
Agile Data Warehousing:
Incorporating Agile Principles

by Dr. Ken Collier, Senior Consultant, Cutter
Consortium; with Jim Highsmith, Director,
Cutter Agile Project Management Practice

This Executive Report targets organizations that are considering a

data warehousing project, organizations that have struggled to

implement a data warehouse, data warehouse developers, and IT

executives who are responsible for overseeing such projects. The

report recommends a leaner approach than that of traditional

methods; it advocates a working system that meets users’ business

needs rather than heavily process-centric development approaches

that emphasize documentation and contractual agreements. Armed

with the agile data warehousing approach, organizations can increase

the likelihood of a successful data warehouse implementation on time

and within budget.

Business Intelligence

Vol. 4, No. 12

http://www.cutter.com
http://www.cutter.com

About Cutter Consortium
Cutter Consortium is a truly unique IT advisory firm, comprising a group of more than
100 internationally recognized experts who have come together to offer content,
consulting, and training to our clients. These experts are committed to delivering top-
level, critical, and objective advice. They have done, and are doing, groundbreaking
work in organizations worldwide, helping companies deal with issues in the core
areas of software development and agile project management, enterprise
architecture, business technology trends and strategies, enterprise risk management,
metrics, and sourcing.

Cutter offers a different value proposition than other IT research firms: We give you
Access to the Experts. You get practitioners’ points of view, derived from hands-on
experience with the same critical issues you are facing, not the perspective of a
desk-bound analyst who can only make predictions and observations on what’s
happening in the marketplace. With Cutter Consortium, you get the best practices
and lessons learned from the world’s leading experts; experts who are implementing
these techniques at companies like yours right now.

Cutter’s clients are able to tap into its expertise in a variety of formats including
content via online advisory services and journals, mentoring, workshops, training,
and consulting. And by customizing our information products and training/
consulting services, you get the solutions you need, while staying within
your budget.

Cutter Consortium’s philosophy is that there is no single right solution for all
enterprises, or all departments within one enterprise, or even all projects within a
department. Cutter believes that the complexity of the business-technology issues
confronting corporations today demands multiple detailed perspectives from which a
company can view its opportunities and risks in order to make the right strategic and
tactical decisions. The simplistic pronouncements other analyst firms make do not
take into account the unique situation of each organization. This is another reason to
present the several sides to each issue: to enable clients to determine the course of
action that best fits their unique situation.

For more information, contact Cutter Consortium at +1 781 648 8700 or
sales@cutter.com.

Cutter Business Technology Council

Access
to the

Experts

Tom DeMarco Christine Davis Lynne Ellyn Jim Highsmith Tim Lister Ken Orr Lou Mazzucchelli Ed YourdonRob Austin

http://www.cutter.com
http://www.cutter.com
mailto:sales@cutter.com

INTRODUCTION

This Executive Report targets
organizations considering a data
warehousing project, organiza-
tions that have struggled to get a
data warehouse implemented,
data warehouse developers, and
IT executives whose job it is to
oversee such projects. By combin-
ing experience in data warehous-
ing (Dr. Ken Collier) and in agile
development practices (Jim
Highsmith), the authors have
developed a new approach to
data warehousing projects called
agile data warehousing (ADW).

While the ADW method incorpo-
rates the tried-and-tested funda-
mentals of data warehousing, it
adapts many of the successful
agile software development

practices and principles to data
warehousing techniques. The
report doesn’t suggest a revolu-
tionary change in data architec-
tures, modeling methods, or
warehousing technologies;
instead it recommends a lean
approach that emphasizes a
working system that meets users’
business needs rather than heavily
process-centric development
approaches that emphasize
documentation and contractual
agreements.

The goal of this report is to change
the ways that data warehousing
projects are implemented. Data
warehousing is difficult, and there
are many accounts of failed proj-
ects. Our experience suggests
that an ADW approach will

greatly increase the likelihood
of successful implementation of
a data warehouse on time and
within budget.

This approach has strong roots in
the work of AgileAlliance mem-
bers. We have adapted published
techniques such as Test-Driven
Development (TDD) from Cutter
Consortium Senior Consultant
Kent Beck, the Framework for
Integrated Test (FIT) from Ward
Cunningham, Agile Modeling
from Cutter Consortium Senior
Consultant Scott Ambler, and
others to the unique characteris-
tics of data warehouse develop-
ment. We have also incorporated
experience and lessons learned
from real ADW projects and the
work of other experts.

by Dr. Ken Collier, Senior Consultant, Cutter Consortium; with Jim Highsmith, Director,

Cutter Agile Project Management Practice

Agile Data Warehousing:
Incorporating Agile Principles

BUSINESS INTELLIGENCE
ADVISORY SERVICE
Executive Report, Vol. 4, No. 12

http://www.cutter.com

VOL. 4, NO. 12 www.cutter.com

22 BUSINESS INTELLIGENCE ADVISORY SERVICE

The Business Intelligence Advisory Service Executive Report is published by Cutter Consortium, 37 Broadway, Suite 1, Arlington, MA
02474-5552, USA. Client Services: Tel: +1 781 641 9876 or, within North America, +1 800 492 1650; Fax: +1 781 648 1950 or, within North America,
+1 800 888 1816; E-mail: service@cutter.com; Web site: www.cutter.com. Group Publisher: Kara Letourneau, E-mail: kletourneau@cutter.com.
Production Editor: Linda M. Dias, E-mail: ldias@cutter.com. ISSN: 1540-7403. ©2004 by Cutter Consortium. All rights reserved. Unauthorized repro-
duction in any form, including photocopying, faxing, and image scanning, is against the law. Reprints make an excellent training tool. For information
about reprints and/or back issues, call +1 781 648 8700 or e-mail service@cutter.com.

WHEN DATA WAREHOUSING
GOES BAD

Traditional data warehouse proj-
ects follow a typical waterfall
development model in which rig-
orous efforts are made to collect
complete requirements, design
comprehensive architectures and
data models, develop and popu-
late repositories, and, ultimately,
develop the analytical reports and
artifacts that users want. These
projects are complex affairs,
involving a project manager lead-
ing a team of specialists including
business analysts, data architects,
and so forth. Depending on their
magnitude, these projects gener-
ally run at least six months and
can easily exceed US $1 million.

I have worked with some talented
and experienced data warehouse
developers. I’ve also had the bene-
fit of working with savvy clients
who have reasonable expectations
and a pretty stable set of require-
ments. Sounds like a recipe for
total success, right? But often,
business users are less than ecsta-
tic about the first data warehouse
production rollout. User reactions
commonly range from “This isn’t
what I was told I would get” to “I
can see where this might be useful
with some refinement.”

Most data warehouse developers
have participated in projects
that were less than successful.

I recently worked with a midsize
company seeking to replace its
existing homegrown reporting
application with a properly archi-
tected data warehouse. At the
outset, the project seemed poised
for success and user satisfaction.
Despite the best efforts of devel-
opers, project managers, and
stakeholders, however, the proj-
ect ran over budget and past
deadline, and users were less
than thrilled with the outcome.
Because this project in particular
motivated the development of
ADW, the following offers a brief
retrospective to highlight the prin-
ciples and practices presented
later in this report.

Project Attributes

Existing application. Internally,
the company’s existing reporting
application was referred to as a
“data warehouse.” In reality,
though, the data model was a
replication of parts of the legacy
operational database. This repli-
cated database did not include
data scrubbing and was wrapped
in a significant amount of custom
Java code to produce the speci-
fied reports required. At vari-
ous times, users had requested
new custom reports, thus overbur-
dening the application with highly
specialized and seldom-used
reporting features. All the reports
could be classified as canned

reports. No advanced analytical
capabilities were provided.

Project motivation. Because the
existing “data warehouse” was
not architected according to data
warehousing best practices, it had
reached the practical limits of
maintainability and scalability
needed to continue meeting user
requirements. Additionally, with
the new billing system coming
online, it was evident that the
existing system could not easily
be adapted to accommodate the
new data. Therefore, at the execu-
tive level, there was strong sup-
port for a properly designed data
warehouse.

