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O P E N I N G  S TAT E M E N T

The increasing realization that deep learning alone 
cannot be the solution to build robust, reliable 
artificial intelligence (AI) systems, coupled with the 
ever-increasing need to make use of heterogeneous data 
sources for decision making, has led to a recent resur-
gence of knowledge graphs (KGs). KGs are essentially 
graph-based representations of information that con-
sist of three simple elements: nodes (which represent 
entities), edges (which encode a relationship between 
entities), and attributes that describe the relation-
ships and entities. With this simple recipe, we can model 
any real-world problem as accurately as possible and 
thus encode domain knowledge into a system that is 
transparent for humans but can also be interpreted by 
computers.

KGs have been around for a while (research on 
them began in the 1980s, and Google announced 
it was using them in 2012), but they have often 
been solely used for knowledge representation. 
Today, even small companies have an amazing 
amount of data (often heterogeneous), and 
KGs are the perfect tool to leverage that data. 
Additionally, various technology platforms and 
open source tools now exist that make it much 
easier to design, build, and deploy KGs. 

Use cases for KGs vary in range and cross many 
industries. Their most prominent applications 
are in product or content recommendation sys-
tems, but they have been successfully used in 
drug discovery research, for the estimation of 
passenger flows in transport hubs, and in the 
optimization of global supply chains. These are 
just a few examples; several others are included 

in the first article of this issue, authored by Lila 
Rajabion. Business leaders are discovering that 
KGs can provide meaningful insights into internal 
data, empower employees by serving up the right 
information at exactly the right time, and help 
managers and others make better decisions.

However, the most exciting KG area relates to 
AI. As discussed in the May 2021 issue of Amplify 
(and by Cigdem Gurgur in this issue), the lack of 
explainability (especially in deep learning sys-
tems) is a major challenge for more widespread 
adoption. In the May 2021 issue, Cutter Expert 
Claude Baudoin and Clayton Pummill told us:

 AI is mysterious. The vast majority of society does  
not understand how it works, and deep neural  
networks in particular can produce results that  
we cannot readily explain. People generally fear  
what they don’t understand.1

B Y  M I C H A E L  E I D E N ,  G U E S T  E D I T O R
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KGs are now playing a seminal role in the emer-
gent field of neuro-symbolic AI, which aims to 
integrate domain knowledge into AI systems. 
By combining AI’s statistical/machine learning 
(ML) side with KGs, we get more effective, more 
explainable cognitive results and begin creating 
logic-based systems that get better with each 
application.2 In other words, we can build the 
next generation of AI models, ones that sup-
port better human-machine collaboration, an 
idea taken to its very edge by Andy Williams in 
this issue with his article on general collective 
intelligence (GCI) and Industry 5.0. 

I N  T H I S  I S S U E

Our first article looks at a number of use cases 
for KGs, both general and specific. Rajabion 
provides four examples of how KGs can help 
leaders advance their understanding of the 
business environment in which their company 
sits. These include merging data silos to create 
a company overview across divisions, con-
necting different types of data in meaningful 
ways, aiding informed decision making by nar-
rowing searches and contextualizing informa-
tion, and showing interconnections that help 
leaders gain perspective. Next, Rajabion dives 
into how Google, LinkedIn, eBay, and IBM are 
using KGs and explains how other companies 
could follow suit. She then addresses four chal-
lenges currently faced by companies looking 
to leverage KGs, followed by a look at specific 
business efficiencies enabled by KGs, including 
making data more accessible for employees, 
helping leaders make data-driven decisions, and 
assisting companies in deploying AI technology.

Next, Gurgur looks at KGs in the context of block-
chain. The article begins with background infor-
mation on how KGs have been used in advanced 
analytics and their role in helping AI developers. 
Gurgur then shows how blockchain’s immuta-
bility and verifiability offer designers a way to 
advance KGs to produce more reliable results. 
The blockchain/KG combination is an ideal one to 
build more explainable  

AI systems, she says. Finally, Gurgur explains how 
KG-enabled information systems can be used in 
industrial settings to enhance product devel-
opment lifecycles, improve factory safety, and 
enhance information systems to the point where 
employees need less technical knowledge to 
perform their duties. 

Our third article is from George Hurlburt, who 
details how a KG was used to assist a regional 
center of a major university system in its course 
selection process. The KG helped leaders more 
clearly see the array of educational pathways 
from K-12 to community college (CC) coursework 
that are the results of articulation agreements 
between universities and CCs. Hurlburt shares 
five figures from the KG that demonstrate its 
meaningful visualizations. He also explains how 
the KG was built, including limiting the number 
of arcs and emphasizing node unambiguity. 
Finally, Hurlburt concludes with five key aca-
demic relationships and trends that are clearly 
demonstrated by the regional center’s KG. 

B Y  C O M B I N I N G 
A I ’ S  S TA T I S T I C A L /
M L  S I D E  W I T H 
K G S ,  W E  G E T  M O R E 
E F F E C T I V E ,  M O R E 
E X P L A I N A B L E 
C O G N I T I V E 
R E S U LT S  A N D 
B E G I N  C R E A T I N G 
L O G I C - B A S E D 
S Y S T E M S  T H A T  
G E T  B E T T E R  W I T H 
E A C H  A P P L I C A T I O N
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Our fourth article, by Williams, looks at how 
human-centric functional modeling (a way to 
allow computers to solve general problems) could 
be used to create KGs capable of providing com-
pete semantic models of systems, enabling us to 
transition to Industry 5.0. He defines Industry 5.0 
as a world in which far greater integration is pos-
sible, including functional computing approaches 
like GCI. Although the emergence of GCI isn’t 
guaranteed (it could end up in a technology 
gravity well, says Williams), it would bridge type 
1 and type 2 reasoning and lead to a radical 
increase in our ability to solve every problem. 

Our final article — written by myself and my 
colleagues at Arthur D. Little, Philippe Monnot 
and Armand Rotaru — demonstrates KG use in 
the real world. We illustrate several prominent, 
real-world KG applications, then detail how we 
designed a KG to ensure vertical traceability 
within a systems engineering context. We began 
by extracting relevant entities from 20,000 
heterogeneous files with the help of natural 
language processing (NLP) technologies and 
proceeded to define a suitable ontology that 
incorporated concepts from the field of systems 
engineering. We then developed an ML model 
that consumed features derived from the KG and 
mimicked the way an independent safety assess-
ment auditor would work in practice. 

6
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Using precision and recall to evaluate the 
model’s accuracy resulted in finding previously 
incorrectly labeled software requirement spec-
ifications. We also found that combining graph-
based features with text-based ones boosts 
the classification accuracy significantly, thus 
showing significant promise in augmenting 
human safety assessors in the future. We end 
the article with some specific advice on using 
KGs, including unlocking new insights, extracting 
more from the data you have, and starting small 
with the intention of scaling quickly. 

We hope you enjoy reading this issue (and  
viewing Amplify’s brand-new design); we 
certainly enjoyed putting it together. We’re 
hoping KGs’ potential to take important 
processes and technologies to new levels will 
help business leaders better connect the dots. 

R E F E R E N C E S

1 Baudoin, Claude, and Clayton Pummill. 
“Bridging the AI Trust Gap.” Cutter Business 
Technology Journal (renamed Amplify),  
Vol. 34, No. 5, 2021. 

2 Aasman, Jans. “Neuro-Symbolic AI:  
The Peak of Artificial Intelligence.”  
AiThority, 16 November 2021. 
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KGs have been around for quite a while, but they 
didn’t receive much attention until Google began 
integrating them into its search engines. Today, 
large companies like Google, LinkedIn, and Amazon 
use KGs to optimize searches, but companies of 
any size can use them to improve data accessibility 
and searchability. 

Today’s emphasis on searchability is forcing con-
tent marketing and search engine optimization 
(SEO) experts to create rich networks of inform-
ative and instructional materials to satisfy cus-
tomers during the buyer journey. Companies that 
don’t excel at searching and retrieving data for 
their customers have trouble remaining compet-
itive.2 Using a methodological system like KGs to 
more efficiently manage that data thus becomes  
a strategic advantage. 

For example, if a person wants to search Google 
for his or her favorite place to eat but only knows 
the location and not the name of the restaurant, 
Google, with the help of its KG, can provide rele-
vant suggestions in real time. Similarly, KGs can 
improve a company’s content marketing and SEO 
by: (1) unambiguously defining content for search 
engines and (2) building robust information envi-
ronments around products and services for pros-
pects and customers.3

B U S I N E S S  U S E S

One of the most important KG functions is cre-
ating linkages across multiple data sets. By pro-
viding a visual representation of the underlying 
connections between data nodes, KGs help leaders 
advance their understanding of their environment 
so they can make intelligent business choices.4 
Here are four examples:

1. By providing a way to merge data silos, KGs  
create a valuable overview of all knowledge in a 
company, both within departments/divisions and 
across them. This is helpful for companies with 
multiple divisions, especially if they’re located in 
different regions or countries.

2. KGs have the ability to connect different kinds of 
data in meaningful ways.5 For example, academic 
graphs include people, papers, research topics, 
and conferences to help users detect connections 
between researchers and pieces of research.

3. By narrowing searches and contextualizing infor-
mation, KGs can help business leaders make more 
informed decisions faster.6

4. By having each topic or item represented just 
once (with all its connections) in context with all 
other subjects and their relationships, KGs clearly 
show how each node is interconnected. This helps 
leaders gain perspective on how important ideas 
relate to one another.

A majority of businesses collect and store a substantial volume of data, but many don’t 
adequately harness it to enhance their decision making or fuel new opportunities.1 The 
sheer volume of data makes it difficult for companies to manage; this is compounded 
by the multiple silos in which data is stored. In this article, we’ll look at how knowledge 
graphs (KGs) can help solve that problem, opening up avenues to improved decision 
making, better employee data access, and easier deployment of artificial intelligence 
(AI) technology. We’ll also examine some real-world examples of KGs (including Google 
and others) and look at some of the challenges faced by companies as they develop KGs.

Author
Lila Rajabion
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R E A L - W O R L D  E X A M P L E S

The benefits of KGs are not limited to large tech 
companies. In fact, any company with a signif-
icant amount of data can benefit from them. 
Following are some examples of how companies 
are using KGs to improve content management and 
user-centric services — and how other companies 
could follow suit.

G O O G L E

The search results page on Google responds to 
questions the company has already addressed with 
the help of its KG. Since Google does not develop 
content, the results it displays originate from 
credible sources that are organized and linked,  
yet dispersed over the Internet.7 Voice-activated 
assistants Google Assistant and Google Home use 
the same KG to answer verbal inquiries. 

In other words, Google’s KG is a knowledge base 
designed to improve its search engine results  
using information acquired from a variety of 
sources. Following its launch in 2012, Google’s KG 
saw tremendous growth, more than tripling in a 
matter of months to reach 570 million entities and 
18 billion facts by its most recent count.8  

Rather than crawling through or indexing websites, 
Google uses its KG to organize the world’s informa-
tion by topic; advantages for the company include 
scale, data integrity, and speed. Google can easily 
harness user behavior data to understand what 
topics are significant to individuals and suggest 
topics based on user history. Other companies 
could use this approach, leveraging data to better 
understand customer behavior in order to improve  
products and/or marketing.

A W S

Amazon Web Services (AWS) KGs are a mechanism 
for modeling and conveying knowledge about the 
company’s services. This concept has been around 
for a while, but the development of scalable graph 
databases has made it more applicable.9 Compared 
to data management systems like relational data-
bases, KGs are extraordinarily adaptable, capable 
of accounting for the variety and heterogeneity of 
data in the real world. 

