A Purpose-Driven Approach to Innovation for Aligning Global R&D

by Vincent Bamberger, Florent Nansé, Ben Thuriaux, Michael Kolk, and Rick Eagar,
Senior Consultants, Cutter Consortium

Innovation success for large companies in today’s business world is increasingly reliant on how well they can respond to global competition, fast-moving technology developments, and threats of disruption. Agility and dynamism can be especially challenging for large, asset-heavy businesses with long investment cycles, such as global energy, chemicals, and industrial manufacturing groups. These often have decentralized business units (BUs), which makes it difficult for the CTO to create synergies across them, maintain clear and transparent linkages between corporate strategy and BU R&D, and communicate the value of R&D externally and internally. Traditional rigid and mechanistic, process-based approaches to setting R&D strategy often fail to address these challenges. In this Executive Update, we look at a purpose-driven approach to innovation that large global companies can successfully apply.

The Challenges of Aligning R&D

The CTOs of global industrial and manufacturing groups with technology-intensive products and services will tell you that despite the undeniable importance of startups and other external innovation ecosystem partners, internal R&D still needs to be at the core of the innovation effort. External parties are usually unable to make the necessary resource investments for long-term, core R&D. Moreover, maintaining leading competencies in core technology areas is usually vital to sustaining competitive advantage. However, there are multiple challenges in the traditional way of aligning R&D strategy and program activities, including:

- **Technology mastery.** New technologies often evolve at a faster pace than can be managed internally. The potential to combine innovations from different domains accelerates the pace of change, increasing disruption threats. Thus, a rigid technology strategy can become obsolete within months.
• Business alignment. The traditional “client/provider” relationship between business and R&D, based on annual (or biannual) alignment, is no longer effective. If the logic underlying investment decisions is not transparent, it becomes difficult to understand the value created by mastering a particular technology and how it supports the high-level strategic vision, particularly as technology rapidly evolves in general. Fast and continuous alignment is needed to show where R&D should focus and what level of performance should be attained. Companies can accomplish this only by providing decision-making autonomy to support clear product/service attributes defined by BUs.

• Communicating the value of R&D. Being able to clearly articulate and communicate the value of R&D internally and externally is essential, as with any business function. With few clear links between R&D activities and strategy, articulating value is difficult across a diverse and changing portfolio.

• Legacy ways of working. Internal R&D organizations often suffer from inefficient legacy management structures, inflexible working practices, and cultures of suspicion, frequently fueled by histories of budget cuts. Overreliance on process many times leads companies to continue to work in the same ways as they have in the past — but this may not be appropriate for the present and future.

• Attracting and retaining the best performers. Talent is more mobile than ever before. The new generation of scientists and researchers increasingly value their freedom to create and express themselves and tend to place higher value on the “meaning” of their work and aligning with inspiring goals or missions.

These challenges dictate that it is increasingly difficult to use only operational, process-based approaches to prioritizing the R&D portfolio. Such approaches often result in poor resource allocation, inappropriate organizational structures, and demotivated staff.

Overcoming Challenges: The Purpose-Driven Approach

To overcome these challenges, Company X, a global energy multinational, recently redefined its R&D purpose and innovation strategy. The company had already embarked on a major initiative to strengthen its integration across various BUs by defining a common vision. The vision set out a common ambition for the group and aimed for better coordination of strategies and resources among all BUs while maintaining a strong culture of entrepreneurship and improving agility.

Defining Purpose

The first step to enabling innovation synergies at the group level of Company X began in 2016 via a new organization, which launched cross-unit transversal programs, coupled with a single, global R&D budget. However, R&D activities were still managed at the BU level, without group-wide consistency and vision.
Company X then launched a project aimed at defining its innovation purpose in a clear and compelling way and defining how it could deliver on that purpose through key assets, such as technology, human capital, and ways of working. These were designed to be consistent with each BU's R&D, which allowed the R&D teams to focus on a common goal and align their program portfolios accordingly.

Creating the Pyramid

The building process was accomplished by first establishing “purpose-driven innovation pyramids” for each BU, in which an innovation purpose was developed, including business attributes to be delivered, technology “bricks” on which the BU should focus, and ways of working to achieve the goals. Alternatives were then elaborated on for the group innovation purpose through an iterative process, taking into account BU and group strategy input, a company-wide survey, and external benchmarking. The group innovation purpose was then selected based on criteria that ensured relevance, robustness, and impact on key stakeholders.