External drivers. A sales team
from a leading worldwide vendor
of data warehousing and business
intelligence (BI) software initially
envisioned the data warehousing
project. Providing guidance and
pre-sales support, the sales team
helped project sponsors under-
stand the value of eliciting the
help of experienced BI consul-
tants with knowledge of industry
best practices. But as with many
sales efforts, initial estimates of
project scope, cost, and schedule
were too ambitious.

Development team. The devel-
opment team comprised exclu-
sively external data warehousing
consultants. Because the

mailto:service@cutter.com
http://www.cutter.com
http://www.cutter.com

company’s existing IT staff had
other high-priority responsibilities,
the development team did not
have extensive knowledge of the
business or existing operational
systems. The development team
did, however, have open access
to business and technical experts
within the company as well as
technology experts from the
company’s software vendor.
While initial discovery efforts
were challenging, all stakeholders
participated extensively.

Customer role. The company’s
finance division filled the role
of the primary “customer” for
the new data warehouse, and
the CFO sponsored the project.
Together, the customer team and
the CFO had a relatively focused
business goal of gaining more reli-
able access to revenue and prof-
itability information. They also had
a substantial amount of existing
reports used in business analysis
on a routine basis, offering a rea-
sonable basis for requirements
analysis.

Project management. Corporate
IT handled project manager
responsibilities using traditional
Project Management Institute
(PMI) practices. The IT group was
simultaneously involved in two
other large development projects,
both of which had direct or indi-
rect impact on the scope of the
data warehouse project.

Hosted environment. Due to lim-
ited resources and infrastructure,
the company’s IT leadership had

recently decided to partner with
an ASP to provide hosting services
for newly developed production
systems. The data warehouse was
expected to reside at the hosting
facility located on the West Coast
of the US, while company head-
quarters were located on the East
Coast. Because legacy systems
remained on the corporate infra-
structure, separate geographic
locations for the warehouse and
headquarters created complica-
tions — though not insurmount-
able ones — for the movement of
large volumes of data.

Project Outcome

The original project plan called for
an initial data warehouse launch
within 90 days. As any experi-
enced data warehouse developer
knows, such a deadline imposes
an ambitious, but not impossible,
schedule (assuming appropriate
scope definition). But the data
warehouse launch for this project
came a full eight months after
project start. User acceptance
testing did not go well. Users
were already annoyed with proj-
ect delays, and when they finally
saw the promised features, there
was a significant gap between
user expectations and the end
product. As is common with late
projects, staff members were
added to the development team
midstream to try and get the proj-
ect back on track. So project costs
far exceeded the planned budget,
and the project was placed on
hold until further planning could

be done to justify continued
development.

Retrospective

So who was to blame? Users
thought that developers had
missed the mark and failed to
implement all their requirements.
Developers believed that user
expectations had not been prop-
erly managed and thus project
scope had grown out of control.
Project sponsors thought that the
vendor and the consulting firm
had overpromised and underdeliv-
ered. The vendor and consulting
firm believed that internal politics
and organizational issues were to
blame. Finally, many members of
the company’s IT staff felt threat-
ened by their own lack of owner-
ship on the project and secretly
celebrated the failure.

The project degenerated into a
series of meetings to review con-
tracts and project documents to
determine who should be held
responsible. And guess what?
Everyone involved was partially
to blame. In addition to the com-
mon technical challenges of data
extraction, integration, and cleans-
ing, the following were identified
as root causes of project failure:

� The project contract did not
sufficiently define the project
scope.

� Requirements were incom-
plete, vague, and open-ended.

� There were conflicting inter-
pretations of the previously

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 33

approved requirements and
design documents.

Developers put in long nights
and weekends in a chaotic
attempt to respond to user
changes and new demands.

Developers did not fully under-
stand user requirements or
expectations and did not
manage requirements
changes well.

Users had significant miscon-
ceptions about the purpose of
a data warehouse since the
prevailing understanding of a
warehouse was based on the
previous reporting application
(which was not a good model).

Vendors made ambitious
promises that developers could
not fulfill in the time available.

The project manager did not
manage user expectations.

IT staff withheld important
information from developers.

The ASP partner did not pro-
vide the level of connectivity
and technical support that
developers expected.

Hindsight truly is 20/20, and in the
waning days of this project, sev-
eral realities became apparent:

1. A higher degree of interaction
between developers, users,
stakeholders, and internal IT
experts would have ensured
accurate understanding
between all participants.

2. Early and frequent working
software, no matter how

simplistic, would have greatly
reduced users’ misconceptions
and increased the accuracy of
their expectations.

3. Greater emphasis on user
collaboration would have
helped to avoid conflicting
interpretations of requirements.

4. A project plan that focused
on adapting to changes rather
than on meeting a fixed and
arbitrary deadline would have
greatly improved user satisfac-
tion with the end product.

In the end, and regardless of who
is to blame, for this data ware-
housing project and many other
failures, the root cause is a dis-
connect between user and devel-
oper expectations.

ADW BACKGROUND
(Ken Collier)

Until 2003, upon meeting
AgileAglliance cofounder Jim
Highsmith, I was only superficially
aware of the Alliance, a group of
thought leaders from the software
engineering community. I had
focused on advancements in data
warehousing and BI rather than
on software engineering. But
after meeting Jim, I began to see
the connection between agile
principles and data warehousing
practices.

Jim and I, along with another col-
league, met weekly to share cof-
fee, experiences, and ideas. Jim
would talk about his Agile Project
Management (APM) principles as
they unfolded, and I would lament
my most recent data warehouse
project for being understaffed and
overscoped and for having ever-
changing user requirements. My
development team would work
overtime, and yet users were
never satisfied.

But during a weekly meeting,
I had an “aha!” experience: it
dawned on me that all this agile
stuff that Jim and others have
talked and written about has a
direct application to data ware-
housing and BI in general. I real-
ized it made sense to establish a
set of values, principles, and prac-
tices for infusing agility into all BI
projects, from canned reporting
to data visualization, data mining
and quantitative analytics, and of
course, data warehousing. I have
since put ADW principles into
practice and am enthusiastic
about the results.

Using ADW practices, I was able
to lead three developers with little
experience in data warehousing
to complete a data warehouse in
two and a half months without
our team having to pull a single
all-nighter. Although our resulting
data warehouse will mature over
time, the complete end-to-end
architecture has been established,
and multiple OLAP reports are
available for use. Author Luke
Hohmann likens early-stage agile

VOL. 4, NO. 12 www.cutter.com

44 BUSINESS INTELLIGENCE ADVISORY SERVICE

Regardless of who is to blame,

the root cause of data warehousing

project failure is a disconnect

between user and developer

expectations.

http://www.cutter.com

projects to babies: they are com-
plete but immature. This is a use-
ful way to think about ADW. Our
goal is to get a working system
in the hands of users as early as
possible so that we can start get-
ting feedback and improving the
system.

In the spirit of full disclosure,
ADW borrows unabashedly from
the works of agile pioneers such
as Ambler, Beck, Martin Fowler,
Highsmith, Hohmann, Cutter
Consortium Senior Consultants
Alistair Cockburn and Ken
Schwaber, and others. My con-
tribution is the adaptation of
these thought leaders’ ideas to
industry-standard data warehous-
ing best practices. Using my own
knowledge and experience, and
with much coaching from Jim,
my aim is to establish a practical,
applicable, and more successful
data warehouse development
alternative.

ADW AND APM
(Jim Highsmith)

Ken and I met less than two years
ago and were introduced by a
mutual friend. Many of our early
conversations concerned politics,
restaurants, and especially skiing,
but eventually discussion turned
to the project Ken was working
on and my work in agile software
development and project manage-
ment. As Ken talked about his
data warehousing project and oth-
ers that exhibited similar waterfall
characteristics, we discussed how

an agile approach might have
mitigated some of the problems.

Since then, and as discussed in
this report, Ken began to use agile
practices — and in particular,
APM practices — with successful
results. We have also worked
together implementing agile
development and project man-
agement with a joint client on a
data warehouse–like project. As I
learned more about data ware-
housing and BI from Ken, and he
learned more about agile develop-
ment from me, we came to the
mutual conclusion that agile prac-
tices could solve some of the ills
plaguing traditional data ware-
house and BI projects.