Using a collection of ideas, the properties of 
those concepts, the interactions between those 
concepts, and the logical constraints that are 
expected to hold, AWS KGs can capture the seman-
tics of a specific domain.10 Because this model 
includes logic, we can reason about graphs and 
the information included within them, making the 
information implicit in the graph readily available. 
The process of information asset consolidation 
includes integrating an organization’s information 
assets and making them easily accessible to all 
members of an organization.11 

AWS KGs open the door to a variety of applications, 
most of which are helpful on their own, not only 
for the company but for its clients. For example, 
Amazon could turn the data it gathers into a 
more helpful resource by using an enterprise KG. 
Furthermore, it could develop corporate knowl-
edge graphs by using the built-in federated query 
functionalities of the Amazon Neptune graph 
database.12 Public data from the Internet could be 
used to enrich the information already included 
within these graphs. Other companies can similarly 
use KGs to help them organize information from 
dissimilar data sources to enable more intelligent 
search. Ultimately, KGs can help organizations 
make their data more understandable by using 
business terms rather than ambiguous codes.

R A T H E R  T H A N 
C R A W L I N G 
T H R O U G H  O R 
I N D E X I N G 
W E B S I T E S ,  
G O O G L E  U S E S  
I T S  K G  T O 
O R G A N I Z E 
T H E  W O R L D ’ S 
I N F O R M A T I O N  
B Y  T O P I C
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L I N K E D I N

LinkedIn’s KG is an enormous knowledge base 
constructed from entities such as members, jobs, 
titles, skills, companies, geographical locations, 
schools, and the connections between them.13 
LinkedIn uses this ontology to improve its rec-
ommendation system; search, monetization, and 
consumer product offerings; and business and 
consumer analytics.

Developing this type of comprehensive knowl-
edge base proved extremely challenging. Websites 
like Wikipedia and Freebase are almost entirely 
dependent on user contributions.14 LinkedIn took 
a different approach. LinkedIn’s KG is primarily 
derived from the large quantity of content pro-
vided by corporate administrators, recruiters, 
advertisers, and other users.15 

The KG grows constantly as individuals sign up for 
the platform, employment opportunities become 
available, new companies join, new skills are 
added, and new titles surface in user profiles  
and job ads.

Moreover, the company uses machine learning (ML) 
methods to help find solutions to its KG network 
challenges.16 This is essentially a process of data 
standardization on user-generated content and 
external data sources. ML is applied to entity tax-
onomy construction, entity-relationship inference, 
data representation for downstream consumers, 
insight extraction from the graph, and interactive 
data acquisition from users to validate inferences.17 

New entities are continuously added to the KG, and 
new connections are forged between existing enti-
ties. Alterations to existing partnerships are also 
possible. For instance, when a member gets a new 
position, the mapping from her previous title to her 
present one is updated accordingly. It is necessary 
to perform real-time updates on the LinkedIn KG 
network whenever member profiles undergo modi-
fications or when entities are added. Other compa-
nies could similarly take advantage of ML to help 
them improve their data quality and KGs.

E B A Y

eBay’s product knowledge graph encodes semantic 
knowledge about items, entities, and their connec-
tions. This information is vital to eBay’s market-
place technology, which automatically connects 
sellers and buyers. eBay uses KGs to describe prod-
ucts, schedule deliveries, and service customers 
through virtual assistants. eBay’s KG sometimes 
links items to real-world entities, establishing a 
product’s identity and value to a customer.

The KG also links goods. For example, if a person 
looks for Lionel Messi memorabilia, and the KG 
shows he plays football (soccer) for FC Barcelona, 
that person may also be interested in FC Barcelona 
items or items like signed jerseys from other 
Barcelona players. 

For eBay, understanding product connections is  
as important as entity interactions, and the 
knowledge network must answer a search query  
in milliseconds. Because large graph queries can 
take hours to complete, eBay engineers built a 
flexible, universal architecture. The KG keeps track 
of every entry and change, and the data is organ-
ized in a log. This enables a variety of back-end 
data storage options, such as low-latency docu-
ment storage and a graph store for long-running 
analysis. To keep the graph in chronological order, 
each store adds its operations to the write log, 
resulting in more consistent results for customers. 

A M P L I F Y
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Other e-commerce companies could similarly 
use KGs, leveraging entity relations to better 
understand their products’ relationships (e.g., 
suggesting an iPhone case to someone who just 
purchased an iPhone and successfully modeling 
various phone sizes and cases in order to offer a 
case that fits the phone bought).

I B M

Watson Discovery services uses IBM’s KG frame-
work in two ways. First, the framework directly 
supports Watson Discovery, leveraging structured 
and unstructured knowledge to discover new infor-
mation. Second, it allows individuals to construct 
KGs based on the prebuilt KG. Discovery creates 
knowledge not present in existing documents or 
available data sources. Examples include con-
nections between entities (e.g., drug side effects, 
acquisition targets, and sales leads), new impor-
tant entities in the domain (e.g., an investor for a 
specific investment area), or changes in the sig-
nificance of an existing entity (e.g., an increasing 
interaction between a person of interest and a 
criminal).18 Other companies could similarly lev-
erage KGs to identify prospects, current customers 
who might be interested in other products, and 
potential investors. 

K G  C H A L L E N G E S 

KGs have been used to improve search results 
across a variety of search engines, including 
Google and Bing, and to provide support for a 
large number of applications. Amazon is devel-
oping a product graph that will serve as an official 
KG for all the items in the world. The thousands 
of product verticals we need to model, the vast 
number of data sources we need to extract knowl-
edge from, the enormous volume of new products 
we need to handle every day, and the number of 
applications (search, discovery, personalization, 
and voice) we wish to support present significant 
challenges when it comes to the construction of 
such a graph. KGs vary greatly in scope and design, 
but the challenges in creating them are similar for 
most implementations. 

D I S A M B I G U A T I O N  &  C O N T R O L 
O F  I N D I V I D U A L  I D E N T I T I E S

Resolving ambiguity between entities is a signifi-
cant difficulty in Semantic Web and KGs. Problems 
arise when an entity’s name or mention is not given 
its own normalized identity and type in the context 
of a conversation. Many autonomously generated 
things, such as people with similar names and 
book/movie titles, have similar surface forms to 
each other. Likewise, comparable products may be 
listed under various headings. A lack of appropriate 
linking and disambiguation can lead to inaccurate 
judgments about entities. The difficulty of iden-
tity management rises exponentially when dealing 
with many contributors on a large scale.

R E S O L U T I O N S  &  M E M B E R S H I P

There are several types of entities in most KGs. 
For instance, Angelina Jolie is a human, an actor, 
and a humanitarian; she’s better known for acting 
than her humanitarian efforts. A KG might employ 
a particular set of attributes based on a user’s job, 
and early on, the criteria for being a class member 
might be easy to understand. As the number of 
instances grows, it becomes harder to enforce 
these criteria while maintaining semantic stability. 
For example, e-sports did not exist when Google 
set up the category for sports in its KG. So how 
does Google keep the sports category separate 
from e-sports while still including them?

K G S  V A R Y  G R E A T LY 
I N  S C O P E  A N D 
D E S I G N ,  B U T  T H E 
C H A L L E N G E S  I N 
C R E A T I N G  T H E M  A R E 
S I M I L A R  F O R  M O S T 
I M P L E M E N T A T I O N S
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K N O W L E D G E  M A N A G E M E N T

A good entity-linking system must grow naturally 
based on the data it receives, which is constantly 
changing. Companies can merge or split, and new 
scientific discoveries can make one thing into 
more than one. KG frameworks are getting better 
at storing and managing changes, but they still 
cannot manage highly dynamic information. 

Maintaining several stores (e.g., IBM’s polymorphic 
stores) may be difficult. There are many things to 
think about regarding the integrity of the update 
process, its eventual consistency, updates that 
conflict, and runtime performance in general. 
The answer may be different kinds of distributed 
data stores that are already set up to handle 
incremental cascade updates. It’s also essential  
to keep track of changing schemas and type sys-
tems without making the knowledge already in the 
system inconsistent. Google solves this problem 
by thinking of the metamodel layer as comprised 
of several layers. The lower layers stay mostly the 
same while the higher levels are made up of meta 
types, which are just instances of types that can 
be used to improve the type system.19

E X T R A C T I O N  O F  I N F O R M A T I O N 
F R O M  A  V A R I E T Y  O F  O R G A N I Z E D 
&  U N O R G A N I Z E D  S O U R C E S

Although there have been recent improvements 
in understanding natural language, it’s still hard 
to pull out structured knowledge, which includes 
entities, their types, attributes, and relationships. 
To grow KGs at scale, we must use manual methods 
alongside unsupervised and semi-supervised 
methods to extract knowledge from unstructured 
data in open domains. For example, eBay’s product 
knowledge graph gets many of its graph relation-
ships from the unstructured text in listings and 
seller catalogs. The IBM Discovery KG gets its facts 
from documents. 

Training knowledge-extraction systems in tradi-
tional supervised ML frameworks is difficult and 
time-consuming. This can be mitigated by using 
fully unsupervised or semi-supervised approaches. 
Entity recognition, classification, text, and 
entity embeddings are all useful ways to connect 
unstructured text to graph entities.

C A N  K G S  I M P R O V E 
B U S I N E S S  E F F I C I E N C Y ?

There are several ways KGs can improve business 
efficiency. The first is by creating an advanced 
way for business leaders to merge, sort, and view 
data.20 KGs create a web of information on a sub-
ject, pulling from multiple sources and merging 
various data types to help leaders better under-
stand their company’s reality and make data-
driven decisions.

The second way is helping employees quickly gain 
access to the information they need. KGs make it 
easier to understand internal assets, such as bene-
fits, tax information, organizational structure,  
and more. 

The third way is helping companies deploy AI tech-
nology, such as chatbots and advanced search. 
KGs can act as inputs for ML, since ML algorithms 
achieve better results if they include domain 
knowledge. KGs help capture domain knowl-
edge, but ML algorithms require that any discrete 
structure, such as a graph, first be converted to a 
numerical format.

A KG could help chatbots memorize, associate, and 
reason about the semantic connections between 
entities, bridging the gap from perceived intelli-
gence to cognitive intelligence. However, we must 
keep in mind that logical reasoning remains a 
challenge for KGs. For example, a medical chatbot 
could collect symptoms and offer basic medical 
advice but is not intended to replace a physician’s 
diagnosis or advice.

R E S O L V I N G 
A M B I G U I T Y 
B E T W E E N  E N T I T I E S 
I S  A  S I G N I F I C A N T 
D I F F I C U LT Y  I N 
S E M A N T I C  W E B 
A N D  K G S
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C O N C L U S I O N

KGs can play an important role in business, 
particularly in improving decision making and 
boosting efficiency. By merging data silos, KGs 
create a valuable overview of all the knowledge in 
a company, both within and across departments/
divisions. Similarly, by narrowing searches and 
contextualizing information, KGs can help busi-
ness leaders make more informed decisions faster. 
Because each topic or item in a KG is represented 
just once in context with all other subjects and 
their relationships, KGs show node interconnec-
tions that help leaders gain perspective on how 
important ideas relate to one another.

Companies such as Google, AWS, LinkedIn, 
eBay, and IBM are already using KGs to improve 
searches, make data more accessible to leaders 
and employees, improve product suggestions made 
to customers, and much more. KGs can also help 
companies with their AI deployments, including 
chatbots. KGs act as ML inputs, adding domain 
knowledge to help ML algorithms achieve better 
results. 

As customers become ever more accustomed to 
fast, accurate product searches and expect to con-
sistently receive useful suggestions for ancillary 
purchases, KGs are an important tool for compa-
nies hoping to successfully satisfy them during the 
buyer journey.
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ML, a subset of AI, enables learning from obser-
vations (data) and experience (repeated training) 
and is key to transforming large manufacturing 
data sets (often called “big industrial data”) into 
actionable knowledge. This is stimulated by large 
data sets involving various real-world features and 
an increase of the computational gains generally 
attributed to powerful graphic-processing cards.

