
Cutter Consortium
Access to the Experts

EXECUTIVE UPDATE
Business Agility & Software Engineering Excellence, Vol. 22, No. 4

Hyperliminal Coupling:  
Why Software Projects 
Fail Repeatedly

by Barry M. O’Reilly, Senior Consultant, Cutter Consortium

This Executive Update redefines the notion of nonfunctional requirements in terms of a 
complexity science–based approach to software engineering. We introduce two new terms 
— hyperliminality and hyperliminal coupling — which provide a new way to describe 
nonfunctional requirements.

https://www.cutter.com/


EXECUTIVE UPDATE
Business Agility & Software Engineering Excellence, Vol. 22, No. 4

©2021 Cutter Consortium, an Arthur D. Little company | 2

The Executive Update is a publication of  
Cutter Consortium’s Business Agility & Software 
Engineering Excellence practice. ©2021 by Cutter 
Consortium, an Arthur D. Little company. All 
rights reserved. Unauthorized reproduction in 
any form, including photocopying, downloading 
electronic copies, posting on the Internet, image 
scanning, and faxing, is against the law. Reprints 
make an excellent training tool. For information 
about reprints and/or back issues of Cutter 
Consortium publications, call +1 781 648 8700 
or email service@cutter.com. ISSN: 2470-0835.

Software architecture is hard; it always has been. When the cliché 
of the “software crisis” was hatched in 1968, it became a fitting story 
for almost everything that has unfolded since. Developing software 
is hard, and we’ve made a lot of attempts to address this. We’ve 
tried structuralist approaches to investigating language. We’ve tried 
importing engineering approaches from other disciplines. We’ve 
tried cult thinking and process engineering and hoping for the best. 
We’ve given up and decided upon “adaptive capacity” as the answer 
to everything. Still, the problems prevail.

Software can fail for a lot of reasons. Failure to pay attention to any 
one group of participants in the application’s lifecycle can lead to 
failure. Overly optimistic planning, the use of new technologies,  
a poor developer experience, corporate culture, executive inter-
ference — the myriad ways a project can fail is enormous. This is 
to be expected in any complex endeavor. Failure is something that 
emerges over time — it is not easily predictable and rarely related 
to a single cause. 

If we are ever to get a grip on the failure of software projects, we 
must first escape from the idea of software and enterprises as 
simple, mechanical, predictable systems. This idea has haunted 
architecture since its inception. The reason software fails is because 
it has the opportunity to fail in a multitude of ways, and we simply 
cannot see this from our standpoint at the beginning of any soft-
ware endeavor. The prevailing ideas behind software design are 
still rooted in assumption and myth. If every project had a property 
— let’s call it “failability” — it would be impossible to describe or 
predict and would only become apparent when it actually occurred. 
In fact, this concept of an emerging, unknowable property can be 
extended to describe every single “-ility” in a project. Instead of 
learning how to cope with this, our industry has constructed the 
narrative that these multidimensional, complex, emergent -ilities 
are simply requirements that can be captured in the language of 
stakeholders or borrowed from other projects. 

This ongoing saga is often referred to as “nonfunctional require-
ments.” There has always been an awareness that the nonfunc-
tional aspects of an application are the things that make it hard. 
Writing code that executes a function, or stores a piece of data, is 

Overly optimistic  
planning, the use  
of new technologies,  
a poor developer 
experience, corporate 
culture, executive inter-
ference — the myriad 
ways a project can fail is 
enormous. 

https://www.cutter.com
mailto:service%40cutter.com?subject=reprints%2C%20back%20issues


EXECUTIVE UPDATE
Business Agility & Software Engineering Excellence, Vol. 22, No. 4

©2021 Cutter Consortium, an Arthur D. Little company | 3

easy. Getting the entire system to behave as you want in an unpre-
dictable environment is not. My research has led me to separate 
the function of a system from its behavior in a tumultuous environ-
ment. These are two, orthogonal things. 