Historically, these projects are
the epitome of big design up front.
Even worse, the usual implemen-
tation sequence for these projects
leaves user reporting until late in
the project — after all the data
staging, cleansing, reporting data
base development, and other
“technically” challenging portions
of the project are complete. In
many cases, unfortunately, when
users finally see the results, they
don’t like what they see. Doubly
unfortunate, by the time users
see the results that fall short of
their expectations, most of the
project’s resources have been
spent and options have become
limited. With the noose on the
project tightening, the blame
game begins, because everyone
has already lost.

Ken and I believe that combining
agile practices with data ware-
house development has tremen-
dous potential to ensure that
these projects deliver value to
customers early and often in a
project. In place of a huge project
that goes on for 12 to 18 months
before users have access to valu-
able results, this approach has the
potential to deliver results in just
a few months, with subsequent
quarterly deliveries.

Note: Ken has authored the bulk
of this report; I’ve chipped in here
and there, especially in the APM
section below.

APM

An Agile Synopsis

In 2001, the AgileAlliance outlined
a set of core values, principles,
and practices for developing soft-
ware that better meets users’
needs and expectations. The most
significant outgrowth of the first
AgileAlliance workshop in 2001
was a statement of shared
development values called the
Manifesto for Agile Software
Development [2], which states:

We are uncovering better
ways of developing software
by doing it and helping oth-
ers do it. Through this work
we have come to value:

Individuals and inter-
actions over processes
and tools

Working software over com-
prehensive documentation

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 55

Customer collaboration
over contract negotiation

Responding to change over
following a plan

That is, while there is value
in the items on the right
[roman typeface], we value
the items on the left [bold
typeface] more. [2]

For practitioners like me with
technical roots in the rigors of pre-
scriptive methodologies, the Agile
Manifesto is as powerful as it is
simplistic. After years of practicing
“heavyweight process” develop-
ment, I find these agile values lib-
erating. In my experience, when
push comes to shove, we instinc-
tively adopt the values expressed
in the Agile Manifesto. Unfortu-
nately, when push comes to
shove, we have often crossed
the boundary between order and
chaos. By adopting these values
from the outset of a project, we
can maintain order from the
beginning and gain satisfaction
in the knowledge that our time is
spent productively on creating
working software.

From Agile Principles to
Business Objectives

APM is characterized by envision-
ing and exploring processes rather
than planning and doing proc-
esses. APM addresses projects
in which the solution is unknown
in the beginning and the project
team must explore the problem
and solution space to create
a product that meets the cus-
tomer’s vision and delivers

customer value. When a project
has significant risk and uncer-
tainty, it requires an envision�
explore process. Exploration
includes experimenting with
different solutions to see which
ones work.

Early on in high exploration–factor
projects, the team may not know
the complete feature list. It may
have a reasonable product vision,
various business constraints (e.g.,
target schedule, target costs), a
general idea of key features, and
some ideas about the overall
architectural skeleton, but the
details will emerge as the team
delivers completed features every
couple of weeks. The team’s
process is one of evolution and
adaptation, not planning and opti-
mization; the process embraces
change.

While most people recognize
industry volatility, they have not
truly modified either their mindset
or their management practices to
acknowledge change. For exam-
ple, the perceived high cost of
change has driven methodologies
to strive to limit change by engag-
ing in extensive front-end planning
and analysis. The problem is that
no matter how thorough this early
work, stuff happens; change hap-
pens. So rather than allow the
high cost of change to dictate
process, agile developers focus
on reducing costs; low-cost
change enables a development
cycle of minimum up-front work
followed by a succession of short

development iterations. When we
adequately reduce the cost of
change, the entire economics of
software development changes;
the process shifts from one based
on anticipation (define, design,
and build) to one based on adap-
tation (envision, explore, and
refine).

While plan�do processes work
for low exploration–factor proj-
ects, they are no match for today’s
volatile business environment. So
software development and project
management processes must be
geared toward mobility, experi-
mentation, and speed. But first,
they must be geared toward busi-
ness objectives.

Reliable Innovation

There are five key business
objectives for agile software
development and APM: (1) contin-
uous innovation (delivering on
current customer requirements);
(2) product adaptability (deliver-
ing on future customer require-
ments); (3) reduced delivery
schedules (meeting market win-
dows and improving ROI); (4)
people and process adaptability
(responding rapidly to product
and business change); and (5)
reliable results (supporting busi-
ness growth and profitability).

Continuous Innovation

Developing new software applica-
tions, such as those for data ware-
housing and BI, requires a
mindset that fosters innovation.

VOL. 4, NO. 12 www.cutter.com

66 BUSINESS INTELLIGENCE ADVISORY SERVICE

http://www.cutter.com

Business value isn’t derived from
these applications by following
prescribed paths but by blazing
new trails.

Product Adaptability

No matter how well a data ware-
house application is developed,
the future always brings surprises.
As an enterprise changes, as new
executives use the application,
as business processes evolve, as
new markets are pursued, the
needs of data warehouse and BI
applications change as well. The
only way to survive is to strive for
adaptability — a critical design cri-
terion for a data warehouse appli-
cation. Agile technical practices
focus on reducing the cost of
change (or adaptation) as an
integral part of the development
process.

Reduced Delivery Schedules

Reducing delivery schedules
remains a high-priority business
goal for executives, but providing
incremental business value is just
as important. Would you rather
have a complete data warehouse
application in 18 months or incre-
mental data marts every three
months? Further, incremental
delivery can significantly increase
the ROI of projects as well as gen-
erate valuable feedback from the
development process through
incremental releases. APM con-
tributes to reducing delivery
schedules in two key ways:
focus and streamlining.

First, the constant focus on fea-
tures and the priority for their
release in short, iterative time-
boxes forces teams (comprising
customers and developers) to
consider both the number of fea-
tures to include and the depth of
those features. This reduces the
overall workload by eliminating
marginally beneficial features.
Second, APM streamlines the
development process by concen-
trating on value-adding activities
and eliminating overhead.

People and Process Adaptability

Have you ever worked on two
projects that were identical: that
is, they shared the same people,
same problem, same constraints,
same customers, and the same
executives? Why, then, do many
organizations insist that the same
processes and practices should
apply to every project? While
many organizations strive for
standardization of process and
practices, they should strive for
consistency. What we need in
most instances is a consistent
framework with local variations
in process and practices to
accommodate differences among
projects. We must also build
adaptable teams whose members
are comfortable with change and
view change as integral to thriving

in a dynamic project environment
rather than as an obstacle.

Reliable Results

Manufacturing processes are
designed to be repeatable and to
deliver the same result time after
time. They are predictable and
therefore repeatable. However,
because of the uncertainty and
risk, exploration processes are
different. They can deliver on a
customer’s vision and according
to a customer’s requirements as
these requirements evolve, but
they can’t deliver a completely
prespecified result. APM delivers
consistent, reliable results.

The APM Framework

As shown in Figure 1, the APM
framework supports the business
objectives of continuous innova-
tion, product adaptability, reduced
delivery schedules, people and
process adaptability, and reliable
results through its five phases:
envision, speculate, explore,
adapt, and close.

In practice, projects have two
iterative cycles of collaborative
planning and collaborative devel-
opment, as shown in Figures 2
and 3. In APM, as in all agile meth-
ods, both planning and develop-
ment are done collaboratively.
The collaborative planning cycle,
which focuses on product vision,
project scope and boundaries,
and the overall project release
plan, can — and should — be
used throughout the project when

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 77

While many organizations strive

for standardization of process

and practices, they should

strive for consistency.

enough new information has been
gathered to significantly alter the
planning effort. The collaborative
development cycle defines what
is accomplished during each two-
to-four-week iteration: detailed
planning, development, and
adaptation.