Reaping the Benefits

As a result, Company X:

- Now communicates internally and externally with a single, clear R&D vision and identity and offers consistent, credible, sustainable, and impactful messages to its different stakeholders.

- Is assessing the impact of all its R&D programs in terms of their contributions to business attributes. The company uses this impact assessment as a key dimension for R&D program portfolio management.

- Benefits from a clear vision of the impact of its technology bricks and can refine its technology strategy accordingly. This allows for more dynamic, flexible, and agile responses to changes and disruption, while maintaining a coherent overall direction.

- Can now establish consistent governance, calling upon the technology bricks as the most granular element the R&D executive committee can monitor.

Lessons for Aligning R&D

The key to the success of Company X's approach was its use of a transparent model in the form of a four-layer pyramid to align R&D efforts with a clear, compelling narrative around an innovation purpose (see Figure 1). The model (or pyramid) links R&D activities with differentiating attributes that the company can deploy to the market, focusing its resources and investments, leveraging intangible assets, and ensuring coherence of activities. This provides structure and meaning, but at the same time allows for the flexibility, agility, and rapid, autonomous decision making required in today's business environment.
Layer 1: Innovation Purpose

At the top of the pyramid, the company needs to create an attractive and robust sense of purpose for R&D that is suitable for all stakeholders and differentiates it from competitors. This innovation purpose has to be memorable, easily sharable by all employees, and communicable in a few words. It needs to:

- **Give meaning to R&D.** Clarify the raison d’être of R&D and create coherence within the R&D department and beyond, empowering, motivating, and inspiring staff.

- **Ensure clarity and resilience.** Create a common understanding to guide autonomous decision making.

- **Facilitate communication.** Articulate a consistent message for different stakeholders (e.g., shareholders, employees, R&D team, future recruits, clients, and partners).

The relatively simple and lean output of this layer hides a delicate alignment process — each word in the purpose can eventually impact the nature of R&D. For example, positioning the R&D department as a “scientific leader” results in different choices and investments than if it were called a “solution provider.” Thus, a good “purpose” is much more than just a basic mission or set of aims; it forms the basis of an innovation narrative that both inspires and guides.
Layer 2: Business Attributes

Business attributes are the key performance areas where the R&D department aims to bring improvement to the business (e.g., lowering product cost or limiting environmental impact). These should be essential to implementing one or more axes of company strategy, on which the company is well positioned or able to position itself, and where technology-driven differentiation is possible, as shown in Figure 2.

Making the business explicitly identify the key attributes needed to support it and differentiate its position is an exercise that often goes against the natural trend of asking for improvement in multiple, often conflicting, directions. Many R&D teams have heard, “I want my R&D to provide first-class performance in differentiating our product’s environmental footprint,” and one sentence later, “I want my R&D to work to drastically decrease our product costs.” At the same time, the expected level of performance is an area where business and R&D struggle to clarify or quantify success. For example, “first-class performance on environmental footprint” might be better expressed as “decrease CO₂ emissions by 20%.”

Layer 3: Technology Bricks

Next in the innovation pyramid come the technology areas (or “bricks”) in which the company has a strong and sustainable technological advantage. They relate to differentiating product components or processes and enable improvement on one or several business attributes (see Figure 3). Selecting which technology bricks to support means choosing not to support others, which makes it particularly difficult for groups of curious and passionate researchers. Moreover, it requires deep discussions on the link between technologies and their business impact. Companies often neglect such a healthy dialogue or cover it only at very high levels. Additional complexity lies in the sizing dilemma when defining the perimeter of each brick. A brick should not be too large, as this prevents focused effort, or too limited, which can lead to a complex and unmanageable inventory of technologies.
Apple's iPod is a good illustration of this approach. It entered the MP3 player market five years after many of the early starters. This gave the company the advantage of both understanding the approaches of competitors and knowing that most of the necessary technology had already been created. Apple therefore focused on leveraging two technology bricks in its device: hard-drive technology that could store thousands of songs and a user interface that appealed to a larger portion of the consumer market. These two bricks allowed Apple to differentiate and eventually consolidate a fractured market, capture 70% of the business, and redefine what an MP3 player should be.

Layer 4: R&D Programs

The final layer of the purpose-driven model highlights the key intangible assets, know-how, and ways of working that help achieve goals. Each company relies on its own processes, organization, and culture, with these characteristics providing the raw material for its innovation purpose foundation. However, the difficulty lies in understanding complexity and drawing a clear distinction between the essential elements and those that lead to dispensable bureaucracy, self-justifying their existence. Figure 4 illustrates the results at a high level of a purpose-driven innovation exercise for a chemical company that provides plastic parts for the automotive industry.

