charlannemeth.com/wp-content/uploads/2017/03/DA2.pdf
https://journals.sagepub.com/doi/10.1177/089331802237234
https://journals.aom.org/doi/10.5465/amr.1981.4287977
https://psycnet.apa.org/record/1951-08043-001
https://econtent.hogrefe.com/doi/full/10.1027/1864-9335/a000180
https://journals.sagepub.com/doi/10.1177/089331802237234
https://journals.sagepub.com/doi/10.1177/089331802237234


 

Page | 6  
 

BUSINESS & ENTERPRISE ARCHITECTURE                                                                                     EXECUTIVE UPDATE | Vol. 22. No. 2 

©2019 Cutter Consortium  |  www.cutter.com   

 

future activities, which is better for their career, but not better for those of us whose life may one day 

depend on the reliability of the system being built. 

Challenges of Dissenting 
Clearly, there is evidence for the positive effects of engaging with dissent, which should encourage archi-

tects to make use of this often-hidden source of information to build better systems. Yet, it is also clearly 

evident in practice that dissent is discouraged, and rapid convergence toward consensus is preferred.  

Digital transformation itself brings additional complexities to an already complex problem space. Vendor 

promises, technology hype, oversimplification, and the need to be agile all drive behaviors, assumptions, 

and decisions with little empirical evidence that any of these promises or approaches work — thus requir-

ing dissent. In the context of a bias toward simplicity and certainty, these empty promises become plans, 

become projects, become expectations. This is a tinderbox, a perfect storm of complex problems amid a 

hunt for certainty and simplicity. The need to move quickly exacerbates the situation, and the tendency of 

agile dogmas to avoid anticipatory thinking as a heuristic rejection of up-front planning increases the risks 

for poor decision making. Engaging with critical thinking, skepticism, and anticipatory thinking immediately 

reduces the risks posed. It is here that architects can best play the role of dissenter and thus protect the 

organization.  

Toward a Solution 
Significant potential exists for using dissent to shape and form better architectures — but before we can 

realize that potential, we need to remove the risk to the dissenter. We must find a new way to encourage 

and realize dissent in a way that is useful, without the arduous and impossible task (from an architect’s 

perspective) of changing the corporate culture to be more receptive to what is loyalty-driven dissent. There 

is also a need to embrace and quickly manage inauthentic dissent without extinguishing genuine dissent. 

A useful tool is stressor analysis, which involves taking the focus away from finding a solution to talking 

about the myriad stressors that can affect a solution. A stressor is any fact, event, person, or circumstance 

that, when actualized, impacts a system. This tool introduces a playful yet serious methodology for critical 

inquiry that, later, in the solution identification stage, makes dissent a natural part of the architectural 

workflow. 

Stressor analysis focuses only on the problem, not on the solutions presented. It involves gathering 

information on anything that can possibly affect the outcome, which can be anything from the likely, 

such as a competitor, customer behavioral changes, earthquakes, or server failures, to the ridiculous, such 

as fire-breathing lizards attacking a city. The process takes no account of probabilities or predictability, as 

these are often subjective, and in complex environments virtually worthless; the introduction of lizards, for 

example, often makes the process less challenging and introduces playfulness and thus a feeling of safety.  

http://www.cutter.com/
https://www.cutter.com/article/no-more-snake-oil-architecting-agility-complex-environment-500536


 

Page | 7  
 

BUSINESS & ENTERPRISE ARCHITECTURE                                                                                     EXECUTIVE UPDATE | Vol. 22. No. 2 

©2019 Cutter Consortium  |  www.cutter.com   

 

Overall, stressor analysis encourages authentic dissent by providing a safe outlet for everyone to appear 

to engage in devil’s advocate approaches. The result is a list of stressors, their impacts, and proposed 

mitigations on a technical and business level. Every proposed solution is then subjected to the stressor 

list to see how well it copes with the stressors, and to verify, by encouraging team members to investigate 

further, if the stressors actually affect the solutions, which would raise their authenticity. The goal of 

stressor analysis is to encourage the team to consider the complexity of the problem, to step back and 

think over how the problem relates to its environment, and to contemplate how this affects the solution. 

The analysis prevents an early rush to judgement and encourages teams to think beyond control, certainty, 

and simplicity. Doing this makes it easier to navigate the complex environment and also provides a mech-

anism for presenting authentic dissent without risking the career of the dissenter. The separation of 

stressors from solutions provides a feeling of objectivity, where all proposed solutions are exposed to 

the same stressor list, and thus there is a feeling of fairness rather than of being attacked. Since everyone 

is involved in creating the stressor list, and there is no link between recorded stressors and any individual, 

no one dissenter gets singled out for exclusion.  

Teams can use this process to strengthen any aspect of a business, from business and operational models 

to technical architecture, and is a simple approach to encourage dissent from across teams. By introducing 

dissent as an architectural step, with a simple tool and process, we allow early dissent and raise a group’s 

understanding of the underlying complexity, which defeats groupthink before the emergence of biased 

solution proposals. By safely generating authentic dissent, we increase our chances of improving the quality 

of the solutions we build and also increase innovation. We avoid certainty bias by slowing the rush to a 

solution and subject vendor claims and industry hype to sustained, collaborative skepticism through the 

identification of stressors. Stressor analysis allows participants to express dissent through the concept of 

a stressor — rather than as a direct attack on any proposed solution or person — and forces viewing all 

potential solutions through the lens of these stressors. As an ongoing approach, it presents a clear place for 

stakeholders to go to safely introduce dissent and requires only one stakeholder (the architect) to put that 

dissent into the architectural flow, where it can be analyzed and made strong, coherent, and authentic 

before exposing it to the scrutiny of the majority.  

About the Author 
Barry O’Reilly is the founder of Black Tulip Technology and creator of Antifragile System 

Design. Previously, he held positions as Chief Architect for Microsoft's Western Europe 

practice and IDesign, IOT TAP Lead for Microsoft’s Western Europe practice, Worldwide 

Lead for Microsoft’s Solution Architecture Community, and startup CTO. He can be reached 

at barry@blacktulip.se. 

http://www.cutter.com/


Get The Cutter Edge free  www.cutter.com Vol. 32, No. 9    CUTTER BUSINESS TECHNOLOGY JOURNAL 1 

http://www.cutter.com


6  ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL 

The journey from chaos in ignorance to best practice 
is one we have traveled many times as architects. We 
will continue to travel this road many more times as 
technology and society change and influence each other 
in ever-faster cycles. With each journey, we rush to find 
the easiest way to simplify and codify our work for 
mass consumption. Given that we work in complex, 
unique contexts, these journeys are not described in 
scientific terms, but instead in terms of narrative, or 
stories. Professor Emeritus Walter Fisher described 
this as the “narrative paradigm,”1 a theory that states 
that humans communicate ideas through narratives and 
live in a world of stories, and we must choose which of 
these stories to believe. These stories progress over time 
as they are exposed to new evidence and are eventually 
subsumed by the next wave of thinking. Keeping up 
with all this evolution is exhausting, and we seem to 
have fallen into a trap of never-ending hype and hotly 
discussed abstract ideas that deliver little value. One of 
these ideas is digital architecture. This article looks at 
how we as architects approach waves of new technolo-
gy and the accompanying ideas, along with how we can 
learn to appreciate and manage trends as an aspect of 
how people cope with change and complexity. 

This is an opinion piece, a story! 

Famed biologist Ludwik Fleck once described the idea 
of a “thought collective,”2 referring to the way ideas 
bounce around between researchers, becoming ever 
more refined and eventually synthesizing toward a new 
idea. It is an idealistic view of how we approach things, 
given that it assumes researchers’ methods to be both 
rational and empirical. In the fields of business and 
architecture, however, rationality and empiricism are 
not enforced, and the profit-driven thought collectives 
that drive new ideas in these fields are not always 
concerned with the intellectual purity of ideas. Progress 
can be described simply and cynically as a collection 
of stories that we tell each other and ourselves. These 
stories describe our world in our language; they help 
us navigate and collaborate in the face of complexity. 
These stories are wildly human, and they vary from 

teller to teller and context to context. They are far 
divorced from the scientific papers and journals that  
we STEM folk like to think are the means by which 
we communicate. However, even though we assume 
that we are rational and/or empirical and, therefore, 
rigorous and scientific, our stories tend not to be limited 
by formalism or rigor. 

Instead, our stories are crammed with intuition, reve-
lation, and innate musings that we pretend don’t exist 
and that rationalist philosophers such as John Locke 
tried to discourage. They are bound to their place and 
their time, rarely objective, and filled with the biases 
of the storyteller and the audience. These stories can 
be enormously helpful, but also damaging when we 
collectively seek certainty and simplicity and allow 
these unpolished narratives to guide us where we 
want to go rather than where we should go. 

For centuries before Locke, humans managed the 
complex universe around us via storytelling: passing 
knowledge from one generation to another, sometimes 
losing sight of the original words, but keeping the mes-
sage intact. Life lessons were passed on as parables and 
folk stories that played to emotion and culture and had 
little scientific backing; indeed, we still do this today. 
The Age of Reason separated us from that reality and, 
since the Enlightenment, we have seen ourselves as 
rational, scientific beings, in charge of our destiny and 
gradually unveiling the workings of the universe. It is 
not always obvious to us, convinced as we are of the 
peer-reviewed tenacity of our ideas, that the perversion 
of the scientific method we know as storytelling is still 
very much with us. 

When we can’t describe the universe as a simple set 
of rules, when we feel uncertain, we step away from 
the need to be seen as logical, reasonable, data-driven 
beings, and we return to story. Through the sharing of 
our stories, and through our imaginations, we collec-
tively chip away at the wall of uncertainty, tinkering 
and messing, until something gives. In this romantic 
wandering, we collectively surpass the pseudo-scientific 

Why There’s Probably No Such Thing  
as Digital Architecture  

A RETURN TO STORYTELLING 

by Barry O’Reilly  



Get The Cutter Edge free  www.cutter.com Vol. 32, No. 9    CUTTER BUSINESS TECHNOLOGY JOURNAL 7 

ideas of planning and control and create the new from 
seemingly nothing. This creation is a thing of beauty, 
and yet we treat it as a thing of shame, convinced that 
the right answers come forth purely through orderly 
processes and rigorous research techniques. 

When enough of us assail a problem with our stories, 
stories that are flawed but numerous and varied, each 
story can lead to new ideas, and each idea leads to new 
tinkering on the edge of knowledge. Eventually, our 
stories converge with evidence and, for a short while, 
become the bona fide truth, on which others base their 
stories. This part of science, which involves the random 
wittering of humanity as the source of our progress, 
is not welcome in the story of modern data-driven 
approaches. I have no doubt we will look back on this 
discouraging need for rigor over humanity with great 
shame, as a time when our desire for simple, certain 
answers disconnected us from who we are. 

As we progress from story to story, and test the vitality 
of the story against reality, we gain new ideas. The 
ideas that were right survive through something called 
via negativa (defining something by what it is not rather 
than by what it is), on the premise that it is easier to 
know when you are wrong than it is to prove you 
are right. Through this, we eventually arrive at some-
thing robust and useful: removing what is not true, 
we strengthen the story and eventually start to realize 
something useful. Our history is full of examples of 
these progressions from a spark of an idea through 
experimentation to realization: the development of 
mechanical flight, the invention of the light bulb, the 
architectures of our cities, and the political structures 
we coalesce around. In the hard sciences, we can trace 
every formulated theory back through fanciful stories 
and metaphors that illuminate the path to knowledge. 
However, we are rarely aware of where we are within 
this process and often wrongly assume our current 
story to be truth. 

As our stories progress, they can become bloated and 
unstable, eventually collapsing under their own weight 
and leaving only the memory of those pieces that are 
useful to inspire the next generation of storytellers. 
This is a natural and useful process. 

One example of this is the story of the topic of “resil-
ience”: at first defined in ecological terms, the story was 
adapted to fit other fields with initial successes and new 
understanding arising from exploration. Eventually, 
resilience itself becomes a meaningless concept under 
the catchall of “mindset,” and the story ceases to be 
useful.3 The next generation then picks though the ruins 

and sparks new ideas, causing the older generation to 
complain of the wheel being reinvented. The bitter cries 
of “This is nothing new” from the previous generation 
of storytellers is almost always a sign of a collapsed 
story: it is a trigger that should tell us to pay attention 
because it is almost always an indication that we need 
something entirely new. The older generation will 
use its influence to graft old ideas onto the new forms, 
convinced that everything is already settled. This same 
story can be applied to any management or technology 
fad, and often we miss the wood for the trees. We try to 
reconcile generations of stories rather than accept the 
revision of stories as a necessary trigger for innovation, 
getting caught up in the minutiae of fads rather than the 
trigger that led to someone feeling the need to create a 
new story. In this way, we focus on the wrong things, 
putting energy into the narcissism of small differences 
rather than the stronger, common, residual ideas that 
have survived over time and the circumstances that 
make the new generation of storytellers grasp for some-
thing new. This defensiveness both slows down the 
progress of new stories and protects us from getting 
too enamored of the new. 

In the modern world, where humans are more numer-
ous than we have ever been, more educated, and ever 
more connected, our storytelling has picked up pace 
and is now frantic. Stories evolve through contact, and 
increased contact means more stories and more speed. 
Being convinced that we are right at every juncture 
becomes dangerous, and many different stories are 
promoted at the same time. As the stories progress, 
there is a market of people desperate to get the final 
chapter, who will willingly listen to fan fiction theories 
about where we are headed. Defensiveness from 
previous generations of storytellers influences this 
as well, as many focus on selling a story rather than 
refining a story. The more complex a subject, the more 
stories and story iterations are associated with it. 

Architecture is an obvious candidate for this kind of 
investigation, and when we look at the stories, and 
not at the semi-scientific shadow, we see two fields that 
have a great deal in common: business and architecture. 
Both struggle to define a clear and solid story, and the 
result is a litany of permanently collapsing narratives. 

As we progress from story to story, and  
test the vitality of the story against reality,  
we gain new ideas.  

http://www.cutter.com


8  ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL 

However, the need for certainty drives a business 
model of ever more belief in the current story, which 
leads to fads, snake oil, disappointment, and the next 
cycle of storytelling. 

Architecture right now is a fairly young story, as is 
computer science. We are in the phase of tall tales, 
wild metaphors, and misplaced hopes. There is a huge 
market for new stories, and the stories are often deeply 
flawed. The history of architecture is littered with 
numerous stories collapsing at a frenetic pace, driven 
by the technology industry’s own speedy evolution. 
The latest phase of this story is “digital architecture.” 
As new stories of digital transformation swarm the 
business elite, the field of architecture requires a 
response with coherent stories of its own. Digital 
architecture is simply a new version of an old story, 
which in previous versions talked of modeling, TOGAF, 
centralization, reuse, and the like. That we need a term 
such as “digital architecture” at all is a hint that the 
previous stories have collapsed. Digital architecture is 
simply the next story version, taking what has come 
before and reimagining and reinventing it for the cur-
rent time. This is a necessary step, but we always fall 
into the trap of thinking that this version of the story 
is “the truth.” The story will emerge half-baked from 
those who wish to profit from selling it, with necessary 
compromises to bring the earlier generations of 
architecture storytellers onboard in the interest of 
market coverage. 

To really get a grip on architecture, we need to under-
stand the story’s journey, not blindly follow the latest 
version. Understanding that both business and architec-
ture are stuck in a constant cycle of fad and reinvention 
gives us a vital clue as to how we should approach digi-
tal architecture: it is not really a solution, but rather a 
story to help us navigate our way to a solution. To act 
in these circumstances requires that we do not believe 
in the story but instead use critical thinking to make 
the best decisions we can in the given circumstances. 
Falling into the trap of believing the current story 
has never helped: enterprise architecture is currently 
drifting from relevance, by now clearly an erstwhile 
version of the architecture story. 