Envision

During the envision phase,
customers and the project team
create a product and project com-
munity vision that covers who,
what, and how. Visioning is visual;
the team must create a picture
that focuses developers and cus-
tomers on the critical aspects of
the product. One technique for

doing so is the product vision
box. The team designs a “box”
in which the application will be
packaged, which forces the team
to focus on exactly who the cus-
tomer is and the key three or
four features that will sell the
application. The second aspect of
visioning is to create a picture of
the entire project community —
of customers, product managers,
project team members, and stake-
holders — and how these parties
intend to work together. Other
specific practices in the envision
phase include (1) generating
product architecture and guiding
principles, (2) creating the project
data sheet, and (3) process and
practice tailoring.

Speculate

While the word “speculate” may
create an image of reckless risk
taking, one dictionary definition is
“to conjecture something based
on incomplete facts or informa-
tion.” As mentioned previously,
APM builds on an envision�
explore rather than a plan�do
model, and therefore the implied
certainty usually attributed to the
word “plan” must be overcome.
APM may reliably deliver value,
but recognizing that value may
require a few twists and turns.

The two critical characteristics
of the release-milestone-iteration
planning practice used in this
phase are short, timeboxed itera-
tions and feature-based planning.
Iterations are generally two-to-six-
week timeboxes. Features, not

VOL. 4, NO. 12 www.cutter.com

88 BUSINESS INTELLIGENCE ADVISORY SERVICE

Requirements

Cards

F e a tu re /C o m p o ne n t Req u ir e m en ts Car d

F e at ur e/ Co m pone nt ID : P lann ed Cy cle :
F e at ur e/ Co m pone nt N am e :

F e at ur e/ Co m pone nt T yp e:

F e at ur e/ Co m pone nt D es crip tio n :

Es t. Wo rk E f fort :

R equ irem ents Un certain ty (H ,M ,L):

D epen dencie s w ith o ther F ea tu re s:

Architecture
1.1

Architecture
1.2

F e a tu re /C o m p o ne n t Req u ir e m en ts Car d

F e at ur e/ Co m pone nt ID : P lann ed Cy cle :

F e at ur e/ Co m pone nt N am e :
F e at ur e/ Co m pone nt T yp e:

F e at ur e/ Co m pone nt D es crip tio n :

Es t. Wo rk E f fort :

R equ irem ents Un certain ty (H ,M ,L):

D epen dencie s w ith o ther F ea tu re s:

F ea tu r e/ Com po n en t R eq u ire m e n ts C ard

Fe ature /Co m po n en t I D: Pl ann ed C ycle :

Fe ature /Co m po n en t N am e :

Fe ature /Co m po n en t T ype :

Fe ature /Co m po n en t D es cr ipt i on:

Est . Wo rk E f fo rt:

Re qui re m ents Un ce rtain ty (H ,M ,L):
D ep end en ci es with other Fea tu res:

F ea tu r e/ Com po n en t R eq u ire m e n ts C ard

Fe ature /Co m po n en t I D: Pl ann ed C ycle :
Fe ature /Co m po n en t N am e :

Fe ature /Co m po n en t T ype :

Fe ature /Co m po n en t D es cr ipt i on:

Est . Wo rk E f fo rt:

Re qui re m ents Un ce rtain ty (H ,M ,L):
D ep end en ci es with other Fea tu res:

F e at u re /Co m p o n en t R e qu ir e m e nt s C a rd

Fe atur e/Co m pon ent ID: P la nn ed C ycl e:

Fe atur e/Co m pon ent N am e :

Fe atur e/Co m pon ent T ype :

Fe atur e/Co m pon ent D es cript i on :

E st. Wo rk E f fo rt :
Re qu ire m e nt s U nc er ta inty (H,M ,L) :

Dep e nd encie s with o th er F e atu r es :

F e at u re /Co m p o n en t R e qu ir e m e nt s C a rd

Fe atur e/Co m pon ent ID: P la nn ed C ycl e:

Fe atur e/Co m pon ent N am e :

Fe atur e/Co m pon ent T ype :

Fe atur e/Co m pon ent D es cript i on :

E st. Wo rk E f fo rt :
Re qu ire m e nt s U nc er ta inty (H,M ,L) :

Dep e nd encie s with o th er F e atu r es :

F ea tu r e/ C om p o n e nt R e q ui re m e n ts C a rd

F ea tu re /Com p onen t ID: P la nne d C ycle :

F ea tu re /Com p onen t Na m e:

F ea tu re /Com p onen t T ype :

F ea tu re /Com p onen t De scri pt ion :

Est. W ork E ffort :

Re qui reme nts U nc erta inty (H,M ,L):
De pend enci es with o th er F e at ur es :

F e a tu re /C o m p o ne n t Req u ir e m en ts Car d

F e at ur e/ Co m pone nt ID : P lann ed Cy cle :
F e at ur e/ Co m pone nt N am e :

F e at ur e/ Co m pone nt T yp e:

F e at ur e/ Co m pone nt D es crip tio n :

Es t. Wo rk E f fort :

R equ irem ents Un certain ty (H ,M ,L):

D epen dencie s w ith o ther F ea tu re s:

F e a tu re /C o m p o ne n t Req u ir e m en ts Car d

F e at ur e/ Co m pone nt ID : P lann ed Cy cle :

F e at ur e/ Co m pone nt N am e :
F e at ur e/ Co m pone nt T yp e:

F e at ur e/ Co m pone nt D es crip tio n :

Es t. Wo rk E f fort :

R equ irem ents Un certain ty (H ,M ,L):

D epen dencie s w ith o ther F ea tu re s:

F ea tu r e/ Com po n en t R eq u ire m e n ts C ard

Fe ature /Co m po n en t I D: Pl ann ed C ycle :

Fe ature /Co m po n en t N am e :

Fe ature /Co m po n en t T ype :

Fe ature /Co m po n en t D es cr ipt i on:

Est . Wo rk E f fo rt:

Re qui re m ents Un ce rtain ty (H ,M ,L):
D ep end en ci es with other Fea tu res:

F ea tu r e/ Com po n en t R eq u ire m e n ts C ard

Fe ature /Co m po n en t I D: Pl ann ed C ycle :
Fe ature /Co m po n en t N am e :

Fe ature /Co m po n en t T ype :

Fe ature /Co m po n en t D es cr ipt i on:

Est . Wo rk E f fo rt:

Re qui re m ents Un ce rtain ty (H ,M ,L):
D ep end en ci es with other Fea tu res:

F e at u re /Co m p o n en t R e qu ir e m e nt s C a rd

Fe atur e/Co m pon ent ID: P la nn ed C ycl e:

Fe atur e/Co m pon ent N am e :

Fe atur e/Co m pon ent T ype :

Fe atur e/Co m pon ent D es cript i on :

E st. Wo rk E f fo rt :
Re qu ire m e nt s U nc er ta inty (H,M ,L) :

Dep e nd encie s with o th er F e atu r es :

F e at u re /Co m p o n en t R e qu ir e m e nt s C a rd

Fe atur e/Co m pon ent ID: P la nn ed C ycl e:

Fe atur e/Co m pon ent N am e :

Fe atur e/Co m pon ent T ype :

Fe atur e/Co m pon ent D es cript i on :

E st. Wo rk E f fo rt :
Re qu ire m e nt s U nc er ta inty (H,M ,L) :

Dep e nd encie s with o th er F e atu r es :

Project D ata Shee t
P ro jec t Na m e: Pro je ct Le ad er :

P ro jec t S ta rt Da te : Executive Sp onsor:

C lie nts: C lien t B enefits :

P ro jec t O b jec tive S tatem en t:

Per fo rm an ce /Q ua lity A tt ributes :

F ocus M atrix :
 E xc e l Im pr o ve Ac ce p t Ta rg e t

S c op e

S c he d ule

D e fec ts

R e so urc e

F eatu res : (Abil ity to S tatem ents) Arch ite cture :

M ajor M ile sto nes: Issues/R isks :

Date

1 .

2 .

3 .

4 .

 1 9 92 -9 7 Kn o w led ge S t ru c tures , In c.

Project D ata Shee t
P ro jec t Na m e: Pro je ct Le ad er :

P ro jec t S ta rt Da te : Executive Sp onsor:

C lie nts: C lien t B enefits :

P ro jec t O b jec tive S tatem en t:

Per fo rm an ce /Q ua lity A tt ributes :

F ocus M atrix :
 E xc e l Im pr o ve Ac ce p t Ta rg e t

S c op e

S c he d ule

D e fec ts

R e so urc e

F eatu res : (Abil ity to S tatem ents) Arch ite cture :

M ajor M ile sto nes: Issues/R isks :

Date

1 .