How a company formulates its purpose can have a big impact; for example, if the purpose statement in Figure 4 had instead been “Smart integrator of solutions enabling the best compromise between product recyclability and low cost for our clients,” the content of the three layers below it would have been different, even though the basic themes of “environment” and “competitiveness” would be the same.
Bringing the Framework to Life

Applying this approach to a large organization requires close collaboration and input from management, business staff, and a range of R&D people working at the corporate and BU levels. Typically, a company will reap benefits in eight to 15 weeks, including time to allow for sufficient reflection and consultation. There are four main tasks to the purpose-driven approach to innovation: (1) assess current layers, (2) develop options, (3) choose options, and (4) prepare for implementation, which we explore more fully below.

Assess Current Layers

To ensure that the innovation purpose and business attributes are positioned to maximize competitive differentiation, information needs to be gathered on each layer of the innovation pyramid — not just for the company, but also on its major competitors and related market trends. For internal data gathering, it is helpful to use a structured format for each department to describe mission-critical business attributes supported by R&D, technology bricks to deliver these attributes, and key values. Being clear about terminology and establishing a common vocabulary are important prerequisites.

Develop Options

A balance between top-down and bottom-up approaches is needed to set out options for the innovation purpose. In general, the lower the layer, the wider the audience with which the company needs to engage. For example, at the “DNA, ways of working, competencies” (or R&D) level, a broad range of stakeholders is
required to ensure alignment between R&D and other functions. Next, senior staff can discuss the technology bricks layer because they better understand the relative contribution of one technology brick compared to that of another for the wider business. Business people who have a clear vision of high-level R&D impact on the market can then discuss the business attributes layer. Throughout the process, it is important to leverage and build on existing roadmaps and relevant linkages, rather than redesign from scratch.

Choose Options

The next step is to choose between innovation purpose options (see Figure 5). For example, different top-level innovation purpose statements will give rise to different required business attributes and, in turn, different sets of technology bricks, and so on. In this way, it is possible to create a limited number of alternative options, each comprising a combination of selections at each of the four layers. This is similar in nature to scenario planning (the example shown in Figure 4 illustrates what such an option could look like).

Companies should prepare for this phase by establishing criteria such as alignment, actionability, credibility, sustainability, uniqueness, and relevance. Broader company strategies, external benchmarks, and likely stakeholder impacts are used to inform the options selection process and are typically finalized through senior management workshops. Involvement of business executives in the process is important to challenge the business attributes layer in order to ensure full alignment with business strategy.

![Figure 5](source: Arthur D. Little.)
Prepare for Implementation

In the final step, the company develops action plans for the full range of external and internal implementation levers, from recruitment and client communication through to portfolio management and technology development. For example:

- **R&D program portfolio management.** R&D programs can now be assessed on their contributions to technology bricks and business attributes, which sets the basis for strategic reviews of the R&D portfolio and enables direct monitoring of the R&D program's impact on business performance.

- **R&D technology strategy.** Priorities and levels of investment for each technology brick can now be easily agreed on and thus suitable make/buy/partner strategies can be formulated.

- **Communication.** A coherent R&D communication program can now be set up, which will ensure consistency of messages for different audiences.

Engaging and aligning the company behind the innovation purpose is key for enabling effective structuring of processes, systems, and ways of working to implement these levers. The innovation purpose provides a backbone, a vehicle for engagement across different BUs and functions, a guide for decision making, and a sense of momentum to drive change.

Insight for the Executive

The fast-moving environment, a globalizing and digitalizing world, complex technologies, and the evolution of R&D employee expectations are driving critical changes to innovation and R&D management. There is an increasing mismatch between today's needs and the traditional, heavily process-oriented ways of managing innovation and R&D. To succeed in this new era, companies need to find platforms of stability and consistency to enable them to fully leverage their investments and resources in agile, flexible, and dynamic ways. They must also be able to communicate this sense of purpose and direction to the markets and their own staff.

The innovation purpose approach described in this Update provides a robust framework to help companies navigate uncertainty. It engages R&D in a natural transformation process, clarifies the benefits it brings to the business, and helps select the technologies required to differentiate and optimize resources, all while leveraging the R&D department’s culture and ways of working. Executives should focus on the following key elements in adopting the innovation purpose approach:

- Reinforce people’s autonomy and inspire the current “meaning-driven” generation of scientists and researchers by clarifying the fundamental purpose of R&D and innovation.