In the world of business, some stories have appeared 
as fads: Lean, Agile, business process reengineering, or 
Six Sigma. In architecture, we have the stories/fads of 
TOGAF, enterprise architecture, and Agile. In technol-
ogy, we have OOP, SOA, and microservices. The looser 
and more open to interpretation our stories are, the 
more longevity, confusion, and argument we inevitably 
see. Eventually, over time, these stories are subject to 
reality and begin to either expand or dissolve to make 
way for the next generation of stories. Sometimes, we 
discover hard-and-fast heuristics in our stories that 
will influence many generations of stories. Looser but 
credible stories will open the door for a great amount 
of snake oil and broken promises, as these stories 
influence the decisions made in business and tech-
nology. For example, MBAs are based around the 
case study, a pure storytelling environment, yet 
graduates often describe themselves as data-driven! 

Empirical evidence cannot exist for these stories; 
complexity means that each project is more or less 
unique. We do not have the tools or the science to 
predict how our architectures will be impacted by the 
absence of a team member, a single newspaper story, 
or a market shift. Therefore, all attempts to use similar, 
proven, empirically researched frameworks in a copy-
and-paste way are inherently flawed and ultimately 
dishonest. Frameworks can, however, be a sensible 
approach; they exist and are encouraged because they 
very often promote action over inaction. If you take the 
perspective of capital invested in a number of courses  
of action, action is more important than inaction. 
Empirically, someone will get it right, even if it is 
completely random who that someone is. 

For individual actors without the luxury of optionality 
— who cannot afford to invest in many courses of 
action — there is a huge advantage in not being one 
of those who follow other people’s stories, but instead 
one who understands the journey of the story itself. By 
embracing complexity and understanding that there is 
no answer, by taking the role of producers of science 
rather than consumers of simplified rules and frame-
works, we give our own effort a greater chance of 
success. 

Thus, we as architects have a choice to make. We can 
jump in with both feet and embrace whatever “digital 
architecture” is assumed to be by thought leaders, 
happy in the knowledge that the concept will do its 
job of directing action over inaction and of directing 
our part in this great story. Or, we can try and under-
stand architecture from the perspective of storytelling, 

Architecture right now is a fairly young story, 
as is computer science.  



Get The Cutter Edge free  www.cutter.com Vol. 32, No. 9    CUTTER BUSINESS TECHNOLOGY JOURNAL 9 

becoming the dissenter and choosing a different, more 
honest path in pursuit of the goal. 

This path is difficult. It means there is no prescribed 
framework. No team. No operational silo from which 
we can outsource the blame for failure to other silos. 
It means that we take responsibility for the result of 
introducing our architecture into a complex environ-
ment, rather than adopting a framework that we can 
blame afterward. In a world where others readily 
assume the flawed story du jour, having the ability to 
form your own story creates the advantage of doing 
something different from the pack as well as the ability 
to course correct rather than follow instructions. 

Recognizing that we are part of a story that is unfurling 
over time is the important step. Once we do that, we 
can understand that the latest thinking is not a form 
of empirical or rational truth, but simply a story 
constructed to help humans navigate complexity. It 
will eventually burn away in the flames of reality until 
only the residue of what actually works is left behind. 
Understanding this gives you the advantage of not 
simply favoring action over inaction but allows you 
to focus on what can actually be achieved. Digital 
architecture as a concept will expand to absorb many 
stories, not all of which will be relevant to your work. 
However, it will also try to address problems that you 
may be experiencing, so ignoring it is as dangerous as 
unthinkingly embracing it. 

By rising above hype and evangelical storytelling and 
seeing what is before us in terms of raw empiricism 
(what works for us rather than what has worked 
for others), we can master the problems that digital 
architecture is trying to solve without falling for copy-
and-paste techniques. We need to embrace the useful-
ness of the story, understand that it is deeply flawed, 
and provide the empirical and rational footing to move 
forward in our context. 

What magical approach can solve these problems? 
Well, it has been in front of us the whole time. Critical 
thinking applied to our work will allow us to be 
rational and empirical, to work as the scientist rather 
than the consumer of the scientist’s work. To accept that 
we are not in control and that the only frameworks we 
can trust are those that readily falsify themselves and 
admit to powerlessness in the face of randomness. 

For architects, this means nodding along calmly as 
the big consultancies line up to show us slide decks 

describing what they think digital architecture is, as 
well as which mindset we should be adopting and 
which colorful posters we should hang on our walls. In 
reality, taking this approach means being prepared to 
work through difficult problems using our own skills 
and our ability to think, rather than falling back onto a 
set of unproven practices pushed upon us by evange-
lists selling bottled certainty. 

This is a brave and bold step, but when you think about 
it, it’s not that strange. All we can really rely upon in a 
complex system is ourselves and our colleagues. The 
received wisdom from previous projects that did not 
operate with the same constraints or teams or within the 
same market, industry, or culture is essentially useless; 
by following that received wisdom, we are basically 
admitting that we would not otherwise know what to 
do, despite our skills, training, and experience. So, by  
all means, if you so choose, change your title to Digital 
Architect, select a framework on the basis of its popu-
larity, follow the herd, and enjoy safety in numbers. But 
if you really want to grow … follow your instincts, dare 
to be wrong, create your own way forward through 
your own unique mess of challenges. The results are 
never guaranteed, but at least you will be the author 
of your own story.  

References 
1“Native paradigm.” Wikipedia. 

2“Ludwik Fleck: Thought Collectives.” Stanford Encyclopedia  
of Philosophy, Stanford University, 1 April 2016. 

3Brand, Fridolin Simon, and Kurt Jax. “Focusing the  
Meaning(s) of Resilience: Resilience as a Descriptive  
Concept and a Boundary Object.” Ecology and Society,  
Vol. 12, No. 1, 2007.  

Barry O’Reilly is the founder of Black Tulip Technology and creator  
of Antifragile System Design. Previously, he held positions as Chief 
Architect for Microsoft's Western Europe practice and IDesign, IOT 
TAP Lead for Microsoft’s Western Europe practice, Worldwide Lead 
for Microsoft’s Solution Architecture Community, and startup CTO. 
He can be reached at barry@blacktulip.se. 

Recognizing that we are part of a story that is 
unfurling over time is the important step.  

http://www.cutter.com
https://en.wikipedia.org/wiki/Narrative_paradigm
https://plato.stanford.edu/entries/fleck/#3
https://www.ecologyandsociety.org/vol12/iss1/art23/
https://www.ecologyandsociety.org/vol12/iss1/art23/
https://www.ecologyandsociety.org/vol12/iss1/art23/


 

 

 
The Executive Update is a publication of Cutter Consortium’s Business Agility & Software Engineering Excellence practice. ©2018 by Cutter Consortium. All 

rights reserved. Unauthorized reproduction in any form, including photocopying, downloading electronic copies, posting on the Internet, image 

scanning, and faxing is against the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter Consortium 

publications, call +1 781 648 8700 or email service@cutter.com. ISSN: 2470-0835. 

The Age of Complexity 
by Barry O’Reilly 

The simple reason we cannot see (or perhaps refuse to see) a paradigm shift upon us is because we tend to 

look at the world through the old paradigm. So perhaps all we need to do to meet tomorrow’s problems is 

to stop using yesterday’s thinking. This Executive Update is a call for the acceptance of complexity and the 

introduction of interdisciplinary thinking to all aspects of life, starting with software engineering as the 

guinea pig. By seeking to understand complexity instead of hiding it, we can build better-quality software 

with less stress.  

Software engineering as a discipline is fascinating because of its impact and its youth. At roughly 60 years 

old, it is comparatively a scientific baby. Yet in its infancy, the industry stands in a permanent state of crisis. 

Approaches to software engineering come and go, more like fads than paradigms, with little in the way of 

evidence to back the latest and greatest framework or process.  

The key struggle in enterprise software delivery comes down to one thing: change. The heavy, waterfall-type 

methods that guaranteed engineering success across many engineering disciplines in the past are unfit to 

cope with the rapid pace of change in today’s software industry. The proposed silver bullet, Agile, is accused 

of not providing any significant improvement, despite having existed for roughly a third of those 60 years. 

Yet behind the much-derided waterfall approach lies real engineering expertise amassed over many 

generations. Here we find the systems engineering practices that put men on the moon and built dams, 

airplanes, and infrastructure on a global scale. These methods worked; why are they failing us now?  

There is a parallel. In the world of science, there was once a new school of thought called “complexity 

science” — originating with the Manhattan Project and brought to life at the Santa Fe Institute — that 

tried to answer the question of complexity. But what happens when the established paradigms, that 

of Newtonian-Cartesian reductionism and the clockwork universe, start to show diminishing returns?  

https://www.cutter.com/experts/barry-oreilly
https://www.6point6.co.uk/an-agile-agenda
https://en.wikipedia.org/wiki/Manhattan_Project
https://en.wikipedia.org/wiki/Santa_Fe_Institute
http://wiki.p2pfoundation.net/Cartesian-Newtonian_Paradigm
https://en.wikipedia.org/wiki/Clockwork_universe


 

Page | 2  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                 EXECUTIVE UPDATE | Vol. 19, No. 14 

©2018 Cutter Consortium   |   www.cutter.com    

 

In software engineering, on either side of the crisis, we find two embattled groups. On one side, we have the 

software engineers, trained to build beautiful, elegant constructions that fit current paradigms and solve all 

problems with code or Agile methodologies. On the other side are the business stakeholders, trained in the 

command-and-control approach and expecting straightforward, calculated responses to their ever-changing 

requests.  

Looking at the problem with fresh eyes, and aware of the results of the Manhattan Project, it is possible 

to see this as a simple problem. Neither side of the software crisis has, through training, any means of 

managing or describing complexity, yet they are both tasked with dealing with it. Unaware of what it is, 

both sides try desperately to hide it, to pretend they have mastered it. This is not a new thing, but a rational 

human response to something we do not understand. Detailed in the work of organizational theorist Ralph 

D. Stacey and scholar Nassim Nicholas Taleb, the human instinct is to simplify and reduce; this is, after all, 

the gamut of the reductionist model of thinking.  

This Update proposes the very, very simple step of making all actors aware of the complexity inherent 

in what they are trying to do and making it clear that Newtonian-Cartesian approaches are only relevant 

when we already understand a system in intricate detail. If both sides are tasked with meeting complexity 

and neither has been trained outside the dominant discourses that do not allow them to engage with 

complexity, the results can only ever be a permanent state of crisis. By making everyone aware of the 

existence of complexity and what strategies exist to manage it, we can aim to improve the quality of 

software and reduce the stress involved in delivering it.  

The Need for Understanding Complexity 
Today, we stand before an increasing number of seemingly intractable problems. Our attempts to master 

complex systems such as the economy, social structures, and the climate are not delivering the results we 

expected. Despite the technological advances of the last century, we are actually working more, and we are 

more stressed at work. It seems as if the scientific revolution is delivering diminishing returns, struggling 

to cope with the complex problems that present us with ever-changing and unpredictable environments. 

Much of our energy goes into working toward predictions of the unpredictable, pretending that we are in 

control when we obviously aren’t. So many careers focus on matching results to quarterly predictions that 

have no basis in fact, which are never questioned despite the human cost in burnout and fatigue. Younger 

fields, such as economics and psychology, seem to have developed with the expectation of repeating a 

simple theoretical underpinning as per the natural sciences but have not delivered tidy scientific laws to 

allow their practitioners to predict and control the systems they study. These are all issues of complexity. 

The problem of complexity first became apparent when working with nuclear systems during World War II, 

which led several groups to start looking at new ways to address complex problems, an inquiry we need to 

continue pursuing today.  

http://www.cutter.com/
https://stephenjgill.typepad.com/performance_improvement_b/2010/05/commandandcontrol-leadership-vs-peoplecentered-leadership.html
https://amzn.to/2DZ7zng
https://amzn.to/2DZ7zng
https://amzn.to/2THbtFT
https://www.complex.vcu.edu/ON%20COMPLEXITY.html


 

Page | 3  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                 EXECUTIVE UPDATE | Vol. 19, No. 14 

©2018 Cutter Consortium   |   www.cutter.com    

 

Modern society is permeated by the Newtonian-Cartesian paradigm — the idea that the universe is 

clockwork and can be boiled down to the sum of its constituent parts and understood like a machine. 

Several hundred years of scientific thought have left deeply ingrained patterns in how we think and reason 

in everyday life. This way of thinking has delivered a whole new way of life for humankind, but it is no insult 

to suggest that it has limits. It made its way into business thinking through American mechanical engineer 

Frederick Winslow Taylor and the resulting 20th-century command-and control management paradigm. 

Complexity could be considered the result of trying to understand the world in this way. Everything that 

does not follow the Newtonian-Cartesian paradigm is simply labeled as “complex.” 

In the 1980s, the Santa Fe Institute began to work on something that would later come to be known as 

complexity science. This was a new area of science, focused on the emergent behavior of systems that 

shared certain characteristics — a large number of simple agents acting together to produce results with 

nonlinear reactions to changes in inputs. This involved looking across boundaries imposed by conventional 

study, with the aim of understanding not just the system but complexity itself. With a number of dispar-

ate actors approaching the subject, concepts from general systems theory and cybernetics tend to get 

entangled in the discussion. Many different approaches to the same problem emerged at different times 

among different groups of thinkers. 

Today, the subject of complexity is of growing interest. In many areas where complex systems are present, 

conventional science seems to be “stuck” for answers when the systems being modeled are in a constant 

state of change and the results are not easily predictable. We have come to expect that scientific work 

results in a usable, predictable theorem, and that work is finished once that theorem has been established. 

This is the Newtonian-Cartesian paradigm, and it sits embedded in our subconscious view of the world. We 

believe that we are acting in this Newtonian-Cartesian way, despite the fact that the vast majority of our 

decisions are based on something altogether fuzzier. Indeed, we use hindsight bias to declare our work 

rational and, indeed, clever.1 

Scientific Revolutions: The Paradigm Shift 
Should we have expected more from the birth of complexity science? Ludwig von Bertalanffy, the father 

of general systems theory, certainly thought so, believing that the study of systems would lead to the 

discovery of a set of principles by which all complex phenomena behaved. This has not been the case, 

although our disappointment is merely a reflection of the ingrained expectation of such a tidy result. 

What if the paradigm shift had already happened and we just didn’t get it?  

                                                         

1 Taleb’s book Fooled by Randomness is a fascinating account of this tendency to ignore the role of chance, and Stacey’s 

Complexity and Organizational Reality depicts the hijacking of the scientific method to make the case for command-and-

control management structures.   

http://www.cutter.com/
https://en.wikipedia.org/wiki/Frederick_Winslow_Taylor
http://www.statpac.org/walonick/systems-theory.htm
https://en.wikipedia.org/wiki/Cybernetics
https://en.wikipedia.org/wiki/Hindsight_bias
https://en.wikipedia.org/wiki/Ludwig_von_Bertalanffy
https://amzn.to/2THbtFT
https://amzn.to/2DZ7zng


 

Page | 4  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                 EXECUTIVE UPDATE | Vol. 19, No. 14 

©2018 Cutter Consortium   |   www.cutter.com    

 

When working with man-made complex systems — such as software projects, power grids, and traffic  

systems, which are unique for their local context and short-lived compared to organic complex systems 

so the two cannot be directly compared with each other — spending energy creating theories is demons-

trably wasteful. Trying to work with empirical data when it cannot exist or continue to be relevant is 

pseudoscience — going through the motions to satisfy the Newtonian-Cartesian way of thinking because 

that is what we think we should do. Ironically, the accusation of pseudoscience is the first that will be thrown 

at anyone who dares to engage with the complex system in a way that does not seek prediction or easy 

answers through reductionism. Such overconfidence, caused by applying Newtonian thinking to complex 

systems, was a major contributor to the 2008 financial crisis, described in detail by Taleb and Stacey in their 

works.  