Knowledge graphs (KGs) that leverage AI and ML 
technology, particularly deep learning, are now 
being widely studied for use in manufacturing 
because of their ability to easily handle large 
amounts of data and model complex relationships.1 
Deep learning, a subset of ML, learns without 
human supervision. KGs are a powerful data sci-
ence technique created to mine information from 
diverse data formats. 

KGs’ ability to handle connected data and embrace 
relationships in a flexible, graphic form makes 
them highly efficient in domains where data 
structures are constantly changing and evolving, 
as in manufacturing. Flexible KG schemas can 
handle dynamic, uncertain variables and quickly 
encode domain and application knowledge. KGs 
complement ML methods, enabling accurate data 
collection that facilitates faster, more precise AI 
application development. 

For example, a recent Technological Forecasting 
and Social Change article showed how smart 
manufacturing could use advanced manufacturing 
technology and data-mining techniques like KGs to 
improve product quality while shortening produc-
tion cycles, enhancing production efficiency, and 
reducing costs.2 

T H E  H I S T O R Y  O F  K G S  I N 
A D V A N C E D  A N A LY T I C S

In the last 10 years or so, KGs have emerged as 
an important area in advanced analytics and the 
AI domain, helping to connect data sources and 
solve large-scale enterprise problems. They are at 
the core of human-facing technologies, such as 
search, question answering, dialogue, fraud pre-
vention and investigation, product recommenders, 
and autonomous systems. 

In addition to business problems, KGs have been 
used to solve social problems involving difficult 
technical challenges, such as human trafficking. 
A recent article in IEEE Transactions on Big Data 
described a KG effort that resulted in an effective 
semantic search engine to assist analysts and 
investigative experts in the human-trafficking 
domain.3

Advances in high-tech sensing, the proliferation of electronic manufacturing records 
and mobile sensors, and the development of the Industrial Internet of Things (IIoT) 
are causing manufacturing data to accumulate exponentially. Although this data is 
often stored in heterogeneous formats and distributed, it’s an important source of the 
information we need to deploy intelligent production management tools. The process 
involves knowledge extraction and prediction processes using artificial intelligence (AI) 
models, the success of which is mainly due to advances in machine learning (ML).
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Because data sets are so often scattered, AI 
developers struggle to discover, share, and manage 
data from different systems in different formats. 
This requires understanding, structuring, inte-
grating, and verifying data each time new features 
or applications are built based on it. One of the 
main benefits of structuring knowledge in the form 
of graphs (instead of relational databases) is the 
flexibility of the schema, which can be defined at 
a later stage and adjusted over time. This allows 
more flexibility for data evolution and capturing 
incomplete knowledge.

Building on a storied tradition of graphs in the 
AI community, a KG can be defined as a directed, 
labeled, multi-relational graph with some form  
of semantics integrating diverse data into a 
common format. KGs provide graph-structured 
topologies to organize data and can present 
interlinked descriptions of its entities, including 
objects, events, situations, and abstract concepts.4 

A 2012 Google blog entry is often cited as having 
sparked KG development.5 In truth, Google revived 
KG technology rather than inventing it — a great 
deal of KG research was done in the 1980s. For 
Google, KG technology was about enhancing 
search engine performance through information 
gathered from a variety of sources. 

In 2016, researchers Lisa Ehrlinger and Wolfram 
Wöß proposed a more widely acknowledged  
definition: “A knowledge graph acquires and  
integrates information into an ontology and 
applies a reasoner to derive new knowledge.”6

In this era of information explosion, KGs have 
tremendous potential to elicit, integrate, process, 
use, and popularize large data sets embedded 
in industrial products and services. KGs allow 
reasoning about the underlying data, provide 
significant increased precision with information 
retrieval, and facilitate complex decision making.7 

KGs’ underlying structure offers both humans and 
machines better knowledge comprehension and 
interpretation.8 Today’s KGs supplement manual 
knowledge-engineering techniques with crowd-
sourcing and use ML to significantly increase 
automation.

Although KGs can improve AI predictions by pro-
viding them with knowledge expressed and used 
by ML methods, most ML models require a set of 
feature vectors as input. As a result, considerable 
research has been done to generate “embeddings” 
from KGs. A KG embedding transforms the nodes 
and the edges of the graph topology to a numeric 
feature vector that can serve as a direct input to 
the ML model.9

AI experts are therefore manipulating structured 
KGs for deep learning with relational inductive 
techniques, transferring learning (inter-domain 
knowledge sharing), and seeking other methods 
of infusing KG into ML.10 In some cases, KGs have 
been used to extend existing data models depicted 
by domain ontologies and establish a new form 
of advanced analytics that can capture large, 
semantically interconnected data sets.11 

Even though directed labeled graphs represent 
a common thread linking today’s KGs with early 
AI semantic networks, there are some important 
differences in research methodologies and tech-
nical challenges. In early AI semantic networks, 
the emphasis was on complex logical inferencing; 
modern KGs focus on supporting advanced ana-
lytics operations.12 

Additionally, early semantic networks were cre-
ated using top-down design methods and manual 
knowledge-engineering processes. They never 
reached the size and scale of today’s KGs. Modern 
KGs are larger in scale and are constructed using 
both manual and automated strategies. The vast 
proliferation of available data and the data-driven 
nature of today’s ML support a bottom-up method-
ology for creating KGs.

I N  T H I S  E R A  O F 
I N F O R M A T I O N 
E X P L O S I O N ,  
K G S  H A V E 
T R E M E N D O U S 
P O T E N T I A L 
T O  E L I C I T , 
I N T E G R A T E , 
P R O C E S S ,  U S E , 
A N D  P O P U L A R I Z E 
L A R G E  D A TA  S E T S
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Unlike rigid relational database structures, KGs’ 
flexible semantic data layer allows users to per-
petually link and network the complex relation-
ships contained within their data platform and 
external sources without changing the underlying 
data, thus enriching the data’s semantic meaning. 

E N H A N C I N G  E N T E R P R I S E 
K G S  W I T H  B L O C K C H A I N

It began as a digital currency technology, but 
blockchain has rapidly entered virtually every 
aspect of our lives, from enhancing food safety and 
preventing medical errors to diamond provenance 
information disclosure and artwork ownership 
authentication. Blockchain provides decentralized 
trust management in chronological, encrypted, 
chained blocks to store verifiable, synchronized 
data across peer-to-peer networks.

Blockchains maintain their data integrity, while 
providing tamper-proof and secure data storage 
and immutable task execution. Blockchain’s unique 
tracing ability lets it identify malicious activity 
on the network. If a malicious user tries to tamper 
with an enterprise KG, he or she has to access the 
pointer from the blockchain, so the user’s account 
can be traced. 

The KG/blockchain combination marries integ-
rity with interoperability and interconnectivity. 
Blockchain’s visibility into the decisions of all AI 
agents on a KG network makes it difficult for AI 
agents to modify or refute decisions. Blockchains 
also let AI agents collaborate to save new deci-
sions on blocks that can be traced back and are 
therefore resistant to alteration.

A forward-looking article in IEEE Access recom-
mends using crowdsourcing on a blockchain plat-
form to update KG and AI systems with a “trustful” 
value.13 The research proposes a cutting-edge, 
decentralized KG construction method using 
crowdsourcing, with the business logic of crowd-
sourcing implemented by blockchain-powered 
smart contracts to guarantee transparency, integ-
rity, and auditability. This technique represents a 
beneficial tradeoff between the completeness and 
the correctness of KG, as it takes full advantage of 
the wisdom of crowds. 

Another set of researchers created a visionary 
framework to enhance KGs with fundamental 
blockchain concepts, improving the reasoning 
algorithm with trustworthy and historical knowl-
edge to produce more reliable results.14 The frame-
work includes a verified, trusted state provided by 
blockchain technology in KGs to help an AI system 
show why it made a specific decision. Fully prov-
able explanations of AI decisions can be produced 
by going back in time via blockchain technology.

Having such an integrated system could pro-
vide a path to real-time KGs, amalgamating the 
unmodifiable and accessible history concept and 
providing verified KGs by blending the concept 
of digital signatures, which would build a secure 
connection between KGs and blockchains.

Furthermore, since KGs are designed for com-
plex data and knowledge integration tasks as 
well as reasoning tasks and do not require hard-
coding knowledge into reasoning algorithms, they 
resolve the scalability challenges in blockchain 
implementation.

Semantic linking to a data source is one aspect of 
what is usually called “provenance information.” 
Provenance tracks the origin of that data and is 
one form of metadata that is rarely captured in 
typical relational databases. However, it is rela-
tively easy to capture in KGs.

The convergence of blockchains and KGs allows 
dynamic enrichment of logic that ends up in a 
decentralized graph for trustworthy decision 
making.

B L O C K C H A I N S 
M A I N TA I N  T H E I R 
D A TA  I N T E G R I T Y, 
W H I L E  P R O V I D I N G 
TA M P E R - P R O O F 
A N D  S E C U R E  D A TA 
S T O R A G E  A N D 
I M M U TA B L E  
TA S K  E X E C U T I O N
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T R U S T W O R T H Y  & 
E X P L A I N A B L E  A I  S Y S T E M S 
B Y  B L O C K C H A I N  A N D  K G S  

Increasing computational power and big data pro-
liferation are driving AI system adoption. Decision 
support algorithms are carried out by mathemat-
ical models (trained using ML techniques) on data 
collected from past experiences. However, the 
opaqueness of AI decisions is a major drawback in 
systems like industrial design, where precision and 
safe product development are required.

AI technologies that can provide human- 
understandable explanations for their output  
or actions are usually referred to as “explainable 
AI.” End users wonder about the reasoning behind 
the decisions made by algorithms, and increasing 
complexity results in a lack of transparency that 
negatively affects user trust. 

The Cambridge Analytica scandal and the 2016  
US election disruptions clearly showed why modern 
ML methods need to be more transparent.15 A 
number of initiatives have been launched since 
then, including the US Defense Advanced Research 
Projects Agency’s Explainable AI program16 and 
the EU’s Ethical Guidelines for Trustworthy AI.17 
Both encourage the design of ethical systems that 
humans can understand, manage, and trust.

One way to build explainable AI systems is by using 
KGs. New research in Semantic Web shows how 
KGs represent a valuable form of domain-specific, 
machine-readable knowledge.18 The resulting 
KG-connected or centralized data sets can serve 
as background knowledge for AI systems to better 
explain their decisions to users.

Explainable AI is also needed to combat adver-
sarial attacks against ML and deep neural net-
works that may poison learning or inference 
processes. These attacks come in a variety of fla-
vors, such as data set poisoning, internal network 
manipulation, and side-channel attacks. Malicious 
actors can cause random or targeted misclassifi-
cations by manipulating the environment around 
the AI system, the data acquisition block, or the 
input samples. The attack can be as simple as 
adding adversarial noise to input samples and as 
malicious as incrementally shifting the decision 
boundaries during the ML training process. 

Blockchain technology can be used to produce 
trustworthy AI requirements to mitigate biases 
and guard against adversarial attacks.19 With 
blockchain, explanation systems, including deci-
sion outcomes, can be audited in an immutable, 
tamper-proof, decentralized way that can be 
traced with high reliability. If any node fails 
or leaves the chain, the blockchain remains 
unaffected. 

By merging blockchain technology with KGs, we 
can achieve next-generation industrial infor-
mation systems for secure data sharing among 
stakeholders, maintaining data privacy and integ-
rity through data authentication and robust data 
adaptation. This type of industrial platform would 
improve trust, elevate scalability, and increase 
efficiency through multi-party and multi-agent 
decision-making systems that follow various con-
sensus protocols. It could be used to host a trusted 
trail of all records used by ML algorithms before, 
during, and after the learning and decision-making 
process.
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E N H A N C I N G  P R O D U C T I V I T Y 
T H R O U G H  K G - E N A B L E D 
I N D U S T R I A L  P R O D U C T 
D E V E L O P M E N T:  
R E C E N T  E X A M P L E S

D E M A N D  F O R E C A S T I N G

Demand forecasting and requirement analysis are 
crucial topics in industrial product development, 
and they require massive information inputs and 
robust analytic models to make better predictions. 
Processing multi-source information and con-
ducting logical knowledge reasoning are two major 
strengths of KG-enabled information systems. 
The explainable capability of knowledge reasoning 
and recommendations enabled by KG are valuable 
for demand forecasting and requirement anal-
ysis, given that stakeholders care more about the 
insights and logic behind the results than about 
ordinary point estimates.