Developer efforts are mostly focused on the functional. This 
involves grabbing use cases and user stories, sorting the ele-
ments into components, and trying to protect the application from 
change in these processes and stories. This is a different job than 
trying to control the behavior of an application in its environment. 
Developers work with the idea of requirements — asking stakehold-
ers what they want or need. Developers then rescue themselves 
from the uncertainty of the context by placing responsibility for 
managing the uncertainty onto the business. This frees developers 
to focus on getting the code written to a certain specification. To do 
this, developers must gather requirements. But requirements come 
from “stakeholders” — another word for human beings — and 
human beings are notoriously unreliable because we are fine-tuned 
to respond to uncertainty through emotions, thoughts, and feelings. 
This emerges as hedging, ducking, and ambiguity — all reasonable 
human behaviors that help us all navigate a universe in which we 
are uncertain about most things all the time. To bring some degree 
of certainty, developers and requirements engineers lean on ideas 
from structuralism, seeking the answers, which we instinctively 
believe must exist, to base our structural decisions on in the gar-
bled language of the stakeholders. We create models that capture, 
torture, and stratify the language of stakeholders, imposing rigidity 
and best practices in order to get the job done. 

This is necessary. If we didn’t do it, no software would ever be built. 
The problem is that we then transpose the exact same thinking 
from functional to nonfunctional requirements. Trying to define 
these complex, heavily technical concepts through the language of 
stakeholders is an insane way to try to deal with them.To under-
stand this better, we need to take a deeper look at nonfunctional 
requirements and the relationship between an application’s behav-
ior and its environment.

To bring some degree 
of certainty, developers 
and requirements engi-
neers lean on ideas from 
structuralism, seeking 
the answers, which we 
instinctively believe must 
exist, to base our struc-
tural decisions on in the 
garbled language of the 
stakeholders. 

https://www.cutter.com


EXECUTIVE UPDATE
Business Agility & Software Engineering Excellence, Vol. 22, No. 4

©2021 Cutter Consortium, an Arthur D. Little company | 4

Hyperliminal Systems 
Software systems are different. We know this because we make 
a mess of them all the time. If airplanes and flights had the same 
failure rates as software, there would be no aviation industry. Why 
they are different isn’t a question many have taken the time to ask. 
The answer to this lies first in understanding uncertainty, and to do 
that we must look to the complexity sciences. 

Ordered systems are predictable, behave according to Gaussian 
probability distributions, and are tightly constrained. They may be 
extremely complicated and require expertise to understand their 
inner workings, but the constraints on the systems are so tight as to 
make everything predictable. Their workings are calculable — even 
if we never take the time to calculate them. Airplanes, cars, and 
power stations are complicated. 

Disordered systems are not predictable. They follow fat-tailed 
probability distributions, and sometimes seem like they follow 
predictable patterns until one day they suddenly don’t. We know 
very little about them and attempts to tame them with math and 
physics and consultant language haven’t really resulted in any 
greater conclusion than the need for yet another workshop. Our 
society, economy, and biology all belong to the disordered world. 

Software systems are interesting because they involve a very com-
plicated but ordered core of software, which is placed into a disor-
dered system (the business, market, and society). To successfully 
understand how these two worlds impact each other requires that 
an analyst must constantly move between these two worlds, which 
have very different ontologies and epistemologies. The architect 
of these systems then needs to traverse constantly between the 
ordered and the disordered. A liminal space is somewhere that 
isn’t really anywhere; somewhere you pass through on your way to 
somewhere else — like a bus station or an airport. The job of the 
software architect is therefore hyperliminal — constantly moving 
between the two. In my research on residuality theory, I was forced 
to quantify what problem I was trying to solve — and that problem 
is the engineering of hyperliminal systems. 

Software systems are 
interesting because they 
involve a very compli-
cated but ordered core 
of software, which is 
placed into a disordered 
system (the business, 
market, and society). 

https://www.cutter.com
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution


EXECUTIVE UPDATE
Business Agility & Software Engineering Excellence, Vol. 22, No. 4

©2021 Cutter Consortium, an Arthur D. Little company | 5

The job of the software architect is therefore the design of the soft-
ware structure in a hyperliminal space. This is very difficult, because 
we do not know what will happen in the hyperliminal space. Given 
this, we must derive a structure that answers a question that hasn’t 
been asked yet. 