Complexity is (by definition) currently beyond the limits of our understanding. Predicting the weather to 

a certain degree of accuracy, the economy, the progression of disease, the lifecycle of a software product, 

the outcome from a business investment, or the shape of a snowflake is not something we can currently 

do with absolute certainty. Accepting complexity, however, along with the exhaustion of the Newtonian-

Cartesian paradigm as a fact rather than a challenge is the first step toward a new approach. By learning 

to simply recognize complexity when we see it — and learning that we cannot engage with it through 

reductionism — could save ourselves a lot of pain and allow our efforts to focus on quality, rather than 

on trying to do the impossible. Those who learn in the field of complexity will perform better simply 

because they know when to walk away!  

Complexity and Reality 
In Complexity and Organizational Reality, Stacey points out the inherent weakness in the complexity science: 

the constant need to fall back on reductionism, seeking the simple rules behind something that will make 

prediction easy and possible. He asserts that the greatest benefit of complexity studies is through the use of 

what he terms “metaphor” — that is, observing behavior in one complex system in an effort to understand 

another system. To really make use of this idea, we would need to step away from our reductionist reflex 

and accept that there is no simple way to predict or solve complex systems, and that we need to undertake 

a slightly different journey before we can begin to understand how we should interact with these systems. 

We do not know what this journey will look like, but we know that we cannot use already-traveled roads to 

get there. The paradigm may have shifted with the formation of the Santa Fe Institute, or perhaps even 

earlier, but the idea has not spread widely enough to impact the discourses through which we do our work.  

As the world becomes more connected, it becomes more complex. And as the inhabitants of the world 

communicate more, they realize that something is not quite right with those that sell the idea of being in 

control — evidenced by the financial crisis, political turmoil, costly military adventures, and business failures. 

The loss of faith in experts may not be the result of lack of education or rejection of evidence, but rather the 

slow dawning of the realization that the pursuit of knowledge through reductionist thinking is producing 

http://www.cutter.com/
https://amzn.to/2DZ7zng


 

Page | 5  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                 EXECUTIVE UPDATE | Vol. 19, No. 14 

©2018 Cutter Consortium   |   www.cutter.com    

 

diminishing returns. Stacey explicitly calls out the “dominant discourse” in pseudoscientific management 

practices that demand command and control of organizations in a Newtonian-Cartesian fashion. Similarly, 

anyone trying to establish command-and-control structures for any complex system could be guilty of this 

pseudoscientific search for credibility as well (e.g., trying to predict the outcome of software projects despite 

the lack of evidence that such a thing can be predicted or controlled). Stepping away from the accepted 

way of dealing with complexity — simplification and reductionism — is a difficult step to take for many of us 

educated in the classical sciences, but perhaps there needs to be a new approach if we are to move beyond 

the current impasse and begin to work more productively with complex systems 

Complexity and Software Engineering in the Enterprise: 
Toward Better Quality 
In the field of software engineering, the trend away from Newtonian-Cartesian thinking has been apparent 

for more than 20 years. The movement against the dominant discourse of waterfall development, 

or systems engineering, is known as Agile and has looked to destroy the old way of doing things. By 

“embracing change,” the Agile movement effectively ended the Newtonian-Cartesian drive to model 

software development processes as exercises in command and control. Unfortunately, the dominant 

discourse, as predicted by Stacey for organizations, quickly rears its head, and we have all manner of 

frameworks and silver bullets adopting the language of Agile and a software crisis that continues unabated, 

with software project success rates barely moving over the course of the Agile “revolution.” 

Complexity science happens at the blurry edges between disciplines. It involves building bridges between 

the complex and the concrete. As of yet, there is little attempt to do this in the field of software engineering. 

Indeed, there is a huge risk that any attempt to do so will be tainted with confirmation and hindsight bias, 

leading practitioners to change little about their current methods. 

As the hype around artificial intelligence (AI) begins to die down and we look harder at what it actually 

means to produce these systems, we will see new approaches to building software emerge. Trial and error, 

or, as Taleb puts it, “tinkering,” and reaction to observation without the need to form underlying theories 

and sacrifice progress for completeness will be the norm for a generation of engineers. However, as many 

of these AI systems will have people’s lives depending on them, the “move fast and break things” approach 

of many Agile proponents will not be appropriate.  

Combining the metaphorical approach of complexity (i.e., through studying complex phenomena outside 

one’s chosen field) with the quality engineering practices learned in the trenches that form the basis of 

systems engineering solves both the problem of Newtonian naiveite in the face of complexity and the 

difficulty of achieving sufficient levels of quality in software. Once an understanding of complexity is 

reached, engineers can more easily discern what they can and cannot control. They can employ systems 

engineering to raise quality where control is possible and other techniques such as experimentation and 

http://www.cutter.com/


 

Page | 6  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                 EXECUTIVE UPDATE | Vol. 19, No. 14 

©2018 Cutter Consortium   |   www.cutter.com    

 

diversification when facing real complexity. Perhaps then, the trigger that pushes the paradigm shift is as 

simple as complexity thinking practiced through engineering — delivering real results but perhaps without 

the ability to predict, plan, or control, or describe the underlying rules that govern the system but rather 

with more focus on recognizing and meeting complexity in a different way than before. This also means 

accepting the end of working to a strict plan/budget/schedule around which our industrial society has 

formed itself. In practical terms, it means observing those engineers “getting it right” (critically, here, we 

should remember Taleb’s Fooled by Randomness and the role of chance) and observing how they manage 

complexity, using the metaphors from the complexity sciences to understand their successes and failures. 

An example of this is determining the levels of experimentation and diversification employed by those 

engineers and the properties and behaviors of the systems they deliver, rather than how they deliver 

code or which trends they follow — the result being the development of new heuristics, rather than the 

development of new theories.  

The idea that software engineering could see benefits through the simple use of complexity metaphors, by 

educating engineers in the complexity that exists outside their fields (e.g., by using the Santa Fe institute’s 

Complexity Explorer or the book Introduction to The Theory of Complex Systems) and hoping that the result 

is better-engineered systems, seems too good to be true. Yet we don’t need to wait for a grand, unified 

theory of complexity before acting; we simply need to give engineers a reading list and a license to put 

quality before planning or speed of delivery. This is a simple enough experiment to run; indeed, reading 

this Update may be all it takes to cause a certain number of teams to pick up the gauntlet. If the idea is 

shown to have an impact on results, even subjectively, developers will adopt it. This idea does not require 

a great deal of effort or rollout, no central planning or, indeed, any significant budget. Companies in the 

first flushes of Agile experiencing quality issues will be very open to experimenting with the idea and may 

even see very fast results.  

For the field of complexity science, the production of software that works through using the field’s 

findings in terms of metaphor could be a compelling vindication. There are few fields as well funded and 

simultaneously dysfunctional as software, and the opportunity for experimentation is huge. Every software 

project is unique, in terms of teams, business objectives, and so on. The system that builds, delivers, and 

manages software is as complex and unpredictable as any other. If real complexity can be managed better 

by exposing the builders to complexity theory, then we have a noteworthy result.  

American physicist Thomas S. Kuhn once wrote of the steps behind a scientific revolution that lead to 

paradigm shift. Software engineering stands now in the midst of permanent crisis (since 1968!), primed for 

such a paradigm shift. Of course, we cannot plan or control a scientific revolution, but if we look to Taleb, 

anything that has a potentially high return and low risk is something to be embraced, even if the result 

cannot be predicted or planned. Those who have embraced Agile will understand the challenges in 

convincing organizations to move away from command and control, and the argument is difficult to 

make when this is the dominant discourse within management. An easier argument to make is that early 

focus on quality leads to faster and cheaper deliveries, as compared to early focus on speed and planning — 

http://www.cutter.com/
https://amzn.to/2THbtFT
https://www.complexityexplorer.org/
https://www.amazon.com/Introduction-Theory-Complex-Systems-Thurner/dp/019882193X
https://amzn.to/2DZg0yL
https://amzn.to/2DZg0yL
https://en.wikipedia.org/wiki/Software_crisis


 

Page | 7  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                 EXECUTIVE UPDATE | Vol. 19, No. 14 

©2018 Cutter Consortium   |   www.cutter.com    

 

usually because you don’t have to redo everything to get to quality after release. Starting with assessing 

the complexity of an initiative is certainly a good way to expose oversimplification, one of the key causes 

of quality issues in software projects. 

Perhaps the results of this grand experiment would show an inherent value in looking at the complexity that 

is evident across different domains, without necessarily solving the riddle of prediction. This would see the 

start of an age of complexity, where instead of solving for x, we learn to live comfortably with y. This world 

would be a nicer one — the pretense of control and mastery carries a heavy price for society and for our 

relationships with each other. We may stand at the dawn of the age of complexity, or maybe not. At the very 

least, we’ll have better-quality software.  

About the Author 
Barry O’Reilly is the founder of Black Tulip Technology and creator of Antifragile System Design. Previously, he 

held positions as Chief Architect for Microsoft's Western Europe practice and IDesign, IOT TAP Lead for Microsoft’s 

Western Europe practice, Worldwide Lead for Microsoft’s Solution Architecture Community, and startup CTO. 

He can be reached at barry@blacktulip.se. 

http://www.cutter.com/


Get The Cutter Edge free  www.cutter.com Vol. 32, No. 6    CUTTER BUSINESS TECHNOLOGY JOURNAL 1 

http://www.cutter.com


Get The Cutter Edge free  www.cutter.com Vol. 32, No. 6    CUTTER BUSINESS TECHNOLOGY JOURNAL 25 

In the World Economic Forum’s “Future of Jobs Report 
2018,”1 a clear pattern emerges in desired skill sets — 
a shift toward critical thinking with a move away from 
skills relevant to industrial patterns of scale inherited 
from the Industrial Revolution, like modeling and 
perfecting processes. However, this shift may not 
be happening quickly enough in the workforce for 
Industry 4.0. This article examines the difficulties 
organizations experience when reskilling engineering 
teams to cope with the complexities of modern software 
development — as software moves center stage. 

Industry 4.0 promises great riches to those who travel 
its path. Automation, better decision making, predicting 
the unpredictable — all of these promise the captains 
of industry that it is possible to squeeze more juice out 
of the same lemon one more time. Whether these lofty 
promises will ever be realized or they are simply a 
product of software vendors giving too much cash 
to their marketing departments to lavish on tall tales 
remains to be seen. One theme is common though: as 
companies move toward solving more of their critical 
everyday needs with advanced technology, almost all 
report suffering from a shortage of skills to handle wave 
after wave of new technologies. 

As Industry 4.0 drives software to become a more 
central part of every business, the problems that 
businesses try to solve become less about automating 
old processes, as computing has been doing, and more 
about inventing a new world in which computing 
drives business rather than mirrors it. This means 
interfacing with the complexities of the real world; 
the focus shifts from automating simple processes and 
tasks to engaging with the uncertain, messy world of 
real business. It is this shift from simplistic engineering 
and time saving to engaging with real-world business 
complexity that causes most difficulty in software 
engineering today — and it is a key feature of Industry 
4.0. Engaging with real-world complexity requires 
new skills outside of what the universities or vendor 
certifications are teaching today — the exact same set 
of skills noted by the World Economic Forum.2 Critical 
thinking, complex problem solving, and anticipatory 
thinking are the necessary tools for navigating these 
problems.  

What Is the Skills Shortage? 
A skills shortage in the IT industry is not new; 
the problem is almost as old as the industry itself. 
Universities are not producing enough work-ready 
graduates to meet employer demand. This skills 
shortage is not just an irritation; it is something 
that threatens economic growth, and, for regions 
that manage to attract technical talent, this ability 
promises a lot in terms of economic upswing.  

So what makes the Industry 4.0 skills crisis different 
from previous skills crises? One aspect of Industry 4.0  
is the Internet of Things (IoT). The journey since 2013 
within IoT points to a new set of challenges that have 
not been present before. A sudden proliferation of 
ideas, patterns, tools, and protocols, coupled with very 
few case studies, provides a set of challenges that few 
software architects and engineers have ever dealt with. 
The combination of cloud computing, IoT connectivity 
demands, and the sheer size of the data sets creates a set 
of challenges that make succeeding difficult. Disruption 
of old industries, and of traditional business models, 
has caused fear and uncertainty in many large com-
panies, and no solution has been the same twice over. 
There was not only difficulty in how to do IoT, there 
was also a huge amount of uncertainty around what 
to do on both a business and technical level. The rapid 
mobilization of software vendors around IoT and 
Industry 4.0 as drivers of cloud revenue meant that 
there was much encouragement and hype, but even 
today most industries are still finding their way 
through their first steps.  

REINVENTING OURSELVES (YET AGAIN) 

The Skills Crisis 4.0: Accepting New Realities 
by Barry O’Reilly 

Industry 4.0 promises great riches to those 
who travel its path. Automation, better deci-
sion making, predicting the unpredictable — 
all of these promise the captains of industry 
that it is possible to squeeze more juice out 
of the same lemon one more time.  

http://www.cutter.com


26  ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL 

This rush of ideas and uncertainty has led to conflict 
and hesitance as old role descriptions no longer fit, 
and many feel unsure of how to proceed. Failed 
Industry 4.0 projects are stories of confusion, inertia, 
and small proof-of-concept projects that never make it 
any further. In terms of skill sets, the picture emerging 
from Industry 4.0 is constantly shifting and still not 
settled. Even for seasoned veterans in the IT industry, 
the pace of change has been intimidating. The cultural, 
political, and social impacts of this change are as diffi-
cult to navigate as the technical ones, and the herd 
instinct of the IT industry means that we are seeing 
constantly redefined trends as companies discover 
the truth behind the hype in tough lessons from pilot 
projects. Every project is a step into the unknown and 
requires skills not only in the rapid assimilation of 
new ideas and technologies, but also in navigating 
and managing this risk.  

Industry 4.0 requires experimentation and constant 
reinvention as everything changes, from business 
models to technology platforms to hype and social 
trends. Constant change requires a steady supply 
of engineers in an ever-growing field of products, 
protocols, and platforms — and there simply aren’t 
enough to keep up. What’s more, with the cultural 
and sociotechnical aspects of Industry 4.0 at play, these 
problems are not simply complicated, they’re complex 
— and this requires a completely different set of skills 
to navigate, a set of skills not taught in any university 
computer science program. Navigating complexity and 
uncertainty in the face of ongoing technical reinvention 
is the core work of systems architects in Industry 4.0 
projects. With all this in mind, a protracted and difficult 
skills shortage for Industry 4.0 seems in hindsight both 
inevitable and predictable.  

Learning in Real Time  
The current state of Industry 4.0 requires that innova-
tors constantly learn technologies that haven’t even 
been proven to work at scale and may never make 
it to production. This isn’t lifelong learning; it’s 
“just in time” learning. Unfortunately, this type of 

learning often clashes with our traditional view of skills 
acquisition. For many years, software engineers worked 
with platforms that changed every few years, with 
a constant feedback loop from vendors that allowed 
them to stay up to date with a disciplined approach to 
learning. Now, the release cadence of cloud platforms 
central to Industry 4.0 is four to six weeks, and there has 
been no wide-scale change in the approach to learning. 
The truth is that there cannot be a scalable version of  
the old ways of learning; it simply won’t work. Industry 
4.0 cannot be staffed using the educational theories of 
Industry 1.0. We do not need to learn faster, better, or 
cheaper; we need to learn in a completely different way. 
The challenge of working in these kinds of initiatives 
is that work cannot simply be reduced to factory-like 
machinations; engaging with Industry 4.0 requires 
a continuous cycle of probing and experimentation 
where learning is part of the job, not preparation for it.  

The Never-Ending Skills Crisis:  
Lessons from the Past 
The IT skills shortage has been around long enough for 
some to have proposed solutions. Will these ideas work 
for Industry 4.0?  

A 2018 report from Almega shows that in Sweden 
alone, a shortfall of skilled people expects to leave 
70,000 IT positions vacant by 2022, mostly in the areas 
of system architecture and programming.3 Similar 
stories are familiar all over the globe. However, Sweden 
is especially relevant for a number of reasons: a long 
tradition of innovation and a willingness to embrace 
new technology, combined with universal free edu-
cation right up to the master’s degree level, should 
theoretically make it easy to produce computer science 
graduates. The continued existence of a shortfall, 
however, shows us that a technologically-enabled 
and educated workforce is not the sole solution to 
the problem.   