Recently, an article in International Journal of 
Production Research demonstrated KGs’ ability 
to collect extensive information from online 
technical forums and portal websites to cap-
ture market trends and other events impacting 
consumer demand.20 

S M A R T  S O L U T I O N  D E S I G N

Industrial product development requires a high 
degree of knowledge synthesis and precision spec-
ification. KGs’ ability to gather data from multiple 
sources, usually in different formats, facilitates 
the creation of easily extendable, flexible data 
models ideal for made-to-order manufacturing. 
Several studies have shown how such automated 
knowledge extraction and fusion improve man-
ufacturing design capacity.21 Furthermore, KGs’ 
real-time information exchange enables last-
minute customer changes, even after production 
has begun. 

KG-based design systems not only automatically 
save and store final solutions, but also earlier 
rejected ideas. The solutions and ideas are stored 
as knowledge in the KG, creating a more holistic 
knowledge base for the manufacturer that can 
enhance the product development lifecycle.22 

R I S K  P R E D I C T I O N  &  
S O L U T I O N  P R E S C R I P T I O N

Recently, researchers in the manufacturing field 
have attempted to drive industrial services with KG 
to optimize process safety and product quality. A 
paper in Systems Research and Behavioral Science 
proposed an advanced paradigm to apply KGs in 
smart factories to support safety management in 
the manufacturing process.23 Researchers pro-
posed KGs as a way to: (1) improve decision making 
based on problem diagnoses and (2) predict poten-
tial risks based on information (e.g., worker loca-
tion or machine status) and suggest preventative 
measures.

Similarly, a recent article in Computers in Industry 
showed how design rules and context informa-
tion could be combined to build a computable KG, 
improving computer-aided design and allowing 
designers to spend time on design rather than 
looking for design rules.24 

Through a better understanding of the relationship 
between function-behavior-structure and knowl-
edge representation, a KG-based risk prediction 
and prescription system could prompt smart com-
ponents to adjust themselves to solve problems.25

I N F O R M A T I O N  D I S T I L L A T I O N

In the industrial product lifecycle efforts, there is 
typically a huge gap between massive heteroge-
neous knowledge resources in information sys-
tems and system users’ limited cognitive ability. 
Holistic, nonspecific information is either useless 
or confusing to users. What’s needed is an infor-
mation system that can dispense the right infor-
mation at the right moment to those working on 
specific designs. 

With their ability to distill information, KGs can 
support those designers to better complete crea-
tive manufacturing tasks. For example, a KG-based 
system was able to deliver helpful information 
in a multi-language environment to employees 
without a technical background in fashion design 
manufacturing.26
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C O N C L U S I O N 

KG-enabled multi-disciplinary information sys-
tems integrated with blockchain technology can 
facilitate industrial data mining with trustworthy 
principles. Such systems are capable of producing 
originative ideas to help users productively and 
safely complete product development process 
tasks with increased precision.  

Demand forecasting and requirement analysis, 
smart engineering solution design, automatic risk 
prediction and prescription, operational mainte-
nance, and information distillation all lead to time 
and manpower savings.

By leveraging KGs and blockchains, manufacturing 
enterprises can tap into innovations like explain-
able AI; reusable semantic data modeling; and 
scalable, trustworthy, complex-query performance 
to help accelerate advanced analytics insights and 
reduce data operations cost.
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Rather than concentrating on employers and 
their known unmet needs, this KG examined 
already-established educational pathways in the 
region. The results highlight numerous educational 
drivers that clearly relate to regional workforce 
needs while showing the subtle differences among 
the strategies employed and revealing workforce 
needs among differing counties in the region. 

The KG vividly shows numerous richly attributed 
educational pathways from K-12 to commu-
nity college (CC) coursework. Each well-defined 
pathway, complete with collegiate credit offer-
ings, certifications, and valuable career linkages, 
demonstrates numerous established articulation 
agreements between universities and CCs.

These agreements include a broad range of upper-
level undergraduate offerings with real potential 
that correspond well with the known workforce 
needs in the region. The KG is now entering a new 
phase with further emphasis on extracurricular 
programs, internships, and apprenticeships to fur-
ther reinforce the region’s main education drivers. 

R C S  A R E  V A L U A B L E 
W O R K F O R C E 
I N T E R M E D I A R I E S

An RC’s nature is largely defined by the commu-
nity in which it’s placed. Most often, a university 
system’s RC supports a regional CC focused on 
responding to local economic development needs. 
These needs often generate requirements for 
advanced technical education and frequently lead 
to full-degree programs. Moreover, the quantity 

and quality of students feed both workforce 
expansion and program development. This, in 
concert with strong industrial support, position 
RCs as valuable workforce intermediaries.1

Higher education RCs don’t have the authority 
to act as a college or university, instead relying 
on fully accredited courses from their respective 
state university systems or other universities. 
RCs typically work well with established CCs. 
This means the RC undergraduate focus typically 
involves multiple upper-division course partner-
ships. The development and cultivation of these 
partnerships is the predominant challenge, not the 
lack of accreditation.

This article reports on a KG created for a new RC 
that is uniquely placed in a thriving US technolog-
ical corridor dedicated to excellence. The notion of 
autonomous systems, including unmanned vehi-
cles, has a keen economic development interest in 
this area. This is reinforced by a new RC building 
dedicated to community cohesion, education, and 
state-of-the-art research in autonomous vehi-
cles, setting the RC apart from its more tradi-
tional counterparts. This emphasis on research is 
important, as it focuses on science, technology, 
engineering, and mathematics (STEM), an impor-
tant aspect of the region’s existing educational 
framework.

Proximity to a robust CC spanning the three coun-
ties that define the region rounds out the equation 
for a successful RC. The diversity of offerings at 
the regional CC ensures that regional educational 
needs can be met, extending well beyond those of 
the STEM community.

Regional centers (RCs) of major university systems typically lack the necessary 
accreditation to create courses to satisfy local workforce trends. Instead, they must  
rely on courses developed elsewhere under proper academic oversight, and it’s difficult 
to attract such courses for myriad reasons. To help solve this dilemma, a knowledge 
graph (KG) was created to assist a new RC in the course-selection process. 

Author
George F. Hurlburt
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The new RC faces the dilemma of defining man-
ageable educational pathways that: (1) support 
regional needs with a qualified locally grown and 
diversified workforce, and (2) provide real opportu-
nity for regional industrial expansion. 

An initial survey proved useful from an academic’s 
professional standpoint but was unwieldy for use 
in a more broadly based population. Hiring statis-
tics and future job projections served to satisfy 
immediate needs but lacked sufficient reliability  
in the longer empirical view when viewed by them-
selves. This is largely due to a volatile economy 
further beset by pandemic-induced stress. 
Other indicators needed to be brought to bear 
to reinforce the more generalized projections 
with tangible regional roots. For that, the new RC 
turned to harvesting reliable regional educational 
data as reinforced via a KG.

C R E A T I N G  K G  P A T H W AY 
R E P R E S E N T A T I O N

KGs are valuable instruments when studying com-
plex adaptive systems. Unlike relational database 
management systems, which require elaborate 
inflexible schemas, KGs rely on fluid relationships 
that can come and go over time without major 
analytic sustainability overhauls.2  

A KG relies on the notion of triples in a 
subject-predicate-object relationship structure 
(e.g., “regional center offers electrical engi-
neering”). Spanning these triples allows the 
development of logic chains that provide trace-
able pathways, often indirectly linking cause to 
effect across many nodes and frequently offering 
multiple alternative paths (predicates) between 
nodes (subjects and objects). 

The RC KG shown in Figures 1-5 drew on readily 
available public data from the three regional high 
school (HS) systems, the tri-county CC, the RC 
itself, and other related national higher education 
resources. It was built in Neo4j graph database 
version 1.4.15 using the Cypher query language in 
the 4.4.6 browser. By design, it permits the con-
struction and visualization of useful graph path-
ways for existing educational programs of study 
within the tri-county region.

KG research is emerging from relative infancy. 
It extends to graph algorithms of all kinds as 
well as applied graph theoretical mathematics. 
Advanced KG research deals with the KG for 
knowledge-aware applications, knowledge 
acquisition and temporal KGs, and knowledge 
representation and learning (KRL). The current 
focus on KRL involves building KG frameworks 
conducive to applied artificial intelligence and, 
more specifically, machine learning.3 

KGs provide vivid, meaningful visualizations. 
Although many visualization formalisms and 
frameworks exist, the age-old art versus science 
argument is likely applicable.4 Central to both 
art and science, however, is context, which adds 
the spice of domain-driven diversification and 
semantic relevance to the argumentative mix.    

Context is often cited as an essential element to 
establish KG credibility. Some researchers go so 
far as to perform extensive Web crawls to develop 
added triples that lend temporal, spatial, and 
other contextual value to established triples of 
interest.5 Others rely on direct representation, 
reification, higher arity6 representation, and anno-
tations. Ontological-based schemas, of course, 
provide more precise semantic relationships.7

The RC KG was built using direct representation. 
Several intentional design steps were taken to 
ensure context was appropriately addressed. Arcs, 
the predicates, were limited in number and care-
fully controlled to ensure relevance. Nodes, the 
subjects and object entities, were also intention-
ally kept unambiguous. Where appropriate, triples 
were added to establish spatial location to the 
county level within the region. Aggregations were 
then managed by query. 

Each program of study was attributed with sev-
eral specific properties. Among these properties, 
enrollment numbers provided valuable quantita-
tive information as to the true viability of potential 
pathways. When available, feeder courses were 
also listed. 

Educational pathways were defined by progressive 
programs of study. Program-of-study proper-
ties were reinforced by additional related triples 
showing who is engaged in what and the outcomes 
of these engagements. The resulting RC KG is, it is 
hoped, accurate and reflective of existing cultural 
values of the region served. It is intended to offer 
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a robust backdrop from which future upper-level 
coursework may be defined based on established 
regional educational patterns, adding relevance to 
otherwise speculative future job predictions. The 
resulting schema appears in Figure 1. 

The ideal pathway extends from public schools to 
a specific higher-education degree. For example, 
the pathway for electrical engineering (EE) has its 
roots in the public schools. Some regional schools 
adopt nationally accepted programs of study for 
their curricula. The RC KG defines specific regional 
HS programs of study, many of which lead to col-
lege credit. This credit includes the regional CC, 
which offers an engineering program leading to an 
associate of science (AS) degree. The combination 
of college credits at the HS level and accreditation 
programs between the CC and four-year higher 
educational institutions were taken into consider-
ation in constructing what was considered a viable 
upper-division pathway.

The CC pre-EE offerings are accompanied by 
internships at the leading technology employer 
in the region. Working through the school of 
engineering at the state level, with whom the CC 

has an articulation agreement, the RC offers the 
necessary upper-level coursework leading to a 
bachelor’s degree in EE. In addition to ongoing 
internships, EE graduates are guaranteed entry- 
level positions with that employer. The pathway 
graph in Figure 2 captures all these STEM-based 
elements and their key relationships. 

The new RC can currently demonstrate 10 such 
operational pathways in five regionally relevant 
programs of study. Some involve state institutions; 
others engage universities and colleges outside 
the state’s educational ecosystem. Because the 
RC is unable to develop or accredit its own course-
work, these external relationships are crucial. 

One key workforce driver involves strategic aca-
demic partnerships designed to bring strategic 
economic development to bear in the region. The 
initial RC KG focuses on the academic side of this 
equation, which is intended to extend to industrial 
and governmental program partnerships as well. 
The academic KG, by itself, has already affirmed 
some significant insights, not easily recognized 
without the vivid visualizations made possible by 
the KG design.