Hyperliminal Coupling
Coupling is how we refer to connections between modules in soft-
ware. Hard coupling is something that is widely seen as detrimental 
in software design. When two components are hard coupled, they 
are so interdependent that stress or changes to one component 
involves stress or changes to the other. This has the effect of caus-
ing stress to ripple through an application, increasing the cost and 
difficulty of managing change and surprises in the hyperliminal 
environment. The industry has been aware for decades that loose 
coupling — lessening the interdependency between components — 
makes an application easier to manage in a changing environment. 
We are aware that modularization, loose coupling, and redundancy 
may help to decrease coupling and thus navigate uncertainty bet-
ter. The problem is that we don’t know to which degree these prop-
erties are necessary. Most software approaches to date have used 
patterns and tried to establish best practices (e.g., SOLID, YAGNI, 
DRY) to do this, as if drastically different problems across industries 
and organizations could be solved with the same solution every 
time. 

In a hyperliminal system, we cannot see the future. This means 
that we cannot make decisions about what should be loosely cou-
pled or how. Any software application that is hyperliminal will be 
exposed to a variety of unknown stressors for which it has not been 
designed. When one of these stressors acts on the system, we will 
see new patterns and connections emerge as changes and impacts 
ripple through the system; we will see connections between compo-
nents that we had never been able to imagine before. These com-
ponents are coupled in a way that is impossible for us to see, and 
our design decisions will determine how quickly a stressor’s impacts 

In a hyperliminal  
system, we cannot see 
the future. This means 
that we cannot make 
decisions about what 
should be loosely  
coupled or how. 

https://www.cutter.com
https://areknawo.com/10-coding-principles-and-acronyms-demystified/
https://areknawo.com/10-coding-principles-and-acronyms-demystified/


EXECUTIVE UPDATE
Business Agility & Software Engineering Excellence, Vol. 22, No. 4

©2021 Cutter Consortium, an Arthur D. Little company | 6

ripple through the system and how much damage it causes. This 
invisible coupling is what makes software engineering so difficult, 
and we call it hyperliminal coupling.

The idea of an unknown stressor suddenly revealing invisible 
coupling between components can be used to understand why 
nonfunctional requirements are so difficult to manage. A particu-
lar nonfunctional requirement (say, capacity) is determined by a 
number of interconnected events in the market, which cannot be 
accurately predicted. The actual capacity needs, when revealed, will 
indicate hyperliminal coupling as the software must be adapted to 
cope with changing conditions, and other nonfunctional aspects 
are affected, causing a constant need to balance and make trade-
offs as the hyperliminal system changes in different, unpredictable 
directions. From this example, we can see that all nonfunctional 
requirements can be expressed as instances of shifting hyperliminal 
coupling. Thus, nonfunctional requirements expressed as a state-
ment, or as a single requirement, or even as a range of possibilities, 
cannot exist without massively oversimplifying the problem and 
leading to design decisions that couple the solution to a particular, 
simplified view of reality that may even exacerbate the impact of 
stress in the future. 

Armed with this knowledge, it is clear that asking stakeholders 
questions and analyzing the language in their responses can never 
work. Treating nonfunctional requirements as statements to be 
made by stakeholders, or as requirements to be elicited, has proven 
extremely difficult. We have attempted to deploy approaches, such 
as Architecture Tradeoff Analysis Method (ATAM) from Carnegie 
Mellon’s Software Engineering Institute (SEI), that mimic the struc-
turalist approaches of programmers, asking stakeholders for their 
needs and deciphering the solution from their language. Once we 
extract some form of a structuralist, engineering view of nonfunc-
tional requirements, we then feel safe making engineering deci-
sions on this basis. But this will fail repeatedly because, in reality, 
the nonfunctional requirements come not from the solution or 
from the needs of stakeholders, but from the random collision 
of aspects of the hyperliminal system — unpredictable stressors 
revealing hyperliminal coupling. 

The idea of an unknown 
stressor suddenly 
revealing invisible  
coupling between  
components can be 
used to understand why 
nonfunctional require-
ments are so difficult  
to manage. 

https://www.cutter.com
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177


EXECUTIVE UPDATE
Business Agility & Software Engineering Excellence, Vol. 22, No. 4

©2021 Cutter Consortium, an Arthur D. Little company | 7

The unpredictable stressors lie behind much of the issues in soft-
ware projects. They cause requirements churn, rework, redesigns 
— expensive interventions that become more expensive as the 
project moves forward in time. A solution to this is often consid-
ered to be designing for change. However, hyperliminal coupling 
makes it impossible to design for change. Since we cannot know the 
future in a hyperliminal environment, we cannot know what stress-
ors will occur and which components they will introduce coupling 
across. Thus, we cannot say reliably what the reaction of a system 
will be when exposed to stress in its environment. It also makes it 
impossible to simply list the types of nonfunctional requirements 
and assign values to them by assessing stakeholder needs through 
language analysis, guessing, or best practices.