Past Approaches to the Crisis 
Let’s look at some past approaches to the skills crisis 
and see if we can glean any lessons from them.  

Government Initiatives 
There is no shortage of government-funded initiatives, 
usually based around fast-paced reskilling programs 

The IT skills shortage has been around long 
enough for some to have proposed solutions. 
Will these ideas work for Industry 4.0?  



Get The Cutter Edge free  www.cutter.com Vol. 32, No. 6    CUTTER BUSINESS TECHNOLOGY JOURNAL 27 

and often sponsored by one or more vendors. This was 
a common approach even in the late 1990s when the 
first waves of e-commerce created a perceived skills 
gap. This hints at the fact that such measures are a  
Band-Aid on a much bigger wound — considering that 
we have tried and failed to manage a skills shortage 
over seven generations of university students. 

MOOCs and Ease of Access to Education 
The rise of MOOCs (massive open online courses) 
provided hope that we could mitigate the never-ending 
skills crisis by making education of software engineers 
cheap, easy, and accessible. The rise of companies 
like Pluralsight and the success of online education 
in artificial intelligence are positive anchors toward 
solving our shortage predicament; engineers now 
have access to a huge library of dynamic educational 
resources and can learn at their leisure for incredibly 
low fees (and they are doing so).  

Offshoring 
Another promising trend in solving the skills crisis was 
to move programming work to countries and regions 
with lower labor costs. However, offshoring, for mul-
tiple reasons, has declined in popularity in recent years. 
The shortfalls of offshoring become even more apparent 
when working with complex programs that cannot be 
described or managed in contractual terms.  

Automated Candidate-Role Matching 
The last few years have exposed the weakness of 
the concept of technology-driven recruitment at 
scale. LinkedIn ads seeking candidates with 10 years’ 
experience in a technology that has only existed for 
two is not uncommon. Senior engineers receive job 
offers for junior or even unrelated roles on a daily basis. 
This simplification of the IT market in order to make 
recruitment scalable has not helped solve the skills 
shortage; in fact, it may be making things worse.  

The reason for this is simple: we are still stuck in an age 
where IT roles are mapped to proficiency in vendor 
products. The recruitment model is not to blame for this 
but is a reflection of this mapping. The vendors like to 
keep it that way, as programmers who are well versed 
in their technology are pigeonholed and continue to 
support that vendor technology. This encourages a 
mindset of linking skills to tools, rather than ability.  

Selling Computing to High School Students  
Another approach is the marketing of careers in tech 
to prospective university students, selling the positive 
aspects of a career in this industry. However, a UK 
government report shows that 13% of computer science 
graduates remain out of work six months after graduat-
ing4 — not exactly presenting a grand glimmer of hope. 
Despite having computer science degrees, graduates are 
not considered to be prepared for the practical aspects 
of delivering technology and not at all prepared for 
the constant flux in technology. On top of this, they 
experience barriers to entry caused by the recruitment 
industry’s treatment of product knowledge as the 
measure of technology skill and an unwillingness 
of businesses to invest in relatively short periods 
of apprenticeship to learn these products.  

It is apparent that we cannot simply continue as we 
have in the past. Educating engineers faster, matching 
them to jobs more easily, and simply doing “the same 
old thing” has not solved the earlier skills crises — and 
Industry 4.0 presents even tougher challenges than 
what we have experienced thus far.  

A Crisis of Perception? 
Despite the impression that software is rapidly chang-
ing, with wave after wave of new ideas and technology, 
the truth is that it is very static. Modern ideas driving 
the technical focus of Industry 4.0 are perceived as 
revolutionary, even though ideas such as the actor 
model were conceived in 1972. Machine learning is 
the application of algorithms to statistics, which has 
theoretically been established for several generations. 
Such is the disconnect between academia and industry 
that after 20 years of practical software engineering, 
most professionals’ daily work is far removed from 
the lectures they attended, so when these subjects 
resurface, they appear brand new! The theoretical 
basis for Industry 4.0 already exists and can be 
made available to anyone through MOOCs and online 
platforms; only the experience of practical application 
in changing contexts is missing.  

For this reason, talk of a skills crisis in IoT a few years 
ago was plainly ridiculous — the market or engineering 
foundations are still not established enough for a more 
formal emergence of expertise to exist so trying to hire 
that expertise by searching a skills database will lead to 
a perpetual sense of crisis. Instead of seeking expertise 

http://www.cutter.com


28  ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL 

from the beginning, accepting emergence of expertise 
over time may be the best way to combat a crisis that 
possibly exists more in our perception than in reality. 
Perhaps the skills gap is not a gap in knowledge of 
platforms and products, but a gap in the ability to navigate 
the unknown without the comfort blanket of product or 
platform expertise. Many see the solution as a work-
force trained in the latest and greatest technologies and 
call the gap between the solution and reality a crisis, but 
perhaps the assumption that such a workforce can exist 
in this environment is the cause of the problem?  

Viewing the Skills Crisis Anew 
The information presented above provides a clearer 
view of the skills shortage. The ability to navigate 
complex situations and problems is the major issue, 
not knowledge of specific languages, frameworks, or 
vendor tooling. 

Government initiatives to teach coding miss the point, 
as successful software engineering in complex envi-
ronments is going to need skills outside of coding to 
be successful. Current thinking and policy focus on 
producing more people who can code, not who can 
think in a way that allows coding to be used properly.  

The basics of computer science are still important, 
but these are easy to master if taught in context and 
shown to be relevant to the everyday work of software 
engineering, rather than a separate rite of passage 
that seems to bear little relation to the working world 
graduates are released into — a world that leaves 13% 
of them unemployed six months after graduating! 

If we are to abandon the simplistic idea that the skills 
crisis can be solved by increasing the number of people 
entering the field or who know the platforms we are 
working with, we need to propose new solutions.  

However, employers are keen to see graduates 
who are work-ready,5 and in many cases this means 
already knowing the latest trends and tools. This is 

an impossible task for universities to meet, given the 
never-ending pace of change; even if they succeeded, 
students graduating with relevant skills today will still 
need to retrain in a few months as new patterns and 
tools emerge. Regardless of what universities do or how 
accessible government or industry programs make IT 
education, every single graduate will eventually face 
a choice between self-sustaining renewal or career 
stagnation.  

Alternative Solutions 
The tech industry also suffers from another, remarkably 
well-hidden problem: age discrimination. Over the 
age of 45, many in the industry feel dispensable and 
struggle to find work if they should find themselves 
unemployed. Having been through many waves of 
technology before, this group of people undoubtably 
contains the critical-thinking skills needed by Industry 
4.0. However, these resources possess only out-of-date 
skills, with little weight being given to the critical 
faculties developed over a career. Allowing for easy 
mid-career transitions to different areas of specializa-
tions would make this group a powerful remedy to 
skills shortages but requires a shift in thinking from 
employers.  

A huge number of software projects still fail and 
multiplying the number of people who do the same old 
things will not change this failure rate. Today’s skills 
gap is probably smaller than the number of talented 
developers currently wasting their time on failing 
projects or dedicating their time to overhyped trends 
with no basis in economic reality. Teaching program-
mers and their extended teams to think critically would 
allow for much faster abandonment of failing projects 
and acceptance of this as a natural way of doing 
business with technology will free up resources 
and ease the workload. 

Industry 4.0’s predilection for hype is also an issue. For 
example, many technologies form their own skills crisis 
as businesses seek resources who know this specific 
toolset — only for that toolset to be retired after a few 
years with few tangible benefits. These resources are 
also wasted, with specialist knowledge gained now 
useless.  

If we could leverage the huge pool of older resources, 
waste less time on failed projects and hyped projects, 
and encourage the acceptance of emergence, we would 
at least reduce the number of resources needed. This 

Government initiatives to teach coding miss 
the point, as successful software engineering 
in complex environments is going to need 
skills outside of coding to be successful.  



Get The Cutter Edge free  www.cutter.com Vol. 32, No. 6    CUTTER BUSINESS TECHNOLOGY JOURNAL 29 

solution, however, requires organizations to be more 
critical in their navigation of Industry 4.0.  

Teaching Critical Thinking 
Some theories on critical thinking view the skills of 
critical thinking as separate from contextual knowledge, 
while others see the two as inseparable.6 There is little 
consensus. Regardless, Industry 4.0 is pushing the 
fields of business and technology so close that they 
are becoming a single context and thinking critically 
about one is impossible without knowledge of the 
other. This is a defining characteristic of Industry 4.0, 
and one that creates problems but also provides oppor-
tunities. This alignment of the two fields demands 
that many engineers and associated business roles on 
Industry 4.0 projects need to broaden their context to 
cover both business and technology specializations, 
another step toward becoming generalists. By exposing 
more computing graduates to business studies, and 
more business people to computing, we increase the 
size of the pool that can engage in critical thinking 
around delivering technology into business environ-
ments and make more effective decisions that reduce 
issues of resource wastage on hype-driven projects or  
ill-defined initiatives.  

Research shows that there are four techniques that have 
specific impact on a student’s critical thinking, and 
while we leave the debate about how to better produce 
critical thinking in K-12 education to those that work 
in that area, one important point was the impact of 
mentoring in combination with dialogue and real-world 
problem solving.7 Encouraging this kind of mentoring 
within a company could have a significant impact on 
how critical thinking is spread through an organization, 
making it easier for technologists to tackle shifting 
technology landscapes with confidence.  

Conclusion 
We currently live in a world where we need the 
knowledge and experience built up over a career to 
navigate the complexity involved in most fields. In 
the technology industry, we have come to expect this 
experience to simply appear despite constant technolog-
ical change. The seemingly obvious solution of educat-
ing faster and cheaper and wider has been shown to be 
ineffective — and the obvious next step is to question 
how we can better navigate this crisis in the future.  

Assuming that we must learn in the same way is a 
mistake, and we limit ourselves by consigning solutions 
to copies of what has worked in the past. Rather than 
learning faster, one option is simply to learn better. A 
field of software engineering where knowledge of a 
platform or technology is not a prerequisite to working 
on a project would solve the perception of a skills crisis 
overnight. Equipping engineers with the necessary 
skills to handle complexity, transition, and breadth, 
with a real and solid grounding in practical computer 
science that stays with them throughout their careers,  
is essential. 

In Industry 4.0 we see a glimpse of the future: technolo-
gy will always change faster than education, so learning 
how to cope with change and complexity is the only 
feasible alternative to learning technologies as they 
appear. A new set of heuristics is necessary; the role of 
the modern technologist will be similar to that of the 
emergency medical field teams that deal with virus 
outbreaks and who do not need to know the exact 
nature of the virus to begin with containment as they 
learn more. Creating just-in-time units of software 
delivery capacity will become a key skill, and at the  
root of all this will be the developer, free from vendor 
branding, a critical thinker with the confidence to tackle 
new problems without prior knowledge of relevant 
products. Learning how to leverage the critical-thinking 
skills acquired in other disciplines to allow transition 
to technology careers for those that already have the 
(much harder to establish) soft skills in place would  
also help. 

In conclusion, the perception of a skills crisis makes 
realizing the vision of Industry 4.0 difficult for many 
organizations. Those that encourage critical thinking 
to drive skills transition as part of the job will gain 
ground on those that wait for government agencies 
and universities to solve the problem for them. We 
can take some simple steps in both the short and the 
long term to combat this skills crisis. In the short term, 
ensuring that a culture of lifelong learning is established 
and encouraged, both financially and organizationally, 
will go a long way to making sure that organizations 
can build the necessary flexibility in their workforce 
to avoid desperate recruitment drives. Combining this 
with a culture of acceptance around late-career transi-
tions will provide a steady flow of talent from existing 
pools of older employees currently being assigned to 
the scrap heap. 

http://www.cutter.com


30  ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL 

In the longer term, reassessing our view of skills will 
be necessary. Instead of focusing on narrow platform 
and vendor-focused skill sets that make for easy 
searches in recruitment databases, we need to focus 
on the core skills that make employees able to consist-
ently embrace new technologies successfully: critical 
thinking, computer science basics, a broader exposure 
to the humanities, and an ability to combine digital 
skills with industry experience. Developing these core 
skills requires changes to the educational system at all 
levels, which should not be unexpected given the huge 
transitions to the way in which our society uses 
knowledge today compared to when our educational 
systems were designed. By using mentoring, critical 
dialogue, and project-based learning for junior engi-
neers, we can help nurture a critical-thinking culture 
that reduces wasted resources and risk-filled vanity 
projects, making more resources available. In short, we 
can do more with less, which is one of the driving forces 
behind Industry 4.0 in general! 

References 
1Centre for the New Economy and Society. “The Future of Jobs 
Report 2018.” World Economic Forum, 17 September 2018. 

2World Economic Forum (see 1). 

3“The IT Skills Shortage: A Report on the Swedish Digital 
Sector’s Need for Cutting-Edge Expertise.” Almega, 2018.  

4“Digital Skills Crisis.” Second Report of Session 2016–17,  
House of Commons, Science and Technology Committee, 
UK Parliament, 7 June 2016. 

5Almega (see 3). 

6Abrami, Philip, et al. “Strategies for Teaching Students to Think 
Critically: A Meta-Analysis.” Review of Educational Research,  
Vol. 85, No, 2, 2015.  

7Abrami, et al. (see 6). 

Barry O’Reilly is the founder of Black Tulip Technology and creator 
of Antifragile System Design. Previously, he held positions as Chief 
Architect for Microsoft’s Western Europe practice and IDesign, IOT 
TAP Lead for Microsoft’s Western Europe practice, Worldwide Lead 
for Microsoft’s Solution Architecture Community, and startup CTO. 
He can be reached at barry@blacktulip.se. 

http://www3.weforum.org/docs/WEF_Future_of_Jobs_2018.pdf
http://www3.weforum.org/docs/WEF_Future_of_Jobs_2018.pdf
http://www3.weforum.org/docs/WEF_Future_of_Jobs_2018.pdf
https://www.almega.se/app/uploads/sites/2/2018/06/ittelekom_rapport_brist_pa_it-kompetens_eng_webb.pdf
https://www.almega.se/app/uploads/sites/2/2018/06/ittelekom_rapport_brist_pa_it-kompetens_eng_webb.pdf
https://publications.parliament.uk/pa/cm201617/cmselect/cmsctech/270/270.pdf
https://www.almega.se/app/uploads/sites/2/2018/06/ittelekom_rapport_brist_pa_it-kompetens_eng_webb.pdf
https://www.researchgate.net/publication/281952187_Strategies_for_Teaching_Students_to_Think_Critically_A_Meta-Analysis
https://www.researchgate.net/publication/281952187_Strategies_for_Teaching_Students_to_Think_Critically_A_Meta-Analysis
https://www.researchgate.net/publication/281952187_Strategies_for_Teaching_Students_to_Think_Critically_A_Meta-Analysis


 

 

 
The Executive Update is a publication of Cutter Consortium’s Business Agility & Software Engineering Excellence practice. ©2020 by Cutter Consortium, an 

Arthur D. Little company. All rights reserved. Unauthorized reproduction in any form, including photocopying, downloading electronic copies, posting 

on the Internet, image scanning, and faxing, is against the law. Reprints make an excellent training tool. For information about reprints and/or back 

issues of Cutter Consortium publications, call +1 781 648 8700 or email service@cutter.com. ISSN: 2470-0835. 

“There Is No Spoon”: Residuality Theory & 
Rethinking Software Engineering 
by Barry M. O’Reilly 

While the software industry is currently grappling with ideas of complexity and resilience, there has been 

very little in the way of concrete actions or activities that software engineers can use to actually design 

systems. Residuality theory answers this need and draws on complexity science and the history of software 

engineering to propose a new set of design techniques that make it possible to integrate these two fields. 

It does this at the expense of two of the most important concepts in software design: processes and com-

ponents. Moreover, the embracing of complexity science quickly points out that the process-component 

mapping that forms the backbone of conventional thinking in software engineering is, in fact, the reason 

behind systemic failure in enterprise software.  