Figure 1. RC KG schema resulting from direct representation 
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A C A D E M I C  K G  I N S I G H T S

The RC KG clearly shows five key academic rela-
tionships and trends.

1 .  E D U C A T I O N A L  D I S C I P L I N E S

The educational focus of a given region speaks 
directly to the region’s implicit values. Figure 3 
depicts comprehensive regional HS and college 
concentrations, which are often completed with 
courses supporting prescribed programs of study 
and major concentrations of study. These include 
STEM, business, healthcare, and education, each of 
which houses programs of study.

We can see that the region places a high value  
on STEM education. Given the regional focus on 
autonomous systems and information technology, 
this is hardly shocking. The emphasis on business 
is also not a surprise, as both the military and the 
federal government are major international buyers 
in the region. In light of national and regional 
healthcare demands, the strong emphasis on 
healthcare doesn’t seem out of place, either. The 
large concentration of trades, construction, com-
munications, justice, and services reflect levels of 
workforce diversification, especially for pathways 
in which specific technical knowledge and skills 
prevail. 

However, the reduced concentration on educa-
tion programs of study throughout the region 
is disappointing. Fortunately, the region has a 
relatively high concentration of trained teachers, 
which leads to greater quality of instruction. 
Unfortunately, the pathways to teaching are not 
as strong as other pathways in the region. This 
is reflective of the national shortfall of qualified 
teachers, further fueled by COVID-19 burnout.8   

In each case, the graph database underlying the RC 
KG captures actual enrollment data, giving a basis 
for sound quantitative trend analysis. This is most 
useful in constructing potential pathways that can 
yield reasonably sized cadres.

2 .  C E R T I F I C A T I O N S

The KG revealed some 133 named certifications 
related to the concentrations within each field of 
study. Of these, 38 were unique, career-enhancing 
certifications awarded by the CC and other educa-
tional institutions. The remaining 96 were awarded 
by recognized professional organizations. Should 
the notional trend toward stackable certificates 
underpinning a degree come to full fruition, this 
data, quantitatively related to the concentrations 
within the more general fields of study, will prove 
most useful. These certifications also represent 
an opportunity for analysis of certification oppor-
tunities by concentration to reinforce desirable 
workforce competencies where workforce training 
is applicable. 

HS HS HS CC

RC

CLASS CLASS CLASS CLASS CLASS

CERT STEM AS BS JOB

INTERN

EE

Offered at

Focus

Course

Program of study

Broad category

Outcome

College

High school

Main Path
Focus Focus

Focus
Focus

Offered at

Credit

Partners for

ENGR

ENGR

Program

UNIV

Category Is

Offered at

ENGR

Offered at

CC

Credit

Partners for

Figure 2. Graph representation of the full regional pathway to a BS in EE at the RC
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3 .  C R E D I T S

The graph database can capture and visually 
depict both individual HS courses and the broader 
concentrations for which external credit may be 
earned. This includes work-study programs, earned 
credit programs, and concurrent education offer-
ings. It is significant in that it relates directly to 
the viability of potential pipelines. 

Where offered, such credits provide the incentive 
to pursue a given program of study. Likewise, where 
offered, internships may also be represented and 
depicted. Both appear as valuable components of 
Figure 2. The left side of Figure 4 shows the avail-
able HS credit offerings from which pathways may 
be derived. These credits represent specific and 
academically valuable pathway building blocks. 

4 .  A R T I C U L A T I O N  A G R E E M E N T S

The right side of Figure 4 depicts the articula-
tion agreements that exist between the CC and 
its partner four-year institutions, including those 
within the state’s educational ecosystem. The 
concentrations and their links represent the 10 
existing pathways mentioned earlier that are 
currently available at the new RC. The remaining 
institutional affiliations show articulation agree-
ments that represent potential pathways available 

via the regional college and the CC juggernaut. 
Indeed, enrollment numbers will vary and truly 
represent regional appetite for a given program 
of study. Thus, actual enrollments will dictate 
ultimate pathway viability. Visual representation of 
the potential pathways, combined with enrollment 
data, represents a significant point of departure 
for further academic partnership exploration.  

5 .  S T R A T E G I C  V A R I A N C E

The RC exists to support the entire region, but it 
is essential to appreciate that the three county 
school districts each is responsive to its county 
constituencies and localized values. This shows 
up in how credits are managed and what con-
centrations are emphasized among the three 
jurisdictions. 

Figure 5 shows the differences between the three 
regional county school districts, with increasing 
density from right to left. There is no vertical 
correlation to individual county school systems. 
Appreciation of these salient differences is crucial 
to building a well-balanced set of pathways from 
which useful cadres may be recruited. Here, the KG 
shines in defining realities without imposing value 
judgment.

STEM
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Education
Communications

CareerInternational
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Justice
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Emergency
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Course
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Figure 3. Aggregation of educational concentration areas in the region
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C O N C L U S I O N  &  
F U T U R E  D I R E C T I O N

The current RC KG provides a useful analytical 
framework for analysis in pursuit of viable regional 
pathways. It will reinforce job predictions with a 
real-world view of potential quantitative readi-
ness to meet demands. It also holds some promise 
in increasing the probability of building strong 
cadres by selected programs of study. 

However, the KG is but one tool in the academic 
toolkit, as it is currently far more descriptive than 
prescriptive. As a work in progress, the KG met 

with some initial acceptance, but time and further 
development will determine its ultimate utility in 
the decision-making process.

Although the academic aspect of the workforce 
equation is essential to future academic partner-
ships, this KG cannot stand alone. Industrial and 
governmental partnerships are equally important 
in building a balanced regional workforce attuned 
to its own best interests and needs. 

To that end, the next step is to grow the KG to 
reflect regional industrial and governmental 
programs extending well beyond internships and 
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CC articulation agreements 
by program of study
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apprenticeships that serve to reinforce regional 
workforce development. This partnership data 
already exists and, when incorporated, should be 
instrumental in further identifying both gaps and 
opportunities to help build industrial and govern-
mental partnerships. Such vital partnerships will 
serve to grow a vibrant and diversified workforce 
that truly supports the regional culture. 
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The digital revolution arose from the discovery 
that problems and solutions could be modeled 
digitally (i.e., in terms of ones and zeros) and from 
mass production of the transistors required to 
compute solutions to digital problems at expo-
nentially greater speed and scale. But computer 
software or hardware created to solve one problem 
must be reengineered by people to solve another 
problem. Unlike the human brain, which has gen-
eral problem-solving ability, computer hardware 
has only narrow problem-solving ability. 

Human-centric functional modeling (HCFM) is a 
way to allow computers to solve general problems.2 
HCFM represents problems via constructs called 
“functional state spaces.” These hypothetical 
functional state spaces are special types of KGs 
used to model systems. Functional state spaces 
are required for GCI and are of unprecedented 
importance if, as predicted, GCI can exponentially 
increase our capacity to understand systems.3  

For example, GCI has the potential to automati-
cally reapply existing solutions to an exponentially 
greater number of different problems without any 
additional programming.4 Furthermore, the expo-
nential increase in general problem-solving ability 
predicted to be possible through GCI applies to 
every process from design to recycling for every 
product or service that can be modeled with 
functional state spaces. 

Taken a step further, GCI might be required to 
solve several key societal challenges corpora-
tions face. For example, humans can’t reliably 
discern social good — we tend to discern whatever 
matches the ideology to which our cognitive bias is 

predisposed.5 This may be why our current, non-GCI 
corporate environmental, social, and governance 
(ESG) programs have had limited success.6

Additionally, as technology advances, a phe-
nomenon called the “technology gravity well” is 
expected to cause decision making to prioritize  
the interests of an ever-decreasing minority of 
individuals and businesses at the expense of 
achieving collective social good.7 

It can take a long time for groups to understand 
when an individual is about to make (or has made) 
a decision that serves the group poorly (because of 
the sheer volume of decisions made by individuals 
within any large group and the often intractable 
number of potential interactions between those 
decisions). Looking out only for oneself is much 
easier, and those doing so might see benefit 
quickly.

The digital revolution has likely driven the single greatest transformation in the history 
of human civilization, but it might pale in comparison to the next great transformation: 
human-centric knowledge graphs (KGs) and functional computing approaches like gen-
eral collective intelligence (GCI) that leverage such graphs.1 
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Therefore, any force that acts to continually 
centralize decision making to an ever-decreasing 
minority of individuals and businesses would be 
expected to work to serve the interests of that 
minority far faster than collectively optimal 
choices can be understood and made by any group: 
a technology gravity well. 

Some potential impacts of GCI (and therefore 
impacts of using HCFM to define KGs that are 
functional state spaces as required by GCI) rele-
vant to this issue of Amplify on knowledge graphs 
are summarized in Table 1.

M O V I N G  T O  I N D U S T R Y  5 . 0

Industry 4.0 refers to the transition to a world in 
which there is pervasive integration of manufac-
turing equipment and other physical systems with 
digital computing (cyber systems). 

Industry 5.0 is defined here as the transition to a 
world in which far greater integration is possible 
through the use of HCFM to define KGs (func-
tional state spaces) capable of providing complete 
semantic models of systems. 

Assuming that human internal representations 
of anything that can be perceived with the phys-
ical senses as well as any emotion, thought, and 
conscious awareness can be defined in terms of 
functional state spaces through HCFM, then those 
spaces can be used to represent every physical 
object that can be seen and every idea that can be 
conceived. It follows, then, that HCFM potentially 

applies to every discipline from physics and math-
ematics to biology, psychology, computer science, 
and perhaps all others.8

In the design of products and services, the use of 
GCI implies the ability to explore a vastly larger 
region in the space of possible design configura-
tions. This means exploring all possible permuta-
tions of all possible components and combinations 
of components. Rather than advancing through 
known research innovations, such design processes 
would mimic nature’s process of designing living 
things: incorporating any change that increases 
the likelihood of achieving an objective, even 
when the mechanisms by which that increase was 
achieved remain unknown. 

In manufacturing, modeling physical products 
in terms of functional state spaces implies the 
ability to accommodate manufacturing processes 
too complex to be understood by any individual 
process designer in an effort to achieve competi-
tive advantage. 

In recycling, modeling products and services in 
terms of functional state spaces and the use of 
GCI might enable sustainability solutions that are 
impossible otherwise, such as radically reducing 
greenhouse gases through an exponential reduc-
tion in consumption. This could result from an 
ecosystem of GCI-based products that cooperate 
to become more durable, reusable, and recyclable 
than could be accommodated by any business 
model today.

A  P E E K  I N T O  T H E  F U T U R E

It might seem like HCFM and GCI could be used to 
improve any product or service. However, research 
suggests that managers can’t lead teams effec-
tively when those managers are too smart (i.e., an 
IQ that is 1.2 standard deviations or higher than 
that of the group).9 

So what might be the consequence of deploying a 
GCI with an IQ billions of points greater than that 
of the smartest human who has ever lived?10 One 
possible outcome is a technology design process 
in which human contributions come together too 
quickly and in ways too complex for any human to 
understand, resulting in technology so complex it 
can’t be reliably distinguishable from magic. 
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KG-RELATED TOPIC PREDICTED IMPACT OF HCFM AND/OR GCI ON TOPIC 

What are some real-world/novel applications  
of KGs? 

The most novel potential applications of KGs are as functional state spaces 
that HCFM predicts might be used to create an artificial general intelligence 
(AGI) or a GCI. 

How are KG applications being used across 
industries? 

GCI applications that leverage functional state spaces as KGs have been 
conceptualized in a wide variety of industries from healthcare to sustainable 
housing development, but since GCI requires large-scale collaboration, which 
in turn requires educating more broadly about this unknown concept, these 
applications haven’t yet been deployed. 

What are the business benefits of KGs? What are  
the challenges/limitations? 