2 .

3 .

4 .

 1 9 92 -9 7 Kn o w led ge S t ru c tures , In c.

F ea tu r e/ C om p o n e nt R e q ui re m e n ts C a rd

F ea tu re /Com p onen t ID: P la nne d C ycle :

F ea tu re /Com p onen t Na m e:

F ea tu re /Com p onen t T ype :

F ea tu re /Com p onen t De scri pt ion :

Est. W ork E ffort :

Re qui reme nts U nc erta inty (H,M ,L):
De pend enci es with o th er F e at ur es :

Product
vision

Project
scope
and

boundaries
Release plan

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Architecture

1.0

Architecture

1.1

Architecture

1.2

Requirements

cards

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

Feature 7

Figure 2 — The collaborative
envision cycle. (Source: [7].)

culate

Close

Envision

Speculate Explore

Adapt

Close

Feature

list

Adaptive

action

Final

product

Release

plan

Completed

features

Vision

Figure 1 — Highsmith’s Agile Project Management framework. (Source: [7].)

Iteration

plan

DevelopReview

and adapt

Figure 3 — The collaborative
development cycle. (Source: [7].)

http://www.cutter.com

tasks, are assigned to each itera-
tion. Features are represented by
index cards on which sufficient
information is recorded to con-
duct the planning. At the end of
these iterations, features are com-
plete only if they are “done-done”:
that is, if they have been devel-
oped and unit-tested (done)
and then user acceptance–tested
(done-done). If eight features are
completed during an iteration, the
velocity of development is eight
features per iteration, and this
delivery rate is used for planning
the next iteration. The two criteria
for assigning features to iterations
are (1) delivering customer valu-
able features (as prioritized by the
customer representatives on the
team) and (2) implementing fea-
tures that reduce project risk.

As shown in Figures 2 and 3, spec-
ulating is done at two levels: for
the entire project and for the next
iteration. The overall envision
planning cycle may be repeated
every two to six iterations depend-
ing on how much has changed
since completion of the previous
release plan. Specific practices in
this phase include creating the
product feature list, feature (or
story) cards, and the release-
milestone-iteration plans.

Explore

The explore phase develops prod-
uct features. During this phase,
the project team delivers the fea-
tures identified in the release
and iteration plans, and project

managers must focus on three
critical activity areas: (1) deliver-
ing features by managing the
workload and using appropriate
technical practices; (2) creating a
collaborative, self-organizing proj-
ect community; and (3) managing
the interactions among develop-
ers, customers, executives, and
other stakeholders.

In the explore phase, specific
practices include workload man-
agement (the team manages the
distribution of its work); technical
practices, such as ruthless testing
and refactoring; coaching and
team development; and partici-
patory decision making.

Adapt

Project managers usually refer to
the adapt phase as monitoring
and correcting and to the results
of this activity as “corrective
action.” The phrase “corrective
action,” which actually means
to correct according to the plan,
implies that the plan was correct
and that the reason for variation
from the plan is poor team per-
formance. APM uses the term
“adaptive action,” which implies
something quite different. Adap-
tive action implies modification or

change rather than success or fail-
ure. Agile projects are guided by
the philosophy that responding to
change is more important than
following a plan; so while team
performance may be an issue,
the change may be attributable to
poor planning or new information.

In an agile project, every itera-
tion’s conclusion provides a
forum for the team to reflect on
the project through various lenses:
customer issues, technical con-
cerns, project status, as well as
personnel, process, and perfor-
mance issues. The analysis exam-
ines actual versus planned results;
but even more important, it con-
siders new information. The
results of adaptation are fed into
a replanning effort to begin the
next iteration.

Close

The final phase of the APM
framework is closing the project.
Projects have a beginning and an
end, and each must be recog-
nized. The failure to identify a
project’s end point can create
problems of perception among
customers. The end of a project
should include cleanup activities
and a complete project retrospec-
tive to pass lessons learned along
to the next project team.

The Essence of APM

In the end, affirmative answers
to these two questions form the
essence of APM and agile soft-
ware development: (1) are you

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 99

Projects have a beginning and an

end, and each must be recognized.

The failure to identify a project’s end

point can create problems of

perception among customers.

delivering innovative products to
your customers?; and (2) are you
excited about going to work every
day? Agilists want to build innova-
tive products — products that test
the limits of our abilities — and
to create a work environment in
which people, as individuals and
as teams, can thrive.

Just like Broadway plays always
deliver on opening night, APM
delivers on time and in accor-
dance with the customer’s vision
— more reliably than any other
approach for high exploration–
factor projects. Given the high
degree of uncertainty in many
new product efforts, given techno-
logical change, and given the ebb
and flow of staff, reliable results
are still obtainable. Given all the
maybes, agile methods still deliver
— a tribute to the passion, drive,
persistence, and ingenuity of proj-
ect team members.

TRADITIONAL DATA
WAREHOUSING

If you have taken part in a data
warehousing project, you are
aware of the numerous chal-
lenges, perils, and pitfalls. Ralph
Kimball, Bill Inmon, and other
data warehousing pioneers have
done an excellent job of develop-
ing reusable architectural patterns
for data warehouse implementa-
tion. Software vendors have done
a good job of creating tools and
technologies to support the con-
cepts. Nonetheless, data ware-
housing is just plain hard, and for
several reasons:

� Most organizations have not
previously built a data ware-
house or have only limited
experience in doing so.

� Most organizations don’t build
multiple data warehouses,
and therefore development
processes don’t get a chance
to mature.

� Organizations often set out to
build an enterprise data ware-
house, or at least a broad-
reaching data mart, which
makes the process more
complex.

� Data warehouse consultants
have extensive expertise in
data warehousing, but not in
the organization’s business
domain.

� Business users typically don’t
understand what a data ware-
house does and doesn’t
provide.

� Business users often think
of data warehousing as a
technology-based plug-and-
play application.

� As users gain a better under-
standing of data warehousing,
their needs and wishes change.

� Business data always has qual-
ity problems that surface in the
data warehouse, causing users
to question the warehouse
rather than the source systems.

� Organizations often view a data
warehouse as an IT application
rather than a joint venture
between business stakeholders
and IT developers.

� Data warehousing requires
an entirely different skill set
than that of typical database
administrators (DBAs) and
developers.

� Data warehousing requires a
multitude of unique skills such
as multidimensional modeling;
data cleansing; extraction,
transformation, and loading
(ETL) development; OLAP
design; application develop-
ment; and so forth.

Figure 4 depicts an example of the
classic data warehousing architec-
ture, as first described by Kimball
[8]. It consists of the following
components:

� Operational source systems.
These are one or more existing
systems from which data is
extracted, transformed, and
loaded into the data warehouse
staging database. They are opti-
mized for the daily transactional
processing required to run busi-
ness operations.

� Staging database. This data-
base often mirrors the data
structures in the source sys-
tems and provides a “holding
pen” where data can be
processed, manipulated,
transformed, cleansed, and
validated without placing an
undue burden on the opera-
tional systems.

� Presentation repository.
Data is extracted from the
staging database, transformed,
and loaded into appropriate
structures for optimized

VOL. 4, NO. 12 www.cutter.com

1100 BUSINESS INTELLIGENCE ADVISORY SERVICE

http://www.cutter.com

multidimensional reporting.
This system is designed to sup-
port the data slicing and dicing
that defines the power of a data
warehouse.

� Data access server. This con-
ceptual server represents the
various tools that provide users
with access to data, including
report writers, ad hoc querying,
OLAP, data visualization, data
mining, statistical analysis, and
so on.

Data Warehousing Technical Skills

Inherent in this architecture are
the following aspects of develop-
ment, each of which requires a
unique set of development skills:

� Data modeling. This involves
design and implementation of

data models for both the stag-
ing database and presentation
repository. Each has unique
properties.