Identifying processes, eliciting requirements, and the rapid mapping of these two components are akin to 

designing cars based on tire tracks in a muddy field. Processes and components are what we see on the 

surface, but they are a byproduct of the business system execution. The problem is that designing systems 

has focused on trying to replicate the appearance of other established systems — much like the infamous 

cargo cults building airplanes of straw — mimicking what was seen but without any real understanding. 

Componentization can thus be categorized as sympathetic magic.  

Residuality theory, conversely, introduces the residue as the alternative building block of software systems. 

A residue is a collection of people, software functions, and the flows of information between them. It is 

what we imagine to be left of the system when it is impacted by a particular stressor — an event such as a 

fire, market crash, or product failure. For every stressor, a residue is created and augmented to be better 

able to survive the stressor. Therefore, designing an entire business system involves the integration of 

many, many residues. Processes and components previously believed to be first-order citizens of any model 

emerge from the integration of these residues. This completely changes how one should think about the 

design of systems. A software architecture can now be seen as a multidimensional structure of interrelated 

https://www.cutter.com/experts/bm-oreilly
https://en.wikipedia.org/wiki/Cargo_cult
https://en.wikipedia.org/wiki/Sympathetic_magic


 

Page | 2  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                   EXECUTIVE UPDATE | Vol. 21, No. 5 

©2020 Cutter Consortium   |   www.cutter.com    

 

residues, rather than as a two-dimensional diagram of component relationships. Furthermore, traditional, 

linear risk management is superseded by early analysis of stress on the system with a focus on vulnerability 

rather than prediction. The residue forces the designer to work consistently with the software and the 

environment at the same time. This is a drastic change to the design process.  

Residuality theory does the following: 

• Models systems as collections of residues. 

• Builds on complexity science. 

• Assumes fat-tailed distributions and non-predictability. 

• Assumes complex business environments and complicated software systems. 

• Uses stress as the driver of design decisions. 

• Analyzes contagion as residues are integrated.  

• Allows processes and components to emerge rather than defining them straight away. 

• Shows results directly. 

Roots of Current Thinking 
To understand the paradigm shift that residuality theory creates, it is imperative to take a step back and 

look at how we think today and why we think in that way. For software engineers, the art of design is about 

mapping processes to components. This has been accepted for a very long time. Indeed, lots of energy 

has been spent on identifying the best way to describe processes and come up with components and 

their boundaries. It is so accepted that few software engineers have taken the time to step back and ask 

why this is done, why it’s the focus, and why they have never questioned the need to scratch this itch 

so vehemently and furiously at the start of every design effort. To suggest to a business analyst (or 

business/enterprise architect) that one should wait until after design before defining the processes seems 

nonsensical; for the software engineer to not immediately think in terms of components seems equally 

ridiculous. Take away these basic tasks and the work of defining and designing a software system grinds 

to a halt. The industry has tried a thousand different ways to refine and adjust the work around the idea 

of components, from OOP to SOA to DDD and microservices, but perhaps it is time to question the concept 

of the component itself?  

  

http://www.cutter.com/
https://en.wikipedia.org/wiki/Fat-tailed_distribution


 

Page | 3  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                   EXECUTIVE UPDATE | Vol. 21, No. 5 

©2020 Cutter Consortium   |   www.cutter.com    

 

Software is seen as dynamic and exciting because it is young and because its possibilities have not yet been 

exhausted. As with all things, properties are projected onto software that stakeholders would like to see, 

rather than what is actually there. Software is seen as flexible, changeable, elastic, resilient, complex. A quick 

look at the balance sheets of enterprise software projects would tell any thinking person that software is 

none of these things: it is brittle, complicated, static, and very difficult to change.  

Why Do Software Engineers Love Components?  
The word “component” dates back to the mid-17th century but came into its own with the Industrial 

Revolution. After initial flushes of success during the Industrial Revolution, processes were steadily revised 

and reviewed with mass manufacturing subsequently becoming a reality. The idea of the component 

chimed nicely with the scientific pursuit of reductionism: understanding the world by reducing it to its 

smallest constituent parts and studying these in great detail.  

The factory is always with us. The transformation of our society by the Industrial Revolution has left a very 

clear imprint on us and on our culture. As pattern seekers, we strive to replicate the success of the Industrial 

Revolution by reducing a whole to its component parts, every time we face a novel pattern. But the success 

procured by reductionism proved to be a trap for software engineering. The analogy of components slipped 

into the software world very quickly. Computer science pioneers such as Edsger Dijkstra observed and 

endeavored to remedy the brittleness of software. They looked around and saw what was happening in the 

world of manufacturing — the use of components to provide rapid configurations and divide labor seemed 

a perfect solution; mapping the journey from cottage industry to Six Sigma–inspired excellence seems 

so obvious. The concept of the component promised reuse, self-configuring systems, and, of course, the 

bastion of the factory model, ever reducing costs and economies of scale. How spectacularly we have failed! 

Componentization has delivered a lot of books, seminars, untested theories, cults, shamanistic rituals, 

gurus, and many failed projects. It has not delivered elastic, changeable, complex software systems. And 

the reason for this is that it probably can’t; there was never any reason to map the trajectory of software to 

the trajectory of the factory. It was a lazy analogy and it has been carried too far. 

Beyond Components  
As undoubtedly successful as the Industrial Revolution proved to be, reductionism has not continued 

to deliver on its early promise. The entire field of complexity science exists to solve the problem of 

reductionism’s inability to address the behavior of systems with, among other properties, many, many 

constituent parts. Factories are complicated endeavors, but, ultimately, predictable and understandable, 

with methods that work in one factory often working in another. Complex systems, such as economies, 

markets, societies, and organizational cultures, cannot be so easily reduced to components as they are 

inherently unpredictable. Software is often complicated, but the environment it lives in, the business 

http://www.cutter.com/


 

Page | 4  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                   EXECUTIVE UPDATE | Vol. 21, No. 5 

©2020 Cutter Consortium   |   www.cutter.com    

 

system, is complex. Understanding the difference between complex and complicated systems is vital. 

Complicated systems are the realm of simple component interactions, highly constrained and predictable 

and repeatable. Complex systems are unpredictable, impossible to break down into simple components 

with simple relationships. A huge part of the failure of software architecture and design practices is the 

continual treatment of complex business contexts as merely complicated in order to make the process-

component mapping fit. However, complexity theory is vague and not concrete enough to be applied by 

the software industry; residuality theory exists to close that gap.  

It is not that components don’t exist. Everything is made of something. It is just that the rapid identification 

of components is not the key to good software design; if it were, by now best practices would have been 

developed that worked, instead of endless, meandering debates. Instead, brittle systems are produced that 

fail regularly and become expensive and cumbersome to change.  

The reasons for change — the complex, unpredictable stressors in the business environment — constitute 

an enormous, insurmountable problem, so software designers do not even try to describe it, never mind 

solve it. They try to engineer their way out with cleverer components and ever more convoluted patterns. 

That has not worked, as no way to do this has been found that demonstrably works over different business 

systems. Residuality theory starts with addressing this problem directly.  

Residuality Theory 
Let’s take a closer look at each aspect of residuality theory introduced earlier in this Update: 

• Models systems as collections of residues. Considering the limitations with components, we need a 

new model. The residue embraces complexity science, viewing software components as agents in a 

system of people, external organizations, and information flows. The residue in a complex environment 

is equivalent to the component in a complicated environment.  

• Builds on complexity science. Residuality theory is built on the idea that business environments 

are inherently complex and, therefore, unpredictable, resistant to best practices or pattern-based 

approaches, and are not static in their nature.  

• Assumes fat-tailed distributions and non-predictability. The external stressors that impact a 

business environment are too numerous to list, and the probabilities so intertwined that they are 

impossible to establish; therefore, risk management as practiced by most organizations will fail to 

identify the risks that will impact the system and does not contribute well to the design effort.  

• Assumes complex business environments and complicated software systems. In complex busi-

ness environments and markets, the behavior of a complicated software system is defined by events in 

the surrounding, complex business system. This is where complexity science has much to add to the 

http://www.cutter.com/
https://blog.usejournal.com/7-differences-between-complex-and-complicated-fa44e0844606


 

Page | 5  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                   EXECUTIVE UPDATE | Vol. 21, No. 5 

©2020 Cutter Consortium   |   www.cutter.com    

 

software industry’s understanding of the world. The vast majority of software solutions are complicated; 

they can be understood, modeled, and mapped and are constrained by design. However, these software 

systems exist inside complex environments, the business system, which cannot be predicted, modeled, 

or mapped, as the variations are simply too many. The fluctuations in the wider, complex business 

system are what determines whether component choices are wise or not. Too often, it is believed that 

complexity is in the software, or that this complexity can be simplified by simplifying the software. But 

this complexity actually forms the shape of the complicated solution and will do so naturally over time, 

patch by patch, if the software solution survives the stress it is exposed to in its naive form.  There are 

so many stressors that can cause a program to change that it is impossible to identify and describe all 

of them. The programmer quickly becomes overwhelmed and retreats to the shamanistic rituals of 

component divination. Residuality theory recognizes that software involves complicated systems in 

complex environments, and the difficulties that this causes when expertise in one area tries to diminish 

the importance of the other, and overcomes this issue by using residues, collections of elements that 

span the divide and encourage analysis that consistently amplifies the risks in treating complex systems 

as complicated in order to quickly identify solutions.  

• Uses stress as the driver of design. Huge problems in enterprise software are often caused by 

ignoring nonfunctional requirements until the functional design is complete. Residuality theory quickly 

identifies these requirements by analyzing stress and vulnerability rather than probability. Each stressor 

hits the system in a particular way. Flooding destroys the basement, but the upper floors are OK. Fire 

destroys the entire building, but the fireproof safes are OK. Each stressor has a related residue — the 

bits that are still working afterward. Residual analysis examines each residue in turn and asks, “What is 

needed here to make sure that the system is still working, or that the largest possible part of the system 

is still working?” The result of analysis is the augmentation of each residue in turn. Eventually, there 

are dozens of augmented residues, each one surviving a particular form of stress. There is no need to 

establish the probabilities for these stressors, or identify all of them, or even identify which are more 

likely. The design effort requires just enough stressors to arrive at a resilient design, not the mitigation 

of individual risks.  

 

Software functions exist inside these residues, and the residual augmentation will cause redrawing of 

boundaries between these functions to protect the software from the contagion, limiting the impact of 

a stressor as far as possible so that the flooding in the software basement doesn’t destroy the fireproof 

safes. These residues will seem unconventionally inefficient from the factory perspective. There is a 

great deal of repetition. Residues can be very similar to each other. The work of designers of software 

systems is now to integrate the residues to produce the final design. Here, architecturally significant 

decisions are made about which functions should be general and which should remain isolated inside 

the residue to prevent contagion.  

http://www.cutter.com/


 

Page | 6  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                   EXECUTIVE UPDATE | Vol. 21, No. 5 

©2020 Cutter Consortium   |   www.cutter.com    

 

• Analyzes contagion as residues are integrated. Linear risk management is dangerous in complex 

environments as it reduces risk to a number of singular impacts based on bias-fueled probabilities and 

impact assessments. In truth, stressors can impact a system more than one at a time and in any order; 

contagion analysis forces the analysis of interaction between residues in terms of the interplay between 

stressors. This involves investigating how stress impacts other residues and how it influences decisions 

about shared logic across residues. Using simple matrices to investigate contagion and dependency 

drives decisions about the structure of the software system based on the reality of the business envi-

ronment and the stress it may suffer, not based on dividing along functional or organizational lines.  

• Allows processes and components to emerge. Rather than matching problems to patterns or using 

best practices intended for different business environments, components and process emerge during 

the process of residual analysis. They become products of the stress the system will be exposed to, as 

they would naturally over time.  

• Shows results directly. Using residuality theory instead of standard methods of componentization 

would see a massive increase in quality in software architecture. It turns out that systems built like 

this can have abilities to withstand unknown unknowns — stressors that they have not been built to 

withstand. This potential property is essential for systems that will spend their existence in complex 

domains. Once a design is established, the concept of stressors can be used to continue to test the 

design, showing that the system performs better when exposed to unknown stressors, so the process 

provides immediate, quantitative feedback that the technique has worked. 

The result is a stack of residues that have relationships to each other, and a new model, or view, of 

the system emerges. Residual analysis arrives at groupings of functions, components that allow for the 

execution of business processes. We haven’t partaken in any of the rituals of componentization, yet we 

have designed something that is responsive to the environment around it.  

Residue Is to Complex as Component Is to Complicated 
Using residuality theory increases the chances of designing systems that avoid the major flaws of modern 

fragile systems: naive componentization, ignored or misconstrued nonfunctional requirements, and rigid 

processes and linear risk management techniques that reflect bias rather than complex reality. While 

complicated systems, which are predictable, reusable, and repeatable, can be described and designed 

with components as the key metaphor, complex systems need something more, and that ’s residues. 

Residuality theory touches on probability, systems engineering, complexity science, algebraic topology, set 

theory, and much more. It is best, however, to keep that low key, as the wailing and gnashing of teeth over 

the statement that components are a false god tends to make people tetchy, and the last thing they need is 

more math.  

http://www.cutter.com/
https://www.sciencedirect.com/science/article/pii/S1877050920305585


 

Page | 7  
 

BUSINESS AGILITY & SOFTWARE ENGINEERING EXCELLENCE                                                   EXECUTIVE UPDATE | Vol. 21, No. 5 

©2020 Cutter Consortium   |   www.cutter.com    

 

The bottom line is this: applications are not comprised of little components that do things. That is an illu-

sion that causes developers to build them badly. An application is comprised of millions of interconnected 

residues, massive overlapping sets all trying to live in the same space. A few simple tricks can make an 

application much more resilient, much more responsive to the complex environment in which it will live. 

Without residuality theory, architecture is a component metaphor extrapolated to complex environments 

with which it cannot cope. 

For now, just know that components are not a “good enough” metaphor to describe something that will 

exist in a complex environment, and that there is something else out there that can help. To get started with 

residuality, you simply need to carry out a stressor analysis; the rest will fall into place quite naturally. It’s 

really very simple, but if you want to dive into the details there’s more here. It is possible to use residuality 

theory alongside any other methodology or framework, and it does not demand complete adherence or 

acceptance of all the ideas to give positive results. Residuality theory is applied complexity — with actual 

concrete steps you can take to make things easier. 

About the Author 
Barry M. O’Reilly is the founder of Black Tulip Technology and creator of Antifragile System 

Design. Previously, he held positions as Chief Architect for Microsoft's Western Europe 

practice and IDesign, IOT TAP Lead for Microsoft’s Western Europe practice, Worldwide Lead 

for Microsoft’s Solution Architecture Community, and startup CTO. Mr. O’Reilly can be 

reached at barry@blacktulip.se. 

 

http://www.cutter.com/
https://www.sciencedirect.com/science/article/pii/S1877050920305585
mailto:barry@blacktulip.se


Get The Cutter Edge free  www.cutter.com Vol. 33, No. 8    CUTTER BUSINESS TECHNOLOGY JOURNAL 1 

http://www.cutter.com


20  ©2020 Cutter Consortium CUTTER BUSINESS TECHNOLOGY JOURNAL 

Residuality theory1 is a new theory of design for soft-
ware systems that rejects older design ideas based on 
the rapid identification of components and processes. 
It states that a software system in complex business 
contexts cannot be designed as a set of processes and 
components or activities executing on those processes.2 
Instead, residuality theory uses the concept of residues, 
a collection consisting of, among other things, people, 
software, and information flows. Residues are examples 
of the system under the influence of a given stressor. 
This theory provides new opportunities to proactively 
manage risk in complex environments in a way that is 
pragmatic and empirical and overcomes many of the 
limitations of traditional risk management techniques.  