Together with GCI, KGs can potentially be used by groups of cooperating 
businesses to gain unbeatable competitive advantage over any business that 
competes as an individual entity. 

How can business leaders benefit from KGs?  Business leaders are predicted to benefit from functional state spaces as KGs 
when a critical mass of mindshare has been created about these concepts for 
sufficient participation in a project to implement GCI.  

What is an example KG use case? One example is about achieving a radical increase in sustainable economic 
development through reliable patterns for doing so.1 One such pattern is 
combining sustainable economic development projects into networks of 
cooperation that increase their value to the point that such development 
becomes sustainably self-funding. This would allow social impact to be 
achieved at the scale at which it is needed globally, rather than at the limited 
scale at which funding is available, creating the possibility of an exponential 
increase in capacity to fund social impact. 

What are some novel research findings pertaining 
to KGs? 

The most novel research finding pertaining to KGs as functional state spaces 
used to represent the behavior of systems within HCFM is that GCI might 
exponentially increase our ability to solve any problem related to under-
standing or applying a system. 

How do KGs differ from current data management 
technologies? 

The technology gravity well effect is predicted to cause the centralization of 
data management and other processes into the control of the owners of that 
technology, wherever that centralization is in their interests, resulting in the 
inability to improve collective outcomes of data management wherever doing 
so is inconsistent with the interests of those owners. Combined with GCI, KGs 
may be able to prevent this centralization. 

How can KGs be successfully integrated with 
artificial intelligence (AI)/machine learning (ML)?  

KGs can potentially be successfully integrated with AI/ML through modeling 
AI/ML solutions as paths through a KG that has been defined through HCFM 
and which is therefore also a functional state space.2 

What are some examples of state-of-the-art  
KG-enabled AI? 

Every existing AI algorithm and every possible AI algorithm can potentially be 
represented as a path through a single, universal KG. Modeling problems in 
terms of the lack of a path from one point in this KG to another creates the 
possibility of enabling any AI algorithm to reuse any other AI algorithm. Until 
the implementation of a KG with the complete properties of a functional 
state space, this can only be approximated. 

What are the implications of KGs on AI systems? Modeling AI/ML solutions as paths through a KG, together with GCI, can 
potentially drive an exponential increase in capacity to reuse AI/ML solutions 
without reprogramming or retraining.3 

How can KGs address the issue of explainable AI? As KGs, functional state spaces constitute a revolution in explainable AI 
because they can represent all possible models of type 1 (intuitive) reasoning 
that might be implemented by AI/ML to solve uncomputable problems 
through pattern detection while also representing all possible models of type 
2 (rational methodical) reasoning that might be implemented by procedural 
programs to solve computable problems. 

What are some KG applications for social good? As KGs, functional state spaces might drive an exponential increase in impact 
on social good (see examples KG use case above in this table), which would be 
revolutionary.4 

What role do KGs play in gaining deeper insight 
into the COVID-19 crisis? 

As KGs, functional state spaces potentially make it possible to understand 
that there are deep-seated cognitive biases that are a fundamental part of 
virtually all humans,5 and that without GCI, these biases make it impossible 
for groups to gain deeper insight into the COVID-19 crisis. With GCI, this 
insight might reliably be gained. 

What is the role of KGs in complexity science? Functional state spaces suggest an objective definition of complexity.  

How can the quality of KGs be assessed and 
validated? 

All implementations of open functional state spaces have common 
properties. Therefore, any tools capable of assessing and validating the 
quality of one functional state space might be reused to assess and validate 
the quality of other functional state spaces. However, such tools have only 
been explored at a conceptual level and remain to be implemented. 

What are the trust, privacy, and security 
considerations for KGs? 

KGs must be accessed through a decentralized system of decision making to 
avoid issues that result from the technology gravity well naturally removing 
trust, privacy, and security. 

1 Williams, Andy E. “Breaking Through the Barriers Between Centralized Collec�ve Intelligence and Decentralized General Collec�ve Intelligence to Achieve    
Transforma�ve Social Impact.” International Journal of Society Systems Science, forthcoming 2022. 

2 Williams, Andy E. “Defining and Quan�fying an Exponen�al Increase in General Problem-Solving Ability Within Groups.” AfricArXiv, 22 February 2022.  
3 Williams (see 2). 
4 Williams, Andy E. “Increasing the Societal Impact of Science, Technology, Engineering, and Math with General Collec�ve Intelligence.” AfricArXiv, 2 March 2022. 
5 Williams, Andy E. “Innate Collec�ve Intelligence and the Collec�ve Social Brain Hypothesis.” PsyArXiv, 26 May 2022. 

Table 1. The predicted impacts of using HCFM to define KGs that are functional state spaces  
as required by GCI
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GCI-based technology will likely also be different 
in how it’s used. Rather than having to learn to 
operate such technology, the technology might 
learn what we are trying to do and self-assemble 
from available components to accomplish our 
goals to the optimal degree, removing the need  
for any specialized tools or expertise. 

Although hard to envisage, this implies GCI might 
make individuals who are novices much more 
effective at specialist tasks like product design 
than the most gifted designers today and allow 
people with no medical training to perform sur-
geries and other medical interventions that the 
most gifted of today’s doctors would consider 
miraculous.

Just like the revolutionary digital technology that 
came before it, through simple geometric argu-
ments in conceptual space, the case can be made 
that GCI is the most important technological 
development in the history of human civilization 
with regard to problems that can be modeled in 
terms of functional state spaces, which potentially 
includes all problems. 

GCI might be as profoundly important as this 
(seemingly preposterous) claim, or it might prove 
impossible. However, observation of natural sys-
tems such as our own human organism suggests 
that adaptive problem-solving systems based on 
functional state spaces such as GCI are a real pos-
sibility. Nature has already created such solutions, 
and they have proven successful for hundreds of 
millions of years.

E S C A P I N G  T H E 
T E C H N O L O G Y  
G R A V I T Y  W E L L

The emergence of GCI isn’t a certainty. An analysis 
based on HCFM predicts that any civilization might 
go one of two ways. The first is to develop a mech-
anism for individual optimization, a necessarily 
centralized process that eventually might expo-
nentially increase our ability to solve problems for 
companies or other individual entities. The second 
is to develop a mechanism for collective optimi-
zation, a necessarily decentralized and distrib-
uted process that eventually might exponentially 
increase the ability to solve problems for all. 

The first option implies a civilization that will fall 
deeper into the technology gravity well toward  
the emergence of AGI, which is predicted to act  
as an exponentially more powerful system of 
individual optimization that makes a system of 
collective optimization like GCI impossible.11 

Since this fall into the technology gravity well is 
likely to be accompanied by the removal of protec-
tions against abuse while radically increasing the 
ability for corporations, governments, and other 
entities to be abusive, this suggests unprece-
dented levels of abuse and control on the part  
of the company that falls to the bottom of the  
well first. 

This would mean a negative outcome for every 
business except the one at the top of the hier-
archy, which would be expected to gain all possible 
technological advantages to control more revenue 
than any company that has ever existed. 

The other option would be using GCI to escape the 
technology gravity well, resulting in a positive out-
come for the majority of businesses (except those 
that decide to fight this transition rather than 
embrace the far larger opportunities expected 
to come with it). Because GCI creates potentially 
unbeatable competitive advantage, companies 
that fight GCI would most likely go extinct. 

Functional state space is involved in both transi-
tions (to AGI or GCI). Even though functional state 
spaces and GCI have not yet been fully imple-
mented, if it’s true that they have the greatest 
potential for impact on all technologies known 
today, then it’s important they are on every 
business leader’s radar.

B E C A U S E 
G C I  C R E A T E S 
P O T E N T I A L LY 
U N B E A TA B L E 
C O M P E T I T I V E 
A D V A N TA G E , 
C O M P A N I E S  T H A T 
F I G H T  G C I  W O U L D 
M O S T  L I K E LY  
G O  E X T I N C T 
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Unlike today’s databases, which can only store a 
limited subset of information, functional state 
space has the potential to model any system 
and all possible behaviors of that system, poten-
tially storing all possible information about a 
given system. Thus, a functional state space is a 
complete semantic model that enables meaning 
(understanding) rather than just information to  
be communicated at exponentially greater speed 
and scale. 

But even without any understanding of func-
tional state space, it is possible to use patterns 
of collectively intelligent cooperation to reliably 
achieve a radical increase in the ability to solve 
any problem.12 These patterns leverage a set of 
well-defined and generalizable relationships 
between businesses, their products or services, 
and other entities, without the need to recognize 
these relationships as existing in functional state 
space at all (though representing those relation-
ships this way might allow them to be further 
generalized to achieve more impact).

The most stunning claim of GCI is that for certain 
categories of “wicked” problems (like achieving 
social good in difficult cases), the more we’re 
fixated on solving these problems, the less we 
are able to do so. Problems too complex to be 
solved directly through any choices that can be 
deduced by any individual must be solved indi-
rectly through development of a more powerful 
distributed problem-solving system (such as GCI) 
that is capable of discovering far more complex 
choices that might be capable of radically better 

outcomes. All problem-solving methods that are 
not orchestrated by GCI can be considered direct 
(in that choices are generated by individuals) and 
centralized (in that these individuals can’t be 
prevented from prioritizing their own interests). 
This is problematic because no direct approach 
can reliably solve wicked problems (those currently 
considered not solvable).13 This is supported by the 
fact that no approach has reliably created durable 
solutions to these problems at any time in the 
history of human civilization. That means focusing 
energy toward any efforts other than GCI is the 
best way to not solve the world’s most challenging 
problems.

This is counterintuitive, since it would mean 
people who want to solve complex problems of 
social good might be the ones ensuring that the 
most pressing problems of social good cannot be 
solved. That is, when these individuals believe they 
know the solution, they don’t ensure that they or 
someone else diligently explores whether or not 
it is feasible to achieve an exponential increase in 
impact on social good through modeling problems 
and solutions in terms of functional state spaces/
knowledge graphs together with the use of GCI. In 
other words, their caring ensures those problems 
can’t be solved. 

Opposition from such well-meaning individuals is 
thus an important consideration when attempting 
to launch any GCI-based initiative if it is true that 
people interested in social good are predisposed 
to having cognitive biases toward type 1 reasoning 
(intuitive), preventing them from asking whether or 
not disruptive new solutions like GCI are needed. 

Similarly, the institutions we rely on for coordi-
nating social good globally use intuitive reasoning, 
making it impossible for them to choose interven-
tions like GCI that are not similar to patterns of 
interventions in the past. Thus, any plan to achieve 
a radical impact on social good must consider 
working outside such institutions. 

These innate cognitive biases are also an impor-
tant factor to consider if, in addition, the type 
2 reasoning (rational) that allows individuals to 
assess radically different solutions is typically 
not effective at building the mindshare required 
to build the consortia and attract the resources 
necessary to implement such an idea. 

A M P L I F Y
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Any implementation of GCI might bridge these 
two reasoning types when it becomes available, 
but implementing GCI is the precise problem 
we’re trying to solve. The only solution might lie 
in understanding how nature has evolved complex 
adaptive systems in an iterative way, so that GCI 
could be implemented incrementally to bridge 
these reasoning types while enabling the imple-
mentation of a larger subset of GCI functionality.

GCI in turn requires implementing KGs that meet 
the requirements of functional state spaces, a 
problem that hasn’t yet been solved. By informing 
a variety of stakeholders (especially mathemati-
cians, physicists, computer scientists, and others 
who study constructs with similar features) about 
how the combination of GCI and functional state 
spaces might radically increase our ability to solve 
every problem in general, it might be possible to 
inspire a collaborative effort to solve this problem 
as well.
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As discussed in our Amplify article last year, 
several key factors drive the success or failure 
of an ML project.1 Having access to quality data 
in sufficient quantity is critical, but this aspect 
is commonly overlooked/underestimated by the 
decision makers leading these endeavors. Such 
misfocus is due to the significant hype around ML 
algorithms. The press (and technical literature) 
invariably present notable achievements of new, 
sophisticated algorithms without describing the 
data that powers the algorithms to allow them 
to reach unprecedented levels of performance. 
Consequently, for most companies wanting to 
venture into the world of AI, this misplaced focus 
means that building a team of talented individuals 
to work on developing fancy new algorithms for 
solving unique business problems will be costly 
and unlikely to render a positive ROI.