� ETL development. ETL refers
to the extraction of data from
source systems into staging, the
transformations necessary to
recast source data for analysis,
and the loading of transformed
data into the presentation repos-
itory. ETL includes the selection
criteria to extract data from
source systems, performing any
necessary data transformations
or derivations needed, data-
quality audits, and cleansing.

� Data cleansing. Source
data is typically imperfect.
Furthermore, merging data
from multiple sources can

inject new data quality issues.
As an important aspect of a
data warehouse, achieving data
hygiene requires specific skills
and techniques.

� OLAP design. Typically data
warehouses support some
variety of OLAP techniques
(HOLAP, MOLAP, or ROLAP).
Each OLAP technique is differ-
ent and requires special design
skills to balance reporting
requirements and performance
constraints.

� Application development.
Users commonly require an
application interface with the
data warehouse that provides
an easy-to-use front end com-
bined with comprehensive
analytical capabilities and that

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 1111

Operational

source systems

AP/AR

Sales

HR

Operations

Inventory

ETL processes
ETL processes

Data

access

server

Staging

database

Presentation

repository

Executive

reporting

Management

reporting

Field

reporting

• Data integrity checking

• Data cleansing

• Exception handling

• Data transformations

• Data preparation

Optimized for:

• Analytical reporting

• Flexible querying

• Multidimensional analysis

• “Large” data for historical

 analysis

Figure 4 — An example data warehouse architecture.

is tailored to the way the users
work. This often requires some
customized programming
or commercial application
customization.

� Production automation.
Data warehouses are generally
designed for periodic auto-
mated updates where new and
modified data is added into the
warehouse so that users can
view the most recent data
available. These automated
update processes must have
built-in failover strategies and
must ensure data consistency
and correctness.

� General network and DBA
skills. Data warehouse devel-
opers must have many of the
same skills as those of the typi-
cal network administrator and
DBA. They must understand
the implications of efficiently
moving potentially large
volumes of data across the net-
work and the issues of effec-
tively storing changing data.

Data warehousing is also hard
because of the need for these spe-
cialized skills. Most organizations

do not have staff members with
adequate expertise in these areas.

The Traditional Data
Warehousing Process

Data warehousing projects typi-
cally follow some variant of the
waterfall development approach
(see Figure 5). Waterfall and
related approaches observe a
plan�do model in which exhaus-
tive planning is followed by com-
prehensive design, development,
and testing.

This process is driven by a rigor-
ous up-front requirements analysis
with an eye toward collecting and
documenting comprehensive user
requirements that establish a
“contractual” agreement between
the developers and users. In this
stage, the challenge is to ensure
that the users have an accurate
understanding of what a data
warehouse can and cannot pro-
vide and that they have a clear
understanding of their own
requirements.

Once consensus on requirements
is reached, these requirements
drive a thorough and detailed data
architecture and data modeling

effort. This is the core of the data
warehouse design cycle, along
with other design activities such
as volumetric and network load
analyses.

By this point in the traditional
approach, developers have mini-
mal interaction with users since
the parties have already signed off
on requirements. Instead, devel-
opment effort is spent developing
formal and detailed data models
using tools such as ERwin and
Visio. During the design cycle, the
design document and data dictio-
nary are typical artifacts that
demonstrate progress.

The remainder of the develop-
ment effort is spent implementing
the design; developing ETL code,
OLAP cubes, and data warehouse
update scripts; and finally, in
black-box, white-box, and system-
level testing. Final testing may
even be handed off to a dedicated
QA team to verify that all require-
ments have been met without
introducing new data anomalies.

Finally, when the developers,
testers, and DBAs are confident
that the data warehouse meets
requirements (or, more com-
monly, when the schedule runs
out), users are treated to reviews
and user acceptance testing. At
this point, the following conditions
are most common:

� Users have become more edu-
cated about data warehousing.

� User requirements have
changed or become more
refined.

VOL. 4, NO. 12 www.cutter.com

1122 BUSINESS INTELLIGENCE ADVISORY SERVICE

Design

Implement

Test

Release

RequirementsRequirements

Design

Implement

Test

Release

User reviewNo user interactionUser input

Six to nine months of development

Figure 5 — The typical data warehousing approach.

http://www.cutter.com

� Users’ memories of early
requirements reviews are fuzzy.

� Users have high expectations in
terms of anticipating a new and
useful tool.

� Developers continue to build
the system based on the initial
snapshot of user understanding
and requirements definition.

All these factors lead to a natural
gap between what is built and
what is needed.

Data Warehouse Failures

In November 2004, TechTarget
polled its subscribers asking, “Have
you ever seen a DW project fail?”
Among respondents, 52% replied,
“More than once”; 10% said,
“Once”; 13% said, “Almost, but we
made it”; and the remaining 23%
said, “Not even close” [10].

A quick Google search on the
phrase “data warehouse failure”
results in a small library of case
studies, postmortems, and assess-
ment articles. While there is no
clear definition of what constitutes
“failure,” Sid Adelman and Cutter
Consortium Senior Consultant
Larissa Moss classify the following
situations as characteristic of proj-
ect failures [1]:

� The project is over budget.

� The schedule has slipped.

� Some expected functionality
was not implemented.

� Users are unhappy.

� Performance is unacceptable.

� Availability of the warehouse
applications is poor.

� There is no ability to expand.

� The data and/or reports
are poor.

� The project is not cost-justified.

� Management does not recog-
nize the benefits of the project.

In other words, simply completing
the technical implementation of a
data warehouse doesn’t constitute
success. Take another look at this
list. Nearly every situation is “cus-
tomer” focused; that is, primarily
end users determine whether a
project is successful.

Assessment

There are literally hundreds of
similar evaluations of project fail-
ures, and they exhibit a great deal
of overlap in terms of root causes:
incorrect requirements, weak
processes, inability to adapt to
changes, project scope misman-
agement, unrealistic schedules,
inflated expectations, and so forth.

Unfortunately, the traditional
development model does little to
uncover these deficiencies early
in the project. As Jeff DeLuca,
one of the founders of Feature

Driven Development (FDD), told
Highsmith, “We should try to
break the back of the project as
early as possible to avoid the high
cost of change later downstream.”
In a traditional approach, it is pos-
sible for developers to plow ahead
in the blind confidence that they
are building the right product, only
to discover at the end of the proj-
ect that they were sadly mistaken.
This is true even when one uses
all the best practices, processes,
and methodologies.

What is needed is an approach
that promotes early discovery of
project peril. Such an approach
should place the responsibility
of success equally on the users,
stakeholders, and developers and
should reward a team’s ability to
adapt to new directions and sub-
stantial requirements changes.

ADW FRAMEWORK

ADW is characterized by a highly
iterative approach with substan-
tial collaboration between devel-
opers, users, and stakeholders.
By adapting the Highsmith
envision�explore cycle of project
management to data warehousing
methods, we avoid the disconnect
between developers and users
as depicted in Figure 5. Figure 6
captures the essence of the
envision�explore cycle for data
warehousing. It is critical for
developers and users to collabo-
rate extensively during the envi-
sion cycle and to collaborate
frequently and periodically during
the explore cycle.

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 1133

Simply completing the

technical implementation of

a data warehouse doesn’t

constitute success. Primarily

end users determine whether

a project is successful.

ADW Principles

It’s useful to follow a set of guid-
ing principles during data ware-
house design and development.
When data warehousing poses
difficult tradeoffs, these principles
often serve as the tiebreaker.
Similarly, the AgileAlliance has
established a set of principles for
software development. The fol-
lowing ADW principles borrow
liberally from AgileAlliance
principles [3]:

1. Our highest priority is to satisfy
the data warehouse user com-
munity through early and con-
tinuous delivery of working
user features.

2. We welcome changing
requirements, even late in the
course of development. Agile
processes harness change for
data warehouse users’ com-
petitive advantage.

3. We deliver working software
frequently, providing users
with new data warehouse
features every few weeks.

4. Data warehouse users, stake-
holders, and developers must

share project ownership and
work together daily throughout
the project.

4. We value the importance of
talented and experienced BI
experts. We give them the
environment and support they
need and trust them to get the
job done.