Residuality theory is based on the study of complexity 
science and systems engineering. A complex system is 
very different than a complicated system. A complex 
system is inherently unpredictable, and a complicated 
system is constrained, controlled, and easily measured, 
with very little variation of its function or structure over 
time. An important tenet of residuality theory is that 
from the outset software systems are assumed to be 
complicated, and business systems are considered 
complex. The risks in a software system are easily 
understood and managed (at least they should be); 
however, the greater number of risks in the wider 
business system cannot be managed in the same way. 
Systems engineering techniques are adequate when 
dealing with complicated systems and their operation, 
but their ability to predict and control the wider 
business system is limited. In complex environments, 
where there are more variables than we can work with, 
it is impossible to predict what will happen in the 
future. Enterprise software systems are exposed to 
continuous stress during their existence, but no one 
knows exactly what that stressor will be and exactly 
when or to what extent it will occur or how it will 
interact with other stressors at that time. Residuality 
theory leans heavily on complexity science to enhance 
systems engineering techniques and, in so doing, 
provides a new way to think about risk. 

Limitations of Risk Management  
in the Enterprise 
Risk management in the enterprise, and especially 
in software projects, cannot adequately describe the 
overwhelming number of dispositions or possible 
combinations of conditions in the wider business 
environment. In using standard risk management 
techniques, this reality is simplified to fit the limita-
tions of design techniques. The model of the complex 
business system’s behaviors is filtered through the 
lens of probability, reducing the risk management 
workload. However, the ability to ascertain the 
likelihood of a particular event in a business context 
rarely exists, and, essentially, guesswork and hunches 
drive this reduction. This action actively hides risk and 
creates the conditions for catastrophe while giving the 
illusion of risk management. 

Unpredictable and Chaining Risks 
Risks in complex environments are unpredictable —  
but the problem faced when managing risk in these 
environments is greater than determining the possi-
bility of a single event or state. It is impossible to say 
with certainty the probability of a particular incident 
happening. The number of possible risks also makes it 
extremely likely that many of them may be realized at 
the same time, or in short succession. It is impossible to 
tell in what order these risks will present. The danger is 
that the system, once impacted by a particular stressor 
and changed to mitigate that stress, is no longer the 
same system and will, therefore, react to “chains of 
risks” differently than to isolated risks, creating a huge 
number of possible risks that are unpredictable and 
mathematically too great to be handled. 

Standard risk management tools have several flaws that 
make this situation worse. We tend to place managing 
project risk (budget, schedule, cost) on the shoulders of 
project managers. Business risks are managed in the 

Residuality Theory:  
Proactive Risk Management in the Design Phase 

EMERGENCY EXIT 

by Barry M. O’Reilly 



Get The Cutter Edge free  www.cutter.com Vol. 33, No. 8    CUTTER BUSINESS TECHNOLOGY JOURNAL 21 

boardroom. Technical risks are managed by a combina-
tion of design and operations. This division of respon-
sibility gives the impression of risk management and 
prevents the organization from ever seeing or consider-
ing chained risks across these silos. The possibility that 
a software failure could contribute to the demise of a 
company is always there, as the constantly changing 
network of interlinked business, economic, regulatory, 
and technical risks impacts the vulnerability of a system 
invisibly in the background. 

The way enterprise software systems are designed, 
by dividing systems immediately into capabilities 
and processes, creates even more silos, and limits our 
picture of risk and contagion even more. The division 
of labor that quickly follows design efforts, where 
developers are responsible for one process or one 
component within a process, makes awareness of 
contagion more difficult and makes managing risk 
or assessing vulnerability harder. This incredibly 
common pattern of execution leads to the development 
and operation of software systems where the only way 
to understand risk is to observe the system in produc-
tion — becoming aware of risks after they occur, when 
design decisions have already been carried too far to 
change inexpensively. 

The application of risk management tools, therefore, 
maps complicated concepts to complex contexts 
because traditionally there has not been an alternative 
approach available. Knowledge of the past is used 
to predict a future that cannot possibly be predicted, 
and complicated tools and probabilities are employed 
to reassure stakeholders that risk has been managed, 
ignoring the complex interactions between different 
aspects of the system and the risks that are presented. 
Delivery and project management cannot see the entire 
risk picture, and this full scenario creates a situation 
where risk is effectively unmanaged in most projects, 
despite huge sums and efforts expended in the name 
of risk management. 

This lack, in effect, of risk management ensures that the 
business leaders have essentially no picture of how the 
software system will respond to stress when it occurs in 
the business system. This creates an existential risk for 
the businesses and services dependent on the software; 
it is not fit for purpose by definition because of the 
linear risk management processes we engage in today. 

There have been attempts to update the probability/
impact model of risk, which is very much based in the 
1970s and focused on engineering approaches to risk. 

Scenario analysis is one example that attempts to 
consider a broader perspective but remains limited 
because the idea of probability is central to scenario 
analysis. Bias creeps in to allow the creation of proba-
bilistic models that confirm the worldviews of their 
creators. The use of diverse stakeholder perspectives 
helps, but scenario analysis is still beyond the grasp of 
most organizations and is still mostly linear, concerning 
one risk at a time. Other approaches, such as decision 
analysis,3 attempt to apply weighting to risks, but these 
weightings are as clouded by subjectivity as the prob-
abilities of scenario analysis. The emergence of value 
or utility trees, such as in the Architecture Tradeoff 
Analysis Method (ATAM)4 from Carnegie Mellon’s 
Software Engineering Institute (SEI), helps to contrast 
different perspectives and manage tradeoffs. However, 
in the enterprise software industry, few projects use 
tools as detailed as ATAM, and risk management is 
very often a checklist or driven by security teams with 
a bias toward that domain. Asking the question, “What 
happens to your architecture if a competitor drops their 
price?” of thousands of architects has failed to yield 
a single coherent answer, yet this is one of the most 
obvious and banal risks in any business environment.  

Safety-critical industries such as aerospace or nuclear 
power are often used as reference points for risk 
management efforts, but these industries work with 
engineering risks, for products carefully cushioned 
from the risks of permanent change in their environ-
ment and still intended for the same usage as when they 
were built; thus, these industries are not a good source 
of best practices for the enterprise software industry. 
Looking to these industries as a source of risk manage-
ment practices is once again reducing the complex 
business environment to a complicated system. 

Other, more modern approaches look at observability, 
learning from incidents in the same way that safety-
critical systems do. This approach is not appropriate 
for enterprise software systems, as safety involves 
eliminating risk in heavily constrained, complicated 
environments, and all business ventures involve 
actively taking risk in complex environments. Copy-
ing approaches from these fields is another example 
of risk management as comfort, with no scientifically 
conceivable benefit. 

Proactive risk management all too often becomes a 
provider of a false sense of security, an exercise in 
blame avoidance, and a misunderstood attempt to 
reduce risk in business environments to zero. 

http://www.cutter.com


22  ©2020 Cutter Consortium CUTTER BUSINESS TECHNOLOGY JOURNAL 

Thus, several major problems with risk management in 
enterprise software projects exist: 

1. In complex business contexts, stakeholders cannot 
predict what will happen. 

2. Risk management is limited in scope to areas of 
expertise and is siloed according to the perspective 
of the person carrying it out. 

3. Modern design techniques based on capabilities 
and process mapping to components silo risk 
even further and make contagion hard to detect at 
design time. 

4. Unpredictability, combined with chaining risks and 
the fact that stress changes the system, makes it 
mathematically impossible to address even a tiny 
fraction of all the possible risks. 

5. Risk management becomes a function of operations 
and observation, which makes it much more expen-
sive, and risk management becomes reactive, 
potentially exposing organizations to sudden 
shocks. 

6. The probability/impact model of enterprise risk 
management introduces bias, guessing, and 
overconfidence to fill the gaps caused by issues 
one to five. 

We need a way to design structures that will protect 
us from our inability to carry out risk management. 
In Antifragile,5 Nassim Taleb describes how these 
structures occur repeatedly in nature, in society, and 
in biological systems. In engineered systems, we do not 
have the luxury of spontaneously occurring resilient 
structures, yet we sometimes see this ability to survive 
unknown stressors. 

Residuality Theory 
Residuality theory sees systems as combinations of 
residues rather than of components and processes. 
A residue is a set of people, software functions, and 
information flows in a business environment. We 

identify residues by identifying sources of stress. A 
residue is what remains after exposing the system to 
that stress. We can consider every stressor as a risk, and 
residual analysis covers all types of risk, from technical 
faults, to business and regulatory changes, to the highly 
improbable. 

One of the first exercises students of residuality theory 
are tasked with is to describe the residue for the 
occurrence of gigantic fire-breathing lizards laying 
waste to the city where the business has its headquar-
ters. This exercise teaches a very important lesson: 
establishing probability is not necessary or often not 
even possible when working with complex domains. 
The exercise might seem ridiculous, but any residue 
strengthened to resist the lizards becomes resilient 
in the face of war, flooding, fire, terrorist attack, or 
even pandemic. In this way, residues can resist many 
different types of stress that they have not been 
designed to resist. Thus, identifying seemingly unlikely 
stressors and designing residues based on them helps 
the system to survive many more and diverse stressors. 
With the identification of each stressor and the design 
and integration of each residue, the system’s overall 
vulnerability decreases and the number of adjacent, 
alternative configurations increases, steadily expanding 
the system’s ability to survive unknown stressors as 
well as those identified. 

The identification of probable risk is no longer part 
of the task; instead, the analysis focuses on reducing 
vulnerability and identifying relationships within the 
system that cause contagion — where the impact of a 
stressor can spread through the system. This focus is 
why residuality theory models flows of information, in 
contrast to the silos that traditional process or use case 
mapping creates. From a design perspective, residual 
analysis allows processes and component structures to 
emerge. Essentially, risk management, now free from 
the burden of predicting the unpredictable future, 
precedes the design effort, so risk is managed before 
anything is built. 

The result of residual analysis is a large number of 
interrelated residues, all slightly different, all capable 
of resisting the stressor that defined them. The job of 
the designer, or architect, is to integrate these residues 
into a coherent system that is deliverable without 
compromising the ability to resist the residues’  
respective stressors. 

Integrating residues means understanding how 
residues interact, how one stressor can impact other 
elements of the system, and how stressors can combine 

Integrating residues means understanding 
how residues interact. 



Get The Cutter Edge free  www.cutter.com Vol. 33, No. 8    CUTTER BUSINESS TECHNOLOGY JOURNAL 23 

to produce unexpected situations. Residual analysis 
borrows some tricks from machine learning, using 
training sets of stressors and swapping the order of the 
stressors to produce slightly different integrations and, 
therefore, designs. By using training sets, we can test 
our design decisions against previously untested 
stressors and see evidence in real time of resilience 
resulting from the design, before we’ve even written 
a line of code. As we integrate residues and test the 
design against previously unknown stressors, we start 
to see evidence of the system surviving what equates to 
unknown unknowns. 

The process of residual analysis, therefore, tests and 
proves (or disproves) the ability of the system to meet 
stressors for which it has not been designed. For those 
obvious stressors normally not included in a risk 
assessment, the process provides a method for analyz-
ing how these stressors react when they occur in chains 
and eventually gives a sense of how the system behaves 
when exposed to stress in general. Residuality theory 
cannot address the problem of predicting the future or 
the sheer enormity of listing every possible combination 
of stressors. Instead, it attempts to push the system to a 
tipping point where its internal structure consistently 
preserves the function of the system or increases the 
possible affordances of the system under unknown 
sources of stress. This does not preclude standard risk 
management, which we can still use to gather infor-
mation on potential stressors and vulnerabilities, with 
information used in the residual analysis. 

We can view all systems described as resilient as 
residual. In fact, the concept of resilience is only really 
useful in hindsight, whereas a system that is residual 
can be seen to act resiliently at design time. If we look 
at examples of systems that cope well with known 
and unknown stress — ecosystems, the human body, 
economies — we see that they can also be represented 
as residual structures. Fragile systems, on the other 
hand, will have very few residues, and those will 
mostly look the same, with widespread contagion in 
the event of stress. 

Behind the simple techniques of residual analysis, 
we see a philosophy that believes that things are not 
kataphatic (arrived at by some form of knowing), but 
rather the driving force is via negativa (arriving at 
answers by taking away that which is demonstrably 
wrong). Processes and components emerge when risks 
for stressors and the resulting contagion are taken 
away. The idea that resilience is a function of what is 
left over, not what is done reactively, as well as the 

mathematics of hypernetworks, probability theory, and 
algebraic topology, all combine to give a powerful set of 
heuristics that allow us to manage stress and risk in an 
entirely new way without reacting to the impossible 
expectation of predicting an unknown and infinitely 
variable future. We must put the age of the all-knowing 
designer or engineer behind us, while the humble 
designer, powerless in the face of complexity but 
prepared to work within that scope, becomes more 
powerful as the forces of change surge constantly 
around us. 

Residuality theory solves the six major problems 
raised earlier: 

1. In complex business contexts, stakeholders cannot 
predict what will happen. Residuality theory does 
not try to predict and avoid risk, but rather seeks 
a picture of what can happen to reveal where the 
system may be vulnerable and where contagion 
can happen. 

2. Risk management is limited in scope to areas of 
expertise and is siloed according to the perspec-
tive of the person carrying it out. Residual analysis 
and the use of residues require that the design effort 
look beyond functional and organizational bounda-
ries, allowing the designer to investigate contagion 
beyond the arbitrary boundaries set by capabilities 
or processes. The residue itself is not bounded by 
any particular process, group, organizational unit, 
or component and includes anything that is directly 
or indirectly impacted by the stressor. The residual 
analysis, therefore, sets system boundaries, not 
arbitrary factors like team structure or platform 
choice.  

3. Modern design techniques based on capabilities 
and process mapping to components silo risk 
even further and make contagion hard to detect 
at design time. Residual analysis uses information 
flows rather than processes and takes care to 
investigate contagion between residues. If process 
boundaries exist, they emerge from the residual 
analysis and are protected from contagion when 
many different types of stress act on the system, 
justifying the presence of the boundary and 
reducing risk for failure from outside the  
process boundary.  

4. Unpredictability, combined with chaining risks 
and the fact that stress changes the system, makes 
it mathematically impossible to address even a 
tiny fraction of all the possible risks. Residual 

http://www.cutter.com


24  ©2020 Cutter Consortium CUTTER BUSINESS TECHNOLOGY JOURNAL 

analysis uses training and testing sets as well 
as bagging and boosting (changing the order of 
impact) to replicate the effects of chaining risks and 
system changes due to stress mitigation. This gives 
a broader picture of the system’s behavior under 
stress and also shows empirically that the system 
has an increasing degree of resilience, as it is tested 
against previously unknown stressors. 

5. Risk management becomes a function of opera-
tions and observation, which makes it much 
more expensive, and risk management becomes 
reactive, potentially exposing organizations to 
sudden shocks. Observations and operations 
heroics are still possible, but it is not the entire 
risk management strategy. The residual structure 
produced will give operations teams a greater 
number of affordances and minimize contagion 
when incidents occur. 

6. The probability/impact model of enterprise risk 
management introduces bias, guessing, and 
overconfidence to fill the gaps caused by issues 
one to five. Residual analysis uses all stressors as 
inputs to design, regardless of assumptions about 
probabilities. This gives a broader perspective that 
shines a light on potential vulnerabilities in the 
system, avoids the suppression of risks thought to 
be improbable by senior stakeholders, and avoids 
groupthink.6 

Residual analysis does not make cost-based decisions; 
residues that are costly to build and integrate can still 
be rejected by standard risk management processes. It is 
OK for business stakeholders to use their bias to make a 
project cheaper or decrease time to market; that is their 
call and their risk to take. Residual analysis makes these 
decisions transparent — and the analysis can still make 
it cheaper to recover even if those stressors where miti-
gation is considered too costly eventually impact the 
system. For many risks, at design time, we can make 
small changes to structure, at virtually no cost, that 
mitigate the risk. 