A more effective and productive option is to focus 
on formulating the problem correctly, building 
the appropriate infrastructure that allows you to 
gather informative and unbiased data, and using 
state-of-the-art algorithms. 

Historically, the default option for storing and 
retrieving data has been relational databases, 
which represent data in a tabular format. Recently, 
however, many companies have begun migrating  
to knowledge graphs (KGs), an alternative solution 
for representing and querying data. 

The good news in this shift? Building a graph is as 
easy as connecting dots with lines.

G R A P H S  I N  A  N U T S H E L L

The geometric nature of graphs makes them 
intuitively accessible. In their simplest form,  
graph theory describes them as “networks of  
dots and lines”2 — meaning they can be intuitively 
represented with drawings. Most of us have drawn 
a graph at least once in our lives. Who among us 
has never written ideas on a whiteboard or piece 
of paper and then connected them together (if 
you haven’t, you’ve probably at least watched TV 
detectives do that to catch a criminal)?

Leaving behind the formalities and strict language 
of graph theory, a graph is composed of nodes 
(dots) and relationships (lines) that connect them. 
Practically speaking, nodes represent entities: 
things or concepts that can be described by a  
set of properties.

Let’s jump right in with a simple example of a 
labeled graph, the most common type. Figure 1 
shows various entities in the context of an organ-
izational diagram. Employees, managers, and the 
company are shown as circles (nodes).

In recent years, closely related terms “artificial intelligence” (AI) and “machine learning” 
(ML) have become staples of corporate jargon. As management consultants, we have 
noticed that many customers have an incorrect or incomplete understanding of these 
buzzwords, including when and how to apply the concepts and recognizing their 
inherent limitations. Such behavior is an expected consequence of the accelerating 
adoption and integration of data-driven approaches to business processes.
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Each node contains one or more properties. For 
example, the bottom-right node has an Employee 
label, with Paul and Male as properties that 
describe it. Natalie is also an Employee, as well 
as a Manager and a Female. Note that nodes can 
have multiple labels. Relationships between nodes 
are named and directed, meaning that they have a 
start node and an end node. Eva, an Employee, has 
Natalie as her Manager. Therefore, a REPORTS_TO 
relationship links them to each other. Paul and Eva 
work together as a binome on projects. Thus, two 
IS_PAIRED_WITH relationships connect them (indi-
cated by a double arrow). Finally, relationships can 
also have properties.

Figure 2 shows how the organization graph might 
be structured if defined in a relational database. 
One can appreciate how information is duplicated 

and more difficult to visualize when compared to a 
graph representation.

G R A P H S  I N  D A I LY  L I F E

Given their generality, graphs (or networks) have a 
variety of applications, ranging from modeling the 
progression of Alzheimer’s disease to finding the 
optimal route between two cities. Table 1 contains 
a short selection of some of the most well-known 
applications.3

Recommendation systems, an example in Table 
1, are a frequently encountered application of 
graphs. Such systems track user behavior (e.g., 
products the user bought or films the user 
watched) to predict new content the user might  
be interested in. From a graph perspective, this 
means inferring relationships of the type “X might 
be interested in Y,” where X is a user (e.g., Jane 
Doe), and Y is a piece of content (e.g., Star Wars). 
To do so, the recommendation system looks at 
similarities between users and between pieces of 
content, measured in terms of shared neighbors 
(i.e., nodes connected to a given node) and rela-
tionship types. For instance, if users Alice and Bob 
have similar behaviors (e.g., they both watched 
The Matrix, Dark City, and The Crow), and Alice 
watched Equilibrium (but Bob did not), then the 
engine should infer that Bob might want to watch 
Equilibrium. Following the same logic, if Equilibrium 
is in the same genre/has similar aesthetics to The 
Matrix/Dark City/The Crow, and Alice watched The 
Matrix/Dark City/The Crow (but not Equilibrium), the 
system should infer that Alice might want to watch 
Equilibrium. 

Name: Tech Name: Natalie
Sex: Female

Company Manager

Employee Name: Eva
Sex: Female

Name: Paul
Sex: Male

Employee

Employee

EMPLOYED_BY

IS_PAIRED_WITH

Figure 1. Information about company employees and departments, represented in KG format 
(source: Arthur D. Little)

Name (PK) Sex
Natalie Female
Paul Male
Eva Female
Tech -

Name (FK) Role
Tech Company
Natalie Manager
Eva Employee
Paul Employee

Name (FK) Relationship Object
Natalie PART_OF Tech
Paul REPORTS_TO Natalie
Eva REPORTS_TO Natalie
Paul IS_PAIRED_WITH Eva
Eva IS_PAIRED_WITH Paul

Figure 2. Organizational diagram (equivalent 
to Figure 1) represented through a relational 
database containing three tables — top-left table 
contains the name of entities and their properties; 
top-right table contains the role of each entity; 
bottom-right table contains how employees are 
related to each other (source: Arthur D. Little)

4 2

A M P L I F Y

V O L .  3 5 ,  N O .  7



A S S E S S I N G  S A F E T Y 
T H R O U G H  G R A P H S

As graphs gain in popularity, novel applications  
in traditional business settings are more likely  
to come up. Thus, it is crucial to make graphs 
accessible and part of the standard toolset for 
AI practitioners. In the remainder of this article, 
we show how we’ve used graphs to power a rec-
ommendation system that supports independent 
safety assessments (ISAs) of safety-critical 
systems.

In highly regulated industries, safety is always at 
the top of the agenda. Industries like aerospace, 
railway, and nuclear have had dark track records 
when it comes to in-service failures, and these 
failures often lead to significant injuries and/or 
loss of life. The complexity and cost of the sys-
tems, combined with their notoriously long devel-
opment cycles, make them error-prone, so even 
small errors can have big consequences. To help 
mitigate these risks, NASA developed a method-
ology called “systems engineering,” which has 
been widely adopted:

 Systems engineering … focuses on defining customer 
needs and required functionality early in the devel-
opment cycle, documenting requirements, and then 
proceeding with design synthesis and system validation 
…. Systems engineering considers both the business and 
the technical needs of all customers with the goal of 
providing a quality product that meets the user needs.4

When applied early on and at the right level, 
systems engineering can significantly limit cost 
overruns by reducing the odds of making ill-formed 
decisions throughout development. At each stage 
of this iterative methodology, commonly repre-
sented as a V-shaped lifecycle (see Figure 3), key 
artifacts are systematically generated to ensure 
traceability, design rationale, documentation, and 
verification.

Regulatory bodies make ISAs mandatory, with the 
intention to inspect and review internal processes 
(e.g., variations of the systems engineering meth-
odology) and the outputs of those processes (e.g., 
system and software specification, safety analysis, 
verification activities, and testing evidence). 

In official terms, an ISA is defined as “the forma-
tion of a judgment, separate and independent 

NETWORK TYPE NODES RELATIONSHIPS APPLICATIONS 

Social networks 
(e.g., Facebook) 

People X is a friend of Y Finding the most efficient way of 
propagating information through 
the network via the people who 
are most strongly connected  
to the rest of the network (e.g., 
celebrities, experts, community 
leaders, politicians) 

Transportation 
networks  
(e.g., street 
networks) 

Locations X and Y are directly 
connected, via a road, 
airway, waterway, etc. 

Finding the shortest/quickest/ 
least expensive route between 
two or more locations; optimizing 
the placement of a given resource, 
in terms of accessibility     

World Wide Web Web pages X includes a link to Y Improving Web search results by 
promoting results/sites that have 
the most incoming hyperlinks 
(e.g., the PageRank algorithm) 

Recommendation 
systems 

People, 
products 

X bought/viewed Y Generating product recommen-
dations, based on the users’ 
purchase/viewing history (e.g., 
“Customers who viewed this item 
also viewed” feature on Amazon, 
or the “More like this” feature on 
Netflix)  

 
Table 1. Prominent, real-world applications of graphs (source: Arthur D. Little)
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from any system design, and development, that 
the safety requirements for the system are appro-
priate … and that the system satisfies those safety 
requirements.”5 The ISA therefore targets safe-
ty-critical systems (software and/or hardware)  
by auditing the documentation (i.e., artifacts),  
with the aim of assessing safety, robustness,  
and completeness.

L I M I T A T I O N S

The inherent complexity of the systems targeted 
by ISAs means the development and safety demon-
stration usually relies on a large amount of doc-
umentation. The entirety of the documentation 
supplied can rarely be reviewed in the context of 
an ISA audit. Therefore, auditors — usually domain 
experts — manually perform their assessment by 
randomly sampling the artifacts to gain sufficient 
confidence in their quality.  

Depending on the initial outcome, the auditor 
might continue to sample the artifacts or follow 
his or her experience/intuition and target some 
specific ones. The inherent nature of ISAs, and the 
context in which an ISA is performed, mean that 
total confidence cannot be realistically expected 
as an outcome. A residual safety risk always 
remains present. In Arthur D. Little’s (ADL’s)  
Digital Problem Solving (DPS) practice, we have 
used KGs and AI to reduce this residual risk and 

demonstrate how the technology successfully 
augments traditional ISA approaches.

U S E  C A S E :  V E R T I C A L 
T R A C E A B I L I T Y  A N A LY S I S

DPS partnered with ADL’s Risk practice to run a 
proof-of-concept in parallel to a live ISA audit, 
aimed at a railway signaling system undergoing 
a major overhaul. The use case was limited to a 
single aspect of the auditing process: ensuring  
the vertical traceability between software require-
ment specifications (SRSs) and software compo-
nent specifications (SCSs).

Vertical traceability analysis aims to analyze 
the various levels of specification of a system. 
Specifications, depending at which level they  
sit, can be vague and general (e.g., a customer 
requirement) or specific and detailed (e.g., a 
specific behavior that a component must follow). 
Figure 4 provides a simple specification tree for  
a generic software system.

The vertical traceability between two layers of 
specifications is ensured if all three key criteria are 
met: correctness, completeness, and acceptable 
refinement (see Table 2). Note that these criteria 
must be validated both ways — down and up the 
specification tree. 

Validation 
(code not executed)

TestDesign

Preliminary 
design

Conceptual 
design Critical design Integration & test Release

Requirements 
analysis

System design

Architectural 
design

Module design

Unit acceptance 
testing

System testing

Integration testing

Unit testingCoding

Verification 
(code executed)

System
subsystem

Software

Figure 3. A systems engineering V-model that represents a systems development lifecycle — on the left 
side and starting at the top, customer requirements are captured and the design is defined with more and 
more granularity as we progress down the V; on the right side, going up the V, the system is tested at a 
component, subsystem, and system level to ensure the as-built system is compliant with the as-designed 
system while meeting the initial customer requirements (source: Arthur D. Little)
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Software

Configure system Monitor system Interacts with userChange system

Poll for sensor 
event

Read sensor Store sensor 
reading

Convert signal
to reading

General

Specific

Figure 4. Generic specification tree for a software system (source: Arthur D. Little)

CRITERION DEFINITION 

Correctness Not contradicting the functional specification 
Completeness Fully implementing the functional behavior of the upper-level specification 
Acceptable 
refinement 

(1) No additional behavior at the lower-level specification that cannot be 
justified as a refinement of the higher-level specification; and (2) an allowed 
(noncontradictory) elaboration, aligned with the level of abstraction 
expected for the particular specification level 

 
Table 2. Vertical traceability criteria (source: Arthur D. Little)
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The objective was to accurately predict whether or 
not the vertical traceability analysis of a given SRS 
would be flagged as a PASS or FAIL by a human ISA 
auditor. A raised FAIL would mean the ISA auditor 
believes there’s a potential safety issue with a 
given SRS. The artifacts specific to the live case 
were provided by the team that had recently com-
pleted the ISA. They also provided the outcome 
of their vertical traceability analysis: whether 
each SRS was a PASS or FAIL. Out of the 199 SRSs 
provided, the ISA team flagged 46 as FAIL and 153 
as PASS. 