5. The most efficient and effec-
tive method of conveying
information to and within a
development team is face-to-
face conversation.

6. A working data warehouse
system is the primary measure
of progress.

7. We recognize the balance of
project scope, timeline, and
resources. The data ware-
housing team must work at
a sustainable pace.

8. Continuous attention to the
best data warehousing prac-
tices enhances agility.

9. The best architectures,
requirements, and designs
emerge from self-organizing
teams.

10. At regular intervals, the team
reflects on how to become
more effective, then adjusts
its behavior accordingly.

Take a minute to reflect on these
principles. How many are present
in your organization’s projects? Do
they make sense for your organi-
zation? Are they realistic goals for
your organization? They are not
only commonsense principles but
also effective and achievable in
real projects. Furthermore, adher-
ence to these principles rather
than reliance on a prescriptive
and exhaustive process model is
very liberating.

ADW Practices

I believe that ADW meshes well
with existing data warehousing
architectures and practices. I am
not advocating ADW as an alter-
native to the mature practices
developed by Kimball, Inmon,
Cutter Consortium Senior
Consultant Claudia Imhoff, and
other data warehousing thought
leaders; rather, ADW is largely a
framework that redefines the
process of implementing those
practices.

Some of these practices are
directly tied to the APM concepts
that Jim discussed previously.
Some are adaptations of agile
software development practices
to data warehousing techniques.
Others are based on my experi-
ence in trying to tackle the prob-
lem of showing users working
software early and frequently.

VOL. 4, NO. 12 www.cutter.com

1144 BUSINESS INTELLIGENCE ADVISORY SERVICE

Cycle 0 Cycle 1 Cycle 3 Cycle 4Cycle 2
Architecture

1.0

Requirements

Cards

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Architecture

1.1

Architecture

1.2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature 1

Feature 2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature 3

Feature 4

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature 5

Feature 6

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature 7

Cycle 0 Cycle 1 Cycle 3 Cycle 4Cycle 2
Architecture

1.0

Requirements

Cards

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Architecture

1.1

Architecture

1.2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature 1

Feature 2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Cycle 0 Cycle 1 Cycle 3 Cycle 4Cycle 2
Architecture

1.0

Requirements

Cards

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Architecture

1.1

Architecture

1.2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature 1

Feature 2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature 3

Feature 4

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature 5

Feature 6

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature 7

Envision cycle Explore cycle

Release
planning

Business
intelligence (BI)

vision
Project
scope
and

boundaries

Review
and

adapt

Iteration
planning

Develop

DevelopmentPlanning Collaborative

Figure 6 — The agile data warehousing (ADW) collaborative
development cycle.

mailto:service@cutter.com

Practice 1: Frequent, Short Iterations

ADW is marked by a highly
iterative development cycle
whereby each iteration produces
a working and demonstrable
data warehouse. The working
data warehouse instances are
architecturally complete even if
they are immature relative to the
total set of project requirements.
Although the length of iterations
varies, the aim is to establish an
agile rhythm of two-week iteration
cycles. This time frame is long
enough to build something mean-
ingful and to undo mistakes with-
out it being too costly. But there is
nothing wrong with iterations that
are as long as 30 days. An iteration
that lasts longer than a month,
however, runs the risk of the
project losing its essential user-
developer collaboration.

Presenting users with a working
data warehouse early and often
accomplishes several goals:

� Users are directly involved in
the development cycle.

� Users and stakeholders
can see the real progress
of development and can
appreciate the challenges
that developers face.

� Developers can verify that they
are on the right track.

After each iteration, a user review
takes place; these highly informal
meetings involve developers and
users. Other than development
activities, these meetings should

require minimal preparation
and planning. The goal of such
reviews is to demonstrate the
most current working system and
to elicit feedback from users. I
prefer to follow a customer focus
group approach in which the rules
are relatively simple. Developers
demonstrate, users provide feed-
back, and a scribe takes notes on
user feedback. Developers should
not solve problems, troubleshoot,
or make commitments based on
user feedback. The action taken
as a result of feedback is priori-
tized based on an assessment
of the effort required to make
changes. Others may observe but
should not participate in these
meetings.

Periodically, but less frequently
than user reviews, executive
reviews should be conducted. I
prefer to schedule an executive
review after every third or fourth
iteration, with the goal of demon-
strating to executive sponsors and
other key stakeholders that the
project is progressing and that
users’ needs are being met.
Participants should include the
sponsoring executive, stakehold-
ers, and representation from the
users and development team.
Whenever possible, the executive
review should immediately follow
the user review. In this case, exec-
utives and stakeholders should
quietly observe the user review
meeting. Then additional project
status information can be pre-
sented with the active involve-
ment of all parties.

Practice 2: The Conceptual Phase

One exception to the two-week
iteration goal is the first iteration,
which Highsmith calls iteration
zero. This iteration is earmarked
for establishing the entire infra-
structure necessary for sustain-
able agile development. Iteration
zero includes the following data
warehousing activities:

� Capturing user requirements

� Acquiring and configuring the
development environment,
including hardware, software,
and databases

� Identification, acquisition, and
understanding of data sources
and data quality issues

� Establishing an automated test-
ing framework (which is dis-
cussed further later in this
report)

� Establishing team roles,
responsibilities, and working
agreements

� Other activities needed to
ensure productive develop-
ment cycles

Practice 3: Develop Features,
Not Functions

Agile development is driven by the
completion of customer features
rather than functions. The aim is
to produce demonstrable features
that users can review and evalu-
ate in light of their business
requirements.

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 1155

Like software, many complexities
of data warehousing are invisible
to users. Typical data warehouse
users care about the reports pro-
vided by the application, the valid-
ity of the values in the reports, and
the usefulness of the intelligence
in users’ daily decision making.

All too often, developers try to
“show” users the underlying
architectural structures, the ETL
logic, and data validation and
cleansing code. After all, this is
where much of our hard work
lies. But despite this hard work,
what users truly care about is the
reporting application. So the focus
of ADW development is on archi-
tectural feature spikes: that is, fea-
tures that are demonstrable to,
and thus resonate with, users,
such as reports or analytical mod-
els. A data warehouse feature is
architecturally complete when it
pulls data through each of the
architectural components and all
the functionality at each stage is
implemented and tested.

So how do you develop a feature
spike in just two weeks? After
all, what about all the requisite
design, logical and physical data
modeling, ETL programming, data
cleansing, and other development
tasks that are part of data ware-
housing? My response is twofold:

1. Define the feature to be small
enough to be manageable. If
a single star schema in your
warehouse supports several
reports, choose a single report.
If a single report has a high

degree of complexity and
underlying logic, identify a
meaningful subset of the
requirements for that report
to implement. Remember, a
feature must be architecturally
complete, not necessarily
mature.

2. Do the minimum amount of
design, modeling, and devel-
opment required to complete
the feature spike. It is not
necessary to fully architect or
model the staging database
and data warehouse repository
to complete the feature. Not
only is it acceptable to itera-
tively evolve the data models
and system design, but doing
so helps ensure that these arti-
facts more accurately reflect
what you build.

Figure 7 conceptually depicts how
I think of FDD as it relates to data
warehousing. I coach ADW devel-
opers to focus on the aspects of
each architectural component that
are related to the feature they are
developing. For example, suppose
you are developing an OLAP
report for product revenue and
profitability. The feature spike
might include the following
activities:

� Develop the star schema model
based on a fact table contain-
ing net profit, gross profit, and
revenue.

� Identify existing dimensions
that can be conformed to the
new star schema.

� Identify the source tables nec-
essary to populate your fact
and dimension tables.

� Develop the data model for
your staging database to cap-
ture the requisite source data
for this feature.

� Determine the data integrity
audits, data cleansing logic,
and any data merging require-
ments for the source data.

� Implement your logical data
models for both staging and
warehouse repositories.

� Implement the ETL code nec-
essary to source the data into
the staging database.

� Fully test the data in the related
staging tables according to your
QA requirements.

� Implement the ETL code nec-
essary to transform your stag-
ing data into your physical star
schema tables.

� Fully test the data in your star
schema according to your QA
requirements.