Residuality theory forces the work of design to draw on 
the many different perspectives present in the complex 
business environment and, without recourse to the 
probability estimates of outdated risk management 
practices, allows the design of systems that proactively 
manage risk. Carrying out residual analysis is easy, 

relying on a concrete set of steps that cost practically 
nothing, are easy to execute, and show direct evidence 
of whether they are working or not. Residual analysis 
involves identifying and listing stressors, designing 
residues, and integrating residues using simple tools, 
with no need to understand the mathematical under-
pinnings. After this design work, we can employ any 
and all risk management tools. As long as the residues 
hold, the result will not be affected by the psychological 
need to manage or control, which damages many other 
projects.  

Residuality theory gives us a way out, an emergency 
exit from the dominant discourse of competency, 
prediction, control, and theater of modern business 
and IT approaches. It also takes away the need for 
cleverness in design, avoiding prescriptive patterns 
and esoteric arguments about boundary. 

References 
1O’Reilly, Barry M. “An Introduction to Residuality Theory: 
Software Design Heuristics for Complex Systems.” Procedia 
Computer Science, Vol. 170, 2020. 

2O’Reilly, Barry M. “ ’There Is No Spoon:’ Residuality Theory 
and Rethinking Software Engineering.” Cutter Consortium 
Business Agility & Software Engineering Excellence Executive 
Update, Vol. 21, No. 5, 2020. 

3Renn, Ortwin. “Risk Analysis: Scope and Limitations.” 
Regulating Industrial Risks: Science, Hazards, and Public Protection. 
Butterworths, 1985. 

4Kazman, Rick, Mark H. Klein, and Paul C. Clements. “ATAM: 
Method for Architecture Evaluation.” Technical Report, 
Software Engineering Institute (SEI)/Carnegie Mellon 
University, August 2000. 

5Taleb, Nassim Nicholas. Antifragile: Things That Gain from 
Disorder. Random House, 2012. 

6O’Reilly, Barry M. “Dissent and the Art of ‘Hype-Cycle’ 
Maintenance.” Cutter Consortium Business & Enterprise 
Architecture Executive Update, Vol. 22, No. 2, 2019. 

Barry M. O’Reilly is a Senior Consultant with Cutter Consorti-
um's Business Agility & Software Engineering Excellence and 
Business & Enterprise Architecture practices. He is the founder of 
Black Tulip Technology and creator of Antifragile System Design. 
Previously, he held positions as Chief Architect for Microsoft's 
Western Europe practice and IDesign, IOT TAP Lead for Microsoft’s 
Western Europe practice, Worldwide Lead for Microsoft’s Solution 
Architecture Community, and startup CTO. He can be reached 
at boreilly@cutter.com. 

https://www.sciencedirect.com/science/article/pii/S1877050920305585
https://www.sciencedirect.com/science/article/pii/S1877050920305585
https://www.cutter.com/article/%E2%80%9Cthere-no-spoon%E2%80%9D-residuality-theory-rethinking-software-engineering
https://www.cutter.com/article/%E2%80%9Cthere-no-spoon%E2%80%9D-residuality-theory-rethinking-software-engineering
https://elib.uni-stuttgart.de/bitstream/11682/7340/1/ren80.pdf
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://www.penguinrandomhouse.com/books/176227/antifragile-by-nassim-nicholas-taleb/
https://www.penguinrandomhouse.com/books/176227/antifragile-by-nassim-nicholas-taleb/
https://www.cutter.com/article/dissent-and-art-%E2%80%9Chype-cycle%E2%80%9D-maintenance-504131
https://www.cutter.com/article/dissent-and-art-%E2%80%9Chype-cycle%E2%80%9D-maintenance-504131


Get The Cutter Edge free  www.cutter.com Vol. 33, No. 1    CUTTER BUSINESS TECHNOLOGY JOURNAL 1 

http://www.cutter.com


26  ©2020 Cutter Consortium CUTTER BUSINESS TECHNOLOGY JOURNAL 

The bed of Procrustes1 is a Greek legend that describes 
a giant — Procustes — who had a bed of a certain size. 
When entertaining guests, the giant would either stretch 
them or break off their limbs to make them fit the bed.  

As the original creators of the Agile Manifesto recoil 
in horror at the giant they have created, it is easy to see 
why the procrustean bed is an apt metaphor.2, 3 As Agile 
becomes ever more vapid (and meaningless), it becomes 
possible to break the limbs of any practice to make it 
fit the Agile bed, until the behaviors and the practices 
described as Agile begin to resemble the very practices 
the original movement sought to be rid of. “Four legs 
good, two legs better,” says the Agile industrial com-
plex, as it totters around unconvincingly selling two-
day certification courses.4  

For those who previously had no problem in asking 
why the Agile emperor was not only naked but also 
deranged, 2020 will bring some satisfaction and a 
changing of the guard. The communist argument — 
that communism absolutely will work if only it is done 
right — will no longer hold for Agile as many become 
acutely aware that the meaningless, certification-driven 
Agile industrial complex is made up of an increasing 
percentage of “dark” or ‘”faux” Agile, or Agile “in 
name only,” practices. “True” Agile unfortunately 
remains a Procrustean idea, only appearing where 
things have gone well, with dark Agile suspiciously 
seeming to occur only in failing projects.5 And there 
are many failing projects, if we are to believe the few 
sources of empirical evidence, such as Chris Porter’s 
“An Agile Agenda”6 and the Standish Group’s CHAOS 
reports.7 

As Agile makes its way to the boardroom, it will be 
harder and harder to hide behind procrustean decla-
rations of what is and isn’t Agile, as the key to under-
standing success or failure will cease to be anecdotal 
and start to focus on cold, hard results. Cynicism will 
grow, as with all trends, and answers will need to be 
forthcoming.  

What will change in 2020, however, is our perception 
of the problem. Developers have long seen change as 
the enemy, the reason for requirements churn, and 
something to be either fought, predicted, or embraced. 
The last few years have seen some digging deeper than 
the Agile Manifesto’s aphorisms, trying to understand 
change instead of mastering it via process or prediction. 
In truth, change represents how developers are forced 
to view the world because this is traditionally how 
problems are presented to them. Yet, most of what 
is presented as change to developers is a result of 
uncertainty in the business world, and the Agile 
sticky plaster of process, Post-it Notes, and certifications 
pretends to solve the problem of change without ever 
tackling the much more difficult question of uncer-
tainty. Uncertainty is left up to the business, which 
bizarrely now looks to Agile methods to solve the 
problem it should have been solving all along.  

The reason for change is because businesses present 
problems as requirements, requirements that are  
half-truths elaborated in the shadows of uncertainty, 
and as the truth reveals itself, changing requirements 
become a second-order effect. Agile therefore fixates 
on stemming the bleeding without ever stitching the 
wound, eventually allowing the patient to bleed to 
death, albeit with working software every two weeks. 
The truth is that the only true way to cope in modern 
business environments is to embrace not change, but 
the uncertain. Agile is, and has been, a response to 
uncertainty, but the current practices around Agile at 
scale involve selling certainty to executives. Selling 
certainty in an uncertain environment is an attractive 
pitch, but it can be done only so many times. The 
Agile movement’s focus on process as the solution to 

AN ARBITRARY STANDARD? 

2020: The Year That Agile Gets Found Out 
by Barry M. O’Reilly 

As the original creators of the Agile Manifesto 
recoil in horror at the giant they have created, 
it is easy to see why the procrustean bed is 
an apt metaphor. 



Get The Cutter Edge free  www.cutter.com Vol. 33, No. 1    CUTTER BUSINESS TECHNOLOGY JOURNAL 27 

uncertainty has allowed technical quality to fall by the 
wayside, bringing even more doubt as to the ability of 
Agile to actually deliver. As Agile practices crash and 
burn, proponents gather to complain about the reasons 
it’s not working, usually focused on the new favorite 
target of hierarchical management practices. Such 
excuses will not be endured for long. The Agile move-
ment has served its purpose as a vehicle for driving the 
needs of developers frustrated by working in complex 
contexts that neither they nor their task givers under-
stood, but it will soon be time to take stock, to look back 
at 20 years of hype and ultimately underachievement.  

Standish CHAOS reports show that the number of 
successful projects has barely shifted since the publish-
ing of the Agile Manifesto.8 Although it shows much 
higher rates of success in Agile than in waterfall 
projects, the overall numbers have not shifted enough 
to suggest that anything has changed significantly, 
which suggests that the choice of methodology is 
not the driver of results or that successful teams had 
already figured things out before the Agile Manifesto. 
This leads to the conclusion that agility and quality are 
products of the team, not of the process. The same 
teams that have had success with Agile would probably 
have had success if constrained to waterfall processes  
— but these ideas are dangerous, since they suggest 
that developer talent is what survives uncertainty and 
drives results, and no one can sell developer talent with 
the same margins as certification programs based on 
simplistic processes and truisms.  

In 2020, Agile will reach fever pitch, as it moves on from 
software development to penetrate the nightmares of 
naive executives. There will be more hype, more noise, 
and more religion. But the dam has already sprung a 
leak. Indeed, the IT industry is starting to embrace 
the Cynefin framework,9 which leads to the obvious 
conclusion that while the Agile Manifesto had the 
diagnosis right in reacting to the changes caused by 
underlying uncertainty, it only ever guessed at a 
potential cure. It will become increasingly obvious that 
few Agile methodologies stand any form of empirical 
test, and the dam will eventually break.  

Agile will never officially die, of course. Its procrustean 
bed will always fit everyone; complexity approaches 
will be absorbed and older methodologies will be 
quietly swept under the rug, as Agile changes to 
become something else entirely, something where 
technical quality, developer talent, and understanding 
of complexity become paramount to success.  

This is a hard argument to make. So convinced are the 
followers of today’s version of Agile that their argu-
ments seem to them obvious truths, anecdotes pass for 
data, and the loose relationship between cause and 
effect is always interpreted in favor of a set of fluid 
principles in a manifesto that no one really seems able 
to make concrete.  

In a world where uncertainty is the rule, there cannot  
be a process, a set time for meetings, or an exact way to 
design, break down work, put Post-it Notes on the wall, 
or handle requirements and change. Only the people 
working directly with a problem can decide on tools 
and process in the evolving picture of their project, and 
their individual talents — not adherence to or avoid-
ance of certain ideas — guide whether they achieve 
success or not. In 2020, the role of uncertainty and talent 
will become clear. The proponents of Agile will claim 
that they always meant to emphasize uncertainty and 
talent, and some of them truly did, but the Industrial 
Agile that has evolved beyond their control needs to be 
put to bed — in whatever size bed we need.  

References 
1“Procrustes.” Wikipedia, 2020.  

2Fowler, Martin. “The State of Agile Software in 2018.” 
martinFowler.com, 25 August 2019.  

3Jeffries, Ron. “Developers Should Abandon Agile.” 
RonJeffries.com, 10 May 2018.  

4“Important Quotations Explained: Animal Farm — George 
Orwell.” SparkNotes, 2020.  

5Agile is a Procrustean concept, in that it is made to fit the 
narrative of success; those Agile projects that fail and don’t  
help the narrative are rejected as not being true Agile. 

6Porter, Chris. “An Agile Agenda: How CIOs Can Navigate the 
Post-Agile Era.” 6Point6 Technology Services, April 2017.  

7“Sample Research.” The Standish Group International, Inc., 
2020. 

8The Standish Group International (see 7). 

9Snowden, David J., and Mary E. Boone. “A Leader’s  
Framework for Decision Making.” Harvard Business Review, 
November 2007.  

Barry M. O’Reilly is the founder of Black Tulip Technology and 
creator of Antifragile System Design. Previously, he held positions as 
Chief Architect for Microsoft's Western Europe practice and IDesign, 
IOT TAP Lead for Microsoft’s Western Europe practice, Worldwide 
Lead for Microsoft’s Solution Architecture Community, and startup 
CTO. He can be reached at barry@blacktulip.se.  

http://www.cutter.com
https://en.wikipedia.org/wiki/Procrustes
https://martinfowler.com/articles/agile-aus-2018.html
https://ronjeffries.com/articles/018-01ff/abandon-1/
https://www.sparknotes.com/lit/animalfarm/quotes/
https://www.sparknotes.com/lit/animalfarm/quotes/
https://cdn2.hubspot.net/hubfs/2915542/White%20Papers/6point6-AnAgileAgenda-DXWP.2017.pdf
https://cdn2.hubspot.net/hubfs/2915542/White%20Papers/6point6-AnAgileAgenda-DXWP.2017.pdf
https://www.standishgroup.com/sample_research
https://www.standishgroup.com/sample_research
https://hbr.org/2007/11/a-leaders-framework-for-decision-making
https://hbr.org/2007/11/a-leaders-framework-for-decision-making


Cutter Consortium
Access to the Experts

ADVISOR 
Business & Enterprise Architecture, 25 March 2020

Lizards and COVID-19, 
Complexity, and 
Software Engineering 

by Barry M O’Reilly

Our role as software architects is, first and foremost, to stay in our lane we are not epide-
miologists and should not share our opinions about the right course of action for anyone 
other than ourselves. The resulting, emergent, unpredictable result of these millions of 
decisions will shape our future for a long time to come.

https://www.cutter.com/


ADVISOR 
Business & Enterprise Architecture, 25 March 2020

©2020 Cutter Consortium, an Arthur D. Little company | 2

The Advisor is a publication of Cutter Consortium’s 
Business & Enterprise Architecture practice. ©2020 
by Cutter Consortium, an Arthur D. Little company. 
All rights reserved. Unauthorized reproduction in 
any form, including photocopying, downloading 
electronic copies, posting on the Internet, image 
scanning, and faxing, is against the law. Reprints 
make an excellent training tool. For information 
about reprints and/or back issues of Cutter 
Consortium publications, call +1 781 648 8700 or 
email service@cutter.com. ISSN: 2470-0894.

There is something I’ve noticed about some software gurus: they 
often have trouble staying in their lane. Despite the fact that they 
don’t apply any form of scientific rigor or empiricism before advis-
ing every developer on the planet to “do it this way,” they become 
convinced of their own expertise and before you know it, they’re not 
only telling you to stand up in meetings and embrace change but 
also what you should eat and how you should live your life accord-
ing to their principles of software engineering. It’s mildly amusing, 
until those opinions start to actually endanger you. “Don’t wear a 
seat belt. You’ve never crashed before, have you?” Recent social 
media activity around the coronavirus pandemic springs to mind. 

Some fascinating developments have already emerged during the 
COVID-19 crisis. All the aspects of complexity that make the field so 
interesting are there. Multiple parameters that we cannot use to 
predict the future with any degree of certainty, a massive signal-to-
noise ratio that means we cannot trust anything, and a sudden swirl 
of mini-experts repeatedly telling us that we’re too dumb to under-
stand exponential growth (high school math!).

As a research student in complexity science, it is a fascinating and 
horrifying thing to behold. First, in the midst of all this complexity 
is the absolute certainty of some actors about the course of action 
we must take. The ferocious debates that pose as scientific argu-
ment but make transparent the motives of the pusher. The factory 
owner with thin margins who obviously thinks the entire thing is a 
hoax and has plotted some little charts to justify doing nothing. The 
anxious relatives and older populations or those with comorbidities 
who see no other option than complete shutdown because statis-
tics don’t matter when you’re the one in the firing line. All the way  
to those who see some kind of high-level conspiracy behind the 
whole thing.

A pandemic is not one of those incidents we call a black swan. It has 
always been just a matter of time. It’s not particularly prescient or 
smart to have pointed out that this would happen. The black swans 
that exist lie hidden in our assumptions that drive our interven-
tions. It is not ignorance or a lack of data that makes us susceptible, 
it’s the very act of certainty that is dangerous. As individuals, the 
choices we now make are influenced by many factors — proximity 

https://www.cutter.com
mailto:service%40cutter.com?subject=reprints%2C%20back%20issues


ADVISOR 
Business & Enterprise Architecture, 25 March 2020

©2020 Cutter Consortium, an Arthur D. Little company | 3

to the elderly and the sick, our own fear of this disease, and our 
need to be able to feed our children. Whatever choices we make, 
we will suffer. Business as usual may expose many more to an 
untimely death. Compete isolation may have ramifications that 
we can’t even begin to predict — but a huge recession at a time of 
increasing right-wing populism does have some historical prece-
dents that should urge extreme caution. Every piece of news that 
presents this disease as simply a bad flu or alternatively a new 
plague are tinged with a certainty or a bias that could potentially 
have disastrous consequences. Actions taken by governments come 
with no guarantee of success or compliance. 