Nonfunctional requirements is therefore an overly simplistic view of 
hyperliminal coupling that arises from transposing the idea of func-
tional requirements and contract certainty to the hyperliminal real-
ity of a system’s behavior in its environment. If we let go of the idea 
of nonfunctional requirements and focus instead on hyperliminal 
coupling, we have a greater chance of actually building something 
that can respond to its environment.

Changing Behavior to Deal 
with Hyperliminal Coupling
What is the alternative? Residuality theory provides a way to 
uncover hyperliminal coupling. First, the process of stressor analy-
sis, in which stakeholders use their imaginations to describe what 
might go wrong and what the system shouldn’t do helps us look at 
the system in a different way, uncovering points of coupling that 
wouldn’t be seen if we restricted our view to the functional aspects. 
Next, contagion analysis uses design structure matrices to highlight 
dependencies between components and information flows. Finally, 
we use incidence matrices to reveal components or functions 
that share the same sensitivities to stress; those components or 
functions that are hyperliminally coupled. This is similar to placing 
components with similar sensitivities to temperature or heat in the 

If we let go of the 
idea of nonfunctional 
requirements and focus 
instead on hyperliminal 
coupling, we have a 
greater chance of actu-
ally building something 
that can respond to its 
environment.

https://www.cutter.com
https://www.sciencedirect.com/science/article/pii/S1877050920305585
https://mitpress.mit.edu/books/design-structure-matrix-methods-and-applications
https://en.wikipedia.org/wiki/Incidence_matrix


EXECUTIVE UPDATE
Business Agility & Software Engineering Excellence, Vol. 22, No. 4

©2021 Cutter Consortium, an Arthur D. Little company | 8

same casing in a mechanical structure. The proof that this works 
lies in using residuality theory’s training set/testing set methodol-
ogy to show that a system survives unknown forms of stress better 
than naive architectures based on the same functional, structuralist 
approaches described in the previous sections.

Bringing an end to the very idea of nonfunctional requirements will 
help alleviate a lot of unnecessary suffering in IT departments. The 
use of residuality theory can help architects tackle the problem, 
employing an argument from the complexity sciences about what 
can and cannot be done. And businesses can stop being surprised 
when applications fail in hyperliminal environments and stop 
ascribing the problem to “change” or poorly defined nonfunctional 
requirements. Those architects who have succeeded in building 
systems in hyperliminal environments will recognize the thinking — 
and the secret to their success will undoubtably entail critical think-
ing that reveals hyperliminal coupling. 

About the Author
Barry M. O’Reilly is a Senior Consultant with Cutter Consortium’s Business 
& Enterprise Architecture and Business Agility & Software Engineering 
Excellence practices and a member of Arthur D. Little’s AMP open con-
sulting network. He is the founder of Black Tulip Technology and creator 
of Antifragile System Design. Previously, he held positions as Chief Architect 
for Microsoft’s Western Europe practice and IDesign, IOT TAP Lead for 
Microsoft’s Western Europe practice, Worldwide Lead for Microsoft’s Solution 
Architecture Community, and startup CTO. He can be reached at experts@
cutter.com.

https://www.cutter.com


About Cutter Consortium

Cutter Consortium is a unique, global business technology advisory firm dedicated 

to helping organizations leverage emerging technologies and the latest business 

management thinking to achieve competitive advantage and mission success. 

Through its research, training, executive education, and consulting, Cutter  

Consortium enables digital transformation.

Cutter Consortium helps clients address the spectrum of challenges technology 

change brings — from disruption of business models and the sustainable innova-

tion, change management, and leadership a new order demands, to the creation, 

implementation, and optimization of software and systems that power newly holistic 

enterprise and business unit strategies.

Cutter Consortium pushes the thinking in the field by fostering debate and collab-

oration among its global community of thought leaders. Coupled with its famously 

objective “no ties to vendors” policy, Cutter Consortium’s Access to the Experts  

approach delivers cutting-edge, objective information and innovative solutions  

to its clients worldwide.

For more information, visit www.cutter.com or call us at +1 781 648 8700.

Cutter Consortium
Access to the Experts

https://www.cutter.com
https://www.cutter.com
https://www.cutter.com