- Ensure a common understanding of what is expected from R&D to support business success by defining the key business attributes, products, and services impacted by technology.
• Focus R&D and innovation resources by selecting key differentiating technology bricks that support performance improvement of selected product or service attributes, ensuring that they are defined at the right level to promote agility and flexibility.

• Ensure resilience and acceptance by making clear the consistency and logical linkages between your company’s guiding purpose, technology-driven strategic business attributes, key technology bricks, and intangible assets.

Embracing change is critical for today’s large R&D organizations. Without a strong underlying sense of purpose, continuous change can quickly lead to complexity, uncertainty, inefficiency, and low morale. Executives should consider whether they need to take appropriate action.

About the Authors

Vincent Bamberger is a Senior Consultant with Cutter Consortium, Managing Partner at Arthur D. Little (ADL), and a member of ADL’s global board of directors. He has more than 20 years’ experience in strategy and management consulting. Mr. Bamberger focuses on strategy, innovation, organization, and operations issues. He mainly serves clients within the transportation and aerospace/defense industries. Mr. Bamberger also serves major private-equity companies around the world in due diligence and in improving the performance of portfolio companies across industries. He graduated from École Spéciale des Travaux Publics and has an MBA from the Université Paris-Dauphine. He can be reached at consulting@cutter.com.

Florent Nansé is a Senior Consultant with Cutter Consortium, a Principal at Arthur D. Little (ADL), and a member of ADL’s Technology & Innovation Management and Industrial Goods & Services practices. He has broad experience in strategic consulting in terms of anticipation (strategic plans, business planning), innovation (technology roadmapping, R&D&T processes and organization), and transformation (operational excellence, change management, PMO). Mr. Nansé is primarily active in the energy, aerospace, and manufacturing industries, where he covers a broad range of topics involving strategy, technology, and innovation. He has also gained experience in consumer goods (beauty), transport (railways), and transaction support services (due diligence). Mr. Nansé holds an engineering degree from the École Nationale Supérieure d’Arts et Métiers and a master’s degree in strategic management from HEC Paris. He can be reached at consulting@cutter.com.

Ben Thuriaux is a Senior Consultant with Cutter Consortium and Principal at Arthur D. Little (ADL). He works across ADL’s Technology & Innovation Management and Energy practices and heads up the Energy practice’s Competence Centre in Technology, Innovation, and Digitalization. Mr. Thuriaux focuses on strategy, technology, and innovation management diagnostics and adapting innovation management best practices; organizational design and change (in energy and related industries); development of technology strategy and technology roadmaps; transaction support services; project management and delivery; and benchmarking, survey design, and market intelligence. He also led ADL’s studies on innovation excellence and R&D management best practices and has authored a number of articles on innovation-related topics. Previously, Mr. Thuriaux worked at Technopolis Group, where he evaluated R&D programs and institutions, as well as innovation policy for the EU and OECD. He is a citizen of the UK, France, and Belgium. Mr. Thuriaux trained as a military
intelligence officer in the French army. He earned a BSc in physics from Manchester University, an MSc in science and technology policy from the Science Policy Research Unit, a postgraduate certification in project management (distinction) from Open University, and an MBA (Dean's Honor List) from Chicago Booth School of Business. He can be reached at consulting@cutter.com.

Michael Kolk is a Partner at Arthur D. Little (ADL), coordinates ADL’s Chemicals practice, and leads ADL’s Technology & Innovation Management practice in the Netherlands. Dr. Kolk focuses on growth and innovation performance enhancement, primarily in the chemicals, life sciences, and other technology-intensive industries. He is a regular speaker at innovation conferences. Dr. Kolk holds a master of science degree in biochemistry from the University of Amsterdam and a PhD in biophysical chemistry from Radboud University. He can be reached at consulting@cutter.com.

Rick Eagar is a Senior Consultant with Cutter Consortium’s Business Technology & Digital Transformation Strategies practice, Chief Innovation Officer at Arthur D. Little (ADL), and Global Leader of ADL’s Technology & Innovation Management practice, responsible for functional expertise in innovation, R&D, and technology management. He has over 26 years’ consulting experience in technology and innovation management and R&D strategy and organization and 10 years’ industrial experience in capital projects. Mr. Eagar focuses on R&D, organizational and process redesign, transformation of national research institutes, new growth strategies, innovation strategies, and technology strategies and benchmarking. He is the author of various publications on innovation and R&D management, is a regular speaker at international conferences, and is chair of the editorial board of ADL’s Prism. He can be reached at consulting@cutter.com.