M E T H O D O L O G Y

Predicting a binary outcome (PASS or FAIL) for each 
specification was the key objective of this use 
case. Framing the problem in this manner made it 
a great candidate for supervised ML. In ML jargon, 
this would be referred to as a “classification-type” 
problem. Readers with some exposure to ML will 
recognize the approach shown in Figure 5, used to 
develop the model for the task at hand, going from 
raw data to ISA-specific insights. It shouldn’t come 
as a surprise that Step 2, graphical representation, 
was added to the typical data engineering and 
modeling pipeline. Let’s now dive into each step  
of the methodology.

The sections below present an overview of each 
step while expanding on steps where the graph 
plays a differentiating part.

A R T I F A C T  I N G E S T I O N  &  E X T R A C T I O N

As the reader might expect, the documentation 
received was not stored in a well-structured, 
queryable database. Instead, it comprised a 
blend of PDFs, Word documents, spreadsheets, 

embedded images, and embedded formulas. There 
were 20,000 individual files. Although this is not 
uncommon, additional effort was required before 
any modeling could begin: data had to be hosted, 
staged, and processed. With the help of natural 
language processing (NLP) and domain expertise, 
the processing was done programmatically by 
only extracting data relevant to the use case. This 
included all SRSs and SCSs in addition to related 
specifications, their descriptions, their context, 
and how they related to each other.

G R A P H I C A L  R E P R E S E N T A T I O N

The next step is to define an ontology specific 
to the use case. Ontologies are data models that 
define what type of entities exist in the domain of 
interest, the set of properties that describe them, 
and the relationships that link them.6 

Creating an ontology is usually time-consuming 
and requires in-depth domain expertise. In this 
case, the ontology was implicitly defined and  
documented through the supplier’s artifacts  
and development process, which closely follows 
the systems engineering standard approach/
terminology. Figure 6 shows a snapshot of the 
ontology employed in the use case. 

Specifications such as SRS and SCS represent enti-
ties. The properties attached include their unique 
identifier (UID) description and UID description 
label. The label refers to the vertical traceability 
analysis outcome provided by the ISA team (PASS 
or FAIL). Other entities are also defined to provide 
the wider context in which the specifications sit. 
Using the ontology as a template, data previously 
ingested and extracted was used to construct  
a graph representing the use case domain.  

01

Artifact ingestion 
& extraction
Extraction of relevant 
textual information 
from the artifacts

02

Graphical 
representation
Reconstruction of 
relationships between 
artifacts themselves 
and their entities

03

Feature engineering
Transformation and 
manipulation of raw data 
into features that have 
a high predictive power

04

Model development
Iterative process to 
develop and train an 
ML model to perform 
a given task  

Figure 5. Methodology followed during the use case: from the original artifacts to predicting the 
outcome of a vertical traceability analysis (source: Arthur D. Little)
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Figure 7 shows a portion of that graph, with only 
nodes and relationships related to SRSs (blue cir-
cles) and SCSs (orange circles) displayed.

By representing the problem as a graph, patterns 
and clusters quickly appear. For example, there 
seems to be an agglomeration of interconnected 
SRSs and SCSs in the middle of Figure 7. However, a 
high number of satellite groups disconnected from 
the central aggregate are also present around the 
edge of the graph. Adding more entities and rela-
tionships to the graph helped reveal insights into 

the interdependencies between entities, essen-
tially revealing the inner workings of the audited 
system.

F E A T U R E  E N G I N E E R I N G  
&  M O D E L  D E V E L O P M E N T

Feature engineering is one of the most critical 
steps of the process because it’s responsible for 
providing the model with informative features 
that help it accurately and precisely perform the 
task. The traditional way to approach the problem 

UID
description

label

UID
description

SRS

SCS

UID
description

UID
description

UID
description

SCTS

SATISFIED_BY

VERIFIED_BY

SATISFIED_BY

SATISFIES

CRS SSS

SATISFIES

Figure 6. Partial ontology used for the use case, where specifications are entities, and relationships are 
based on where along the specification tree they sit; CRS, SSS, and SCTS are other entities linked to the 
specifications, namely SRS and SCS; they provide information on the wider context around which both 
entities sit (source: Arthur D. Little)

SRS-0001
SCS-0098

SRS-0141

SRS-0059SRS-00101

SCS-0108

SCS-0006

SCS-0022

SRS-0059

SRS
SCS

Figure 7. Sub-portion of the complete graph build to model the use case; only SRSs (blue nodes) and 
SCSs (orange nodes) are represented (source: Arthur D. Little)
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would be to try to generate semantic features by 
assessing whether Table 2 criteria are respected, 
as an ISA auditor would do. These features are 
referred to as text-based features in Table 3.

Representing the problem as a graph lets us 
instead extract features that describe the intrinsic 
architecture and interdependency of the data. As 
shown in Table 3, such features were generated 
using standard graph algorithms, namely com-
munity and centrality measures.7 A well-known 
community measurement algorithm is called 
PageRank, named after Larry Page, cofounder 
of Google. This algorithm lets the Google search 
engine rank Web pages that are returned to the 
user by the search engine.8

The model development process, which also incor-
porates feature engineering, follows the iterative 
process shown in Figure 8. Most of the time, fea-
tures are removed, tweaked, or created based on 
the performance achieved and desired. The out-
come is a trained, tested ML model that classifies 
the vertical traceablity analysis outcome of SRSs, 
as an ISA auditor would (PASS or FAIL).

R E S U LT S

The model’s performance was evaluated using 
standard metrics: precision and recall. Precision 
is the model’s accuracy at flagging FAILED SRSs; 
recall is the model’s accuracy at recognizing true 
FAILED SRSs. Combining the graph-based features 
with the text-based features (i.e., features solely 
inspired by the vertical traceability criteria from 
Table 2) gave the best performing model, boosting 
both precision and recall by approximately 10% in 
comparison to using only text-based predictors. 

Six of 14 additional SRSs were found to be incor-
rectly flagged by the ISA team: four being wrongly 
flagged as FAIL and two being wrongly flagged 
as PASS. Such findings demonstrate the model’s 
ability to uncover safety failures not immediately 
obvious to the ISA team. These results show how 
powerful graphs can be, when used to represent 
highly interconnected data, and how to extract 
informative features from them. Additional 
methods, such as graph embeddings, can also 
be used to derive features from the graph’s 
architecture.9

During a live ISA, both the graph and the model 
can be directly employed by the auditor to help 
him or her effectively perform the audit. First, 
the ML model would provide an ISA auditor with 
a prioritized list of potential safety issues. The 
highest-ranked issues would have the highest 
probability (as assessed by the model) of being 
actual FAILS and should be quickly investigated by 
the auditor. The model is not replacing the auditor; 
it provides a non-random, principled way to sample 
artifacts for analysis, making the best use of the 
auditor’s time on potentially safety-critical issues. 

The auditor could also interact directly with the 
graph through a user-friendly interface to explore 
the audited artifact and get additional insights. 
The visual, accessible nature of graphs makes 

FEATURE TEXT-BASED FEATURES (NLP) GRAPH-BASED FEATURES 

Description Use-case-specific and driven by how  
the ISA is typically performed: 
• Entity and expression similarity 
• Complexity measures 
• Keyword presence 

• Community measure algorithms, used 
to evaluate how groups of nodes are 
clustered or partitioned 

• Centrality measure algorithms, used to 
determine the importance of distinct 
nodes in a network 

 
Table 3. Main features derived from the data using NLP and graph algorithms (source: Arthur D. Little)

R E P R E S E N T I N G 
T H E  P R O B L E M  A S 
A  G R A P H  L E T S 
U S  I N S T E A D 
E X T R A C T  F E A T U R E S 
T H A T  D E S C R I B E 
T H E  I N T R I N S I C 
A R C H I T E C T U R E  A N D 
I N T E R D E P E N D E N C Y 
O F  T H E  D A TA 
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them great mediums for exploration. One could 
also imagine the ML model being updated on the 
fly as the auditor progresses his or her audits, or  
by leveraging patterns uncovered by the auditor.

Finally, putting in place a good ontology meant 
that expanding the use case was easy, and the 
graph could easily be extended to accommodate 
new nodes/relationships. This also meant the data 
feeding the ML developed for the use case would 
not be affected by the graph scaling. Indeed, 
sub-portions of the graph can easily be isolated 
through simple queries, making it virtually isolated 
from the complete graph.

W H A T  T O  E X P E C T  
F R O M  G R A P H S

The world’s giant tech companies jumped on the 
“graph train” a while ago and now power some of 
the best-known tools, platforms, and services 
through graphs: the World Wide Web, social media, 
Web stores, and search engines. However, this does 
not mean companies should immediately start 
replacing all relational databases with graphs. New 
AI technologies tend to be initially seen as miracle 
solutions that will solve most problems (e.g., deep 
learning). 

When deciding whether to use only graphs, only 
relational databases, or a combination, make 
sure to ask some key questions. For example, how 
important is rapid data exploration? How crucial 
is the speed at which data can be added to, and/or 
retrieved from, the data store? If graphs still come 
out as highly viable candidates, here are a few 
advantages you can expect from using them  
in your next data-driven project.

V I S U A L I Z E  Y O U R  D A T A  T O 
U N L O C K  N E W  I N S I G H T S

Because graphs are so easy to visualize, it takes 
little effort to find all the information associ-
ated with a node and the direct/indirect relations 
that link two nodes. This property of KGs both 
simplifies data exploration and provides richer 
insights into it. The multiple dimensions of the KG 
can easily be explored by slicing it across one or 
more dimensions. In the use case, visualizing the 
SRS-SCS architecture (see Figure 6) led to a key 
hypothesis of the problem: the way specifications 
are linked and clustered together is closely related 
to the vertical traceability analysis outcome. An 
SRS connected to a failed SRS through nearby 
elements is more likely to be flagged as a FAIL.

1  Generate features
Derive NLP-based and 
graph-based features

2  Select features
Select a subset of features or 
generate new features

3  Split data
Split the data set into 

training set and test set

4  Train & test the model
Train selected model using 

training set; test trained 
model on test set

5  Evaluate trained 
model performance
Evaluate model performance 
to establish where improvements 
can be made

1 2

3

4

5

Figure 8. Iterative model development methodology followed to train and test an ML model that classifies 
the vertical traceability outcome of SRSs, as an ISA auditor would (PASS or FAIL) (source: Arthur D. Little)
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E X T R A C T  M O R E  
F R O M  Y O U R  D A T A

The inherent interdependencies hidden in your 
data can be brought to light and leveraged by run-
ning algorithms on your graph. As seen in the use 
case, they can be used to compute several metrics 
on the whole graph or a sub-portion that can help 
make sense of your connected data and their inner 
workings. These metrics can then be used as fea-
tures to power an ML model.

S T A R T  S M A L L ,  S C A L E  F A S T

You might initially decide to build a graph that 
models a small portion of your domain space. 
That’s fine. Nothing prevents you from later 
expanding it to answer new questions or because 
more data becomes available. 

Within graphs, it is easy to add a new type of node 
property or relationship. That is, the new property/
relationship can be applied to a (potentially small) 
subset of nodes. If you have many node properties 
and/or relationships that apply only locally, KGs 
will be both much smaller and faster to process 
than their corresponding relational databases. 
Multiple graphs can also be combined if they  
share or have related entities, limiting high 
rearchitecting costs and enabling you to  
quickly grow your solution.

Our parting thought: if the world’s big data is a 
mountain of dots, knowledge graphs will help you 
connect them all.

5 0
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