Handling these risks is easy. Despite the patronizing articles and 
tweets about exponential growth, most people understand what 
they are exposed to. Your circumstances dictate how you manage 
this. For those already comfortable, isolation is an obvious and 
reasonable strategy. For those living paycheck to paycheck — busi-
nesses and people — the desire to find some intellectual way of jus-
tifying a choice they’d rather not make leads to warped arguments 
that aren’t worth the energy of engaging in, but are completely 
human and understandable.

It is here we must realize that our role as software architects is, first 
and foremost, to stay in our lane; we are not epidemiologists and 
should not share our opinions about the right course of action for 
anyone other than ourselves. The resulting, emergent, unpredict-
able result of these millions of decisions will shape our future for a 
long time to come.

The great thing about this is that efficient methods are emerging. 
In South Korea and some parts of Italy, we hear early reports of 
how effective mass testing, targeted isolation, and contact tracing 
have been. If these reports stand the test of time it will be a huge 
triumph for humanity over uncertainty. The horrifying thing is how 
exposed we are. Our supply chains, our financial management, our 
social structures, are all exposed as weaklings in the face of a threat 
that was always going to happen and could have been much worse.

https://www.cutter.com


ADVISOR 
Business & Enterprise Architecture, 25 March 2020

©2020 Cutter Consortium, an Arthur D. Little company | 4

I teach architects to prepare their architectures for the lizards — 
giant, fire-breathing lizards that will destroy their town. If their 
system can survive things like this, then they can learn to work 
with the highly improbable to diagnose sensitivity to incidents they 
can never understand or predict, and avoid falling into the trap of 
believing that the future will look like their past, and indulging in 
lazy, bias-fueled, probability-based risk management. This approach 
is the only way to work with uncertainty: working on sensitivity and 
mitigation rather than probability and certainty of survival. The 
coronavirus pandemic is such a lizard; the second-order effects of 
the actions we take will send ripples and shockwaves across the 
interfaces of global business and into the software interfaces that 
support it.

When this happens, it will inevitably impact the software infrastruc-
tures that our shaky globalization has been built on — and these 
architectures are as shaky as their business foundations. Just-in-
time, simplistic, linear thinking and the focus on reuse and consol-
idation will reveal the weaknesses in what our industry has built at 
the behest of various gurus over the last 50 years.

We will have a chance to restart. Many businesses will start to 
rebuild and the idea of the lizards will be fresh in their memory. 
We cannot let them down again by building the same old shaky 
architectures that we have been building based on unscientific 
ramblings of software gurus and passing fads. As business lead-
ers begin to rethink — in the light of recent revelations about the 
impact of improbable events and the contagion involved — we have 
a chance to step up to this as partners in the joint exploration of the 
unknown, free of the need to be all-knowing experts bringing cer-
tainty in a SaaS package. If we don’t, there’s a good chance that we’ll 
be the lizards.

https://www.cutter.com


ADVISOR 
Business & Enterprise Architecture, 25 March 2020

©2020 Cutter Consortium, an Arthur D. Little company | 5

About the Author
Barry M. O’Reilly is a Senior Consultant with Cutter Consortium’s Business 
& Enterprise Architecture and Business Agility & Software Engineering 
Excellence practices. He is the founder of Black Tulip Technology and  
creator of Antifragile System Design. Previously, he held positions as Chief 
Architect for Microsoft’s Western Europe practice and IDesign, IOT TAP Lead 
for Microsoft’s Western Europe practice, Worldwide Lead for Microsoft’s 
Solution Architecture Community, and startup CTO. He can be reached at 
experts@cutter.com.

https://www.cutter.com


 

 EXECUTIVE UPDATE 
Business Agility & Software Engineering Excellence, Vol. 22, No. 1 

T 

 

 

 
 

A Prediction for 2021:  
The End of Predictions   

by Barry M. O’Reilly, Senior Consultant, Cutter Consortium  

The world would be a much simpler and easier place to live in if we could predict the 
future. Of course, we cannot do this, but it doesn’t stop us from trying. The market for 
predictions is huge, and people desperate for some certainty will take it from whatever 
source they can find. There are many approaches to writing prediction pieces. Some will 
predict the shifts in the technology market. Others will make predictions that favor the 
clients who pay the highest fees to the analyst’s firm. Some will predict cultural or social 
trends and their impact on the markets. Last year, I predicted that 2020 would be “the 
year that Agile got found out.” Well, we all know that 2020 took an unexpected turn. So, 
in this Executive Update, let’s look deeper into the outcome of my prediction and explore 
how Agile and agility, especially in the face of a global pandemic, has truly panned out 
since my “before the world changed” assertion. 

  



©2021 Cutter Consortium, an Arthur D. Little company | www.cutter.com 

 

 

 EXECUTIVE UPDATE 
Business Agility & Software Engineering Excellence, Vol. 22, No. 1 

 

 | 2  

2020, of course, turned out very differently than anyone expected. 
Agile was found out, but not in the way I had believed, which would 
have seen the growing rumblings in the corporate world amplified 
and a negative feedback loop, leading to the eventual rejection of Agile 
shamanism sometime in the next few years. Instead, COVID-19 made 
a dramatic showcase of the dangers of believing in the ability and 
capacity to simply react quickly to problems as they occur. Relying on 
the ability to react to events as they occurred was shown to be a very 
limiting strategy, as overwhelmed hospitals with limited access to 
personal protective equipment (PPE) quickly found out.  

Another Agile trope — the tendency to defer decision making until 
the last possible moment when data or requirements will supposedly 
be richer — led to criticism of those who embraced that approach, 
especially when this was embraced as strategy (e.g., when the British 
government chose not to cancel the Cheltenham Festival or other 
sporting events or when the World Health Organization hesitated on 
confirmation of human-to-human transmission of COVID-19, both of 
which have been linked to wider spread of the virus). Elsewhere, it very 
quickly became apparent that globalized just-in-time (JIT) supply chains 
and the illusion of “agility” as a business capacity began to disappear 
as flows of goods were interrupted all over the world, leading to 
shortages and price hikes (understandably on hand sanitizer and 
masks and less understandably on toilet paper). When these serious 
problems continually presented themselves, agility was not enough, 
or sometimes not even possible, because decisions made in the past 
severely limited the choices available. 

Even in cases where we could choose to see the positive impact of 
agility, we see the dependence on past decision making to make this 
possible. Teachers and students showed the world that behavioral 
agility is a natural human feature, flipping their entire existence over 
the course of days and still getting things done in the face of severe 
challenges, without the coaches, frameworks, belief systems, or 
management consultants that Agile methodologies would have us 
believe are necessary.   

  

The Executive Update is a publication of  
Cutter Consortium’s Business Agility & Software 
Engineering Excellence practice. ©2021  
by Cutter Consortium, an Arthur D. Little 
company. All rights reserved. Unauthorized 
reproduction in any form, including photo-
copying, downloading electronic copies, 
posting on the Internet, image scanning,  
and faxing, is against the law. Reprints make  
an excellent training tool. For information 
about reprints and/or back issues of Cutter 
Consortium publications, call +1 781 648 8700 
or email service@cutter.com. ISSN: 2470-0835. 

https://www.theguardian.com/sport/2020/apr/02/cheltenham-faces-criticism-after-racegoers-suffer-covid-19-symptoms


©2021 Cutter Consortium, an Arthur D. Little company | www.cutter.com 

 

 

 EXECUTIVE UPDATE 
Business Agility & Software Engineering Excellence, Vol. 22, No. 1 

 

 | 3  

The relative successes of teachers and students wasn’t just a factor 
of their “can do” attitude or some inherent natural understanding of 
agility; it was made possible by affordances that came into being 
that were never designed to solve this particular problem (e.g., 
existence of the Internet, widespread access to technology, various 
collaborative tools and the collective societal knowledge to use them). 
These all existed in most developed countries, and the steps required 
to use them were not especially difficult.  

From an individual perspective, surviving the pandemic has also been 
partly influenced by decisions made in the distant past. Factors such 
as weight, fitness, savings, and the ability to work from home have all 
impacted individuals’ ability to navigate the pandemic. The ability to 
be agile was shown to be entirely dependent on residue — what’s left 
over after a stressful event impacts us. Societies that discovered their 
care homes for the elderly were left exposed through financial neglect 
(i.e., due to underpaid forms of employment, leading to sick people 
going to work in old peoples’ homes) were experiencing the results of 
what happened when former chair of the US Federal Reserve Alan 
Greenspan started having dinner at writer/philosopher Ayn Rand’s 
house in the 1960s — the birth of neoliberalism and the consequent 
reduction in public services. Agility has been proven to be fairly useless 
when the decisions made on a societal level many years before an 
event are the things that determine whether agility is actually an 
option. The residues left after the impact of a stressful event deter-
mine to what degree an organization will be able to act with agility. 

Agile as an Act of Prediction 
So much focus has been placed on the ability to react to changing 
circumstances; many have become enthralled to the idea that design 
or forethought is not necessary and even dangerous and that reactive 
capacity is the most important skill. This has certainly been a theme in 
the field of software engineering.  

  

The residues left after 
the impact of a stressful 
event determine to 
what degree an 
organization will be 
able to act with agility. 

https://www.cutter.com/article/%E2%80%9Cthere-no-spoon%E2%80%9D-residuality-theory-rethinking-software-engineering
https://en.wikipedia.org/wiki/Alan_Greenspan
https://en.wikipedia.org/wiki/Alan_Greenspan


©2021 Cutter Consortium, an Arthur D. Little company | www.cutter.com 

 

 

 EXECUTIVE UPDATE 
Business Agility & Software Engineering Excellence, Vol. 22, No. 1 

 

 | 4  

Yet, the negative experiences of hospitals and the many positive 
experiences in education both show that what had already happened 
and decisions already made were more important than the reaction 
and actually constrained and shaped the reaction. This evidence points 
to the fact that agility is a feature of design and not something that 
exists in opposition to design. This means that agility, like design, is 
an act of prediction.  

Agile organizations engage in design when making decisions to con-
sciously enable reactive capacity in areas where they believe it will be 
needed. If they don’t do this, residual causality (i.e., decisions made in 
the past) will do the design work for them and shape the organization’s 
ability to respond. The pandemic has shown that seemingly unrelated 
decisions made long ago will be the factors that decide whether we will 
even be able to react at all. In some cases, decisions made in the name 
of agility — JIT supply chains for PPE being the obvious example — 
actually caused a huge reduction in reactive capacity. Thus, the act of 
introducing agility actually reduces the ability to be agile because it is an 
act of prediction for a future we cannot predict. 

That prediction turns out to play a central role in Agile approaches, 
and the conclusion we have reached here — that the past constrains 
reactive capacity — are anathemas to the entire Agile premise, which 
sought to end detailed planning and predictive control. Organizational 
theorist Ralph Stacey has pointed out that new paradigms have a 
tendency to enable old behavior to continue with new vocabulary, 
so this is not surprising.  

Agility is ideally the ability to let diverse approaches play out under 
uncertain circumstances. Counterintuitively, sometimes by introducing 
Agile programs that make predictions about exactly where to enable 
agility or by trying to enforce uniformity of approach, we constrain the 
ability to engage in diverse approaches. Moreover, the act of prediction 
is often used as a political tool, meant to persuade, and as such has 
been attempted to be used as a way to reduce diversity of approaches, 
which means less information and fewer future paths to probe as we 
move forward. 

  

Agility is ideally the 
ability to let diverse 
approaches play out 
under uncertain 
circumstances. 

https://www.routledge.com/Complexity-and-Organizational-Reality-Uncertainty-and-the-Need-to-Rethink/Stacey/p/book/9780415556477


©2021 Cutter Consortium, an Arthur D. Little company | www.cutter.com 

 

 

 EXECUTIVE UPDATE 
Business Agility & Software Engineering Excellence, Vol. 22, No. 1 

 

 | 5  

We have argued here that Agile is an act of prediction and that 
prediction in turn reduces agility. We could also argue that the 
pandemic has highlighted this, and as such, Agile truly got found out 
in 2020. 

After All That, a Prediction! 
All that happened in 2020 provides a careful lesson for those of us 
invested in predicting. The alluring concept of superforecasting, 
embraced by the recent British government and shown to be utterly 
ineffective by that very same government’s response to the pandemic, 
shows that we still hold out for the certainty that predictive ability 
brings and act as if it exists even when the evidence clearly points in 
a different direction.  

The net result of observing the failure of reactive capacity in 2020 leads 
ironically to a prediction for 2021: this year will be the year that people 
lose faith in predictions. It won’t be the year that people stop making 
predictions because the temptation is just too great to be the next 
lucky superforecaster, but it will be the year many of us stop listening.  

If we are lucky, more designers of systems and organizations will 
realize the importance of residue, of introducing greater optionality, 
of diversity of approaches to problems, instead of simplistic beliefs in 
easy solutions to complex problems.  

For software engineers, the idea of residue has become important 
because we need to design systems for increasingly complex 
environments in which reduction is impossible, where the residue 
becomes more and more important for system quality. Without the 
diversity and optionality provided by design that is residual, systems 
that we build have very little chance of surviving. Every other method 
of engineering software involves projecting our belief, be that a 
process, a component structure, a requirement, or a product, onto 
a rapidly changing environment in a way that convinces us that our 
belief is indeed a solution.  

All that happened in 
2020 provides a careful 
lesson for those of us 
invested in predicting. 

https://hbr.org/2016/05/superforecasting-how-to-upgrade-your-companys-judgment


©2021 Cutter Consortium, an Arthur D. Little company | www.cutter.com 

 

 

 EXECUTIVE UPDATE 
Business Agility & Software Engineering Excellence, Vol. 22, No. 1 

 

 | 6  

2021 will be the year of the residue, in which we stop trying to predict 
the unpredictable and, most importantly, stop fooling ourselves that 
we have some innate ability to see the unseeable. We will realize that 
there are things we can do in the here and now to protect ourselves 
from unseen risk, today and for future tomorrows, none of which 
involve an infantile obsession with predicting the unpredictable and 
asking people to bet their lives on our ability to react quickly when 
these predictions fail.  

About the Author 
Barry M. O’Reilly is a Senior Consultant with Cutter Consortium’s Business & 
Enterprise Architecture and Business Agility & Software Engineering Excellence 
practices. He is the founder of Black Tulip Technology and creator of Antifragile 
System Design. Previously, he held positions as Chief Architect for Microsoft’s 
Western Europe practice and IDesign, IOT TAP Lead for Microsoft’s Western 
Europe practice, Worldwide Lead for Microsoft’s Solution Architecture 
Community, and startup CTO. He can be reached at consulting@cutter.com. 



About Cutter Consortium

Cutter Consortium is a unique, global business technology advisory firm dedicated 

to helping organizations leverage emerging technologies and the latest business 

management thinking to achieve competitive advantage and mission success. 

Through its research, training, executive education, and consulting, Cutter  

Consortium enables digital transformation.

Cutter Consortium helps clients address the spectrum of challenges technology 

change brings — from disruption of business models and the sustainable innova-

tion, change management, and leadership a new order demands, to the creation, 

implementation, and optimization of software and systems that power newly holistic 

enterprise and business unit strategies.

Cutter Consortium pushes the thinking in the field by fostering debate and collab-

oration among its global community of thought leaders. Coupled with its famously 

objective “no ties to vendors” policy, Cutter Consortium’s Access to the Experts  

approach delivers cutting-edge, objective information and innovative solutions  

to its clients worldwide.

For more information, visit www.cutter.com or call us at +1 781 648 8700.

Cutter Consortium
Access to the Experts

https://www.cutter.com
https://www.cutter.com
https://www.cutter.com

	Agile as an Act of Prediction
	After All That, a Prediction!
	About the Author