� Design, build, and populate the
OLAP cube.

� Fully test the base table and
calculated measures according
to your QA requirements.

VOL. 4, NO. 12 www.cutter.com

1166 BUSINESS INTELLIGENCE ADVISORY SERVICE

Developers must design and model

the feature-related aspects of the

system with an eye toward how their

design will integrate with the

completed system and how it

will affect other developers.

http://www.cutter.com

� Develop the report(s) in the
user application.

� Fully test the reported
values according to your
QA requirements.

Note that it is important for agile
developers to maintain a global
perspective while taking a local-
ized approach. In other words,
developers must design and model
the feature-related aspects of the
system with an eye toward how
their design will integrate with the
completed system and how it will
affect other developers.

This challenge of FDD emphasizes
the importance of developer col-
laboration. There is no substitute
for discussing a feature-specific
design decision with other devel-
opers whose features may be
affected by that decision. Nor
is this feature-driven approach
a substitute for good design.
Occasionally a feature may evolve
to meet user acceptance criteria
but may not be built on the best

underlying data models and
design. Refactoring is the agile
practice of redeveloping an
accepted feature using better
design principles.

Practice 4: Develop Production-
Quality Features

An architectural feature spike
refers to a completed feature: that
is, a feature that is production-
ready and “done-done.” This
means that all user requirements
relative to the feature have been
implemented and fully tested.
Highsmith likes the guideline that
deems features complete when,
even if project funding were
stopped immediately, users would
at least have a working product
that meets some requirements.
I like the idea that once users
review and accept the feature,
it requires no further action —
it’s done!

As additional architectural feature
spikes are completed, the system
evolves to a fully production-ready

state of maturity. In fact, users
should already be using com-
pleted features to the extent that
use does not interfere with ongo-
ing development. As users actively
utilize completed features, they
are in a better position to provide
valuable feedback. Some of this
feedback can be immediately
implemented with minimal effort,
while other feedback may be pri-
oritized for later implementation.

Practice 5: Test-Driven Development

Created by Beck, TDD is “the craft
of producing automated tests for
production code, and using that
process to drive design and pro-
gramming” [4]. Beck advocates
developing tiny bits of functional-
ity based on tiny test cases. The
value of TDD is that requirements
determine the tests: as soon as
your code passes the test, you
have met the requirements
related to the test.

We can adopt a similar strat-
egy in data warehousing.

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 1177

Source

systems

Staging

database
Warehouse

repository

Data access

servers

User

applications Feature spike 1

Feature spike 2

Feature spike 3

Feature spike 4

Feature spike 5

QA
from source
to staging

QA
from staging

to warehouse

QA
from warehouse
to access server

QA from access
server to

user apps

©2004 Ken Collier

Figure 7 — Architectural feature spikes.

Unfortunately it is somewhat more
challenging when dealing with
potentially large volumes of data.
Here is a list of the TDD practices
that are proving effective in data
warehousing:

1. Manufacture a test bed.
Contrive a replica of your
source databases that contain
a handpicked cross section of
data in the live systems. The
test bed should include signifi-
cant data volume but should
not be unmanageable. The
cross section should include
records that exemplify all the
different types of data found in
the source systems, including
data that reflects all known
quality issues as well as
“good” data.

2. Develop a test-bed catalog.
This refers to a detailed
description of the groupings of
records found in the test bed.
The description should include
known data anomalies and
other characteristics reflected
by the data values and data
groupings. It provides a refer-
ence for developers to ensure
that test cases accommodate
all possibilities.

3. Develop test cases against the
test bed. Since the test bed is a
static and contrived database,
developers can anticipate the
results of each development
effort. These anticipated results
become the test of success.

4. Develop tiny and test tiny. In
the spirit of incremental devel-
opment, small test cases

should be developed and then
the code should be written
incrementally to pass the test.
For example, if ETL logic
that will replace null revenue
values with a 0.00 in the staging
database is implemented,
the developer can easily and
quickly verify whether all nulls
are successfully replaced with-
out affecting non-null values.

5. Test each stage in the archi-
tecture. This is a standard data
warehousing QA practice that
involves ensuring that the data
is correct at each layer in the
architecture. By combining this
practice with the others listed
here, a developer can develop
a feature that is of production
quality when it is complete.

Practice 6: Automated Testing

Given all the books and articles on
data warehousing, surprisingly lit-
tle has been written about sound
testing practices. Data warehouse
testing typically involves some
degree of integration testing, sys-
tem testing, data validation, load
testing, and user acceptance test-
ing. Unfortunately, practitioners
are left to define their own testing
methods.

As any experienced developer
knows, manual testing is tedious
and time-consuming. While tradi-
tional developers are in the habit
of unit-testing, typical system
testing is often handled by a
dedicated QA team near the end
of the project cycle — a model
that is not well suited to the

agile practice of testing during
development.

As mentioned in the introduction,
Ward Cunningham has developed
the Framework for Integrated Test,
which is an open source frame-
work for automated testing in an
agile software development envi-
ronment [6]. The FIT framework
includes code libraries for auto-
mated testing using HTML to
define test cases and expected
results.

While FIT is not directly applica-
ble to data warehouse testing, the
principles and approach underly-
ing FIT can be adapted to data
warehouse testing with relative
ease. Additionally, I am currently
working with a development team
that automates many of the TDD
practices outlined previously.

We have developed scripts that
help automate the creation of test
cases based on the “source test
bed” database. As code is imple-
mented that performs data cleans-
ing, data transformation, and data
derivations, the developer can
specify an expected result set. A
second set of scripts compares
the actual result set with the
expected result set and produces
a report detailing the mismatches
found. It is then incumbent on
the developer to resolve the
mismatches.

We are using this approach for
testing each table in the staging
database and in the warehouse
repository as well as the validation

VOL. 4, NO. 12 www.cutter.com

1188 BUSINESS INTELLIGENCE ADVISORY SERVICE

http://www.cutter.com

of data in the final reports and
models. Coupled with user accep-
tance testing, this automated
approach enables developers to
use TDD without the challenges
inherent in manual testing.

Practice 7: Incremental Design

Like testing, design and modeling
should be integrated into the agile
development iterations. While
conceptual design largely occurs
during the envision cycle or during
iteration zero, ADW practitioners
should not shirk the responsibility
of detailed design. Critics often
argue that agile methods short-
circuit rigorous and valuable
design practices. In fact, agile
methods value the importance of
good design. Working code, how-
ever, is the ultimate test of design.

In one case, I worked on a project
in which the company had initi-
ated the project two full years
prior to my involvement. The proj-
ect team spent the first 18 months
eliciting user requirements and
developing volumes of use-case
scenarios to describe all possibili-
ties. It had spent the next six
months in system design and was
in the process of developing
exhaustive design models. By the
time the team was ready to begin
development, the user community
had grown tired of waiting for
results and was skeptical that any-
thing would ever be developed.

Ambler has developed Agile
Modeling, including a set of princi-
ples and practices for effectively

applying leading software model-
ing techniques in an agile devel-
opment environment [5]. Ambler
does not reinvent modeling
methodologies. Instead, his prac-
tices are based on a set of guiding
principles and practices that guide
developers to model in small
increments and then prove their
models with working code, an
approach that is inherently agile.

Figure 8 extends the envision�
explore cycle by adding a build
cycle that describes the develop-
ment phase of exploration. The
build cycle includes model�build
�test. During a single ADW fea-
ture development effort, the build
cycle may be repeated multiple
times.

An approach that meshes particu-
larly well with the testing practice
of developing tiny and testing tiny
is to model a few aspects of the

feature and then implement and
test just those aspects. Using our
product revenue and profit OLAP
report as an example, this
approach might start by simply
replicating source tables in the
staging database, building a sim-
ple star schema to contain only
the basic revenue measure, and
populating the OLAP cube with
uncleansed data and minimal
transformation logic. The model-
ing activity for staging might sim-
ply be the identification of related
source tables and their join condi-
tions. The modeling activity for the
warehouse repository will simply
contain the product revenue fact
table and the dimensions that are
specified. The next build cycle
might add in net and gross profit
measures or data cleansing logic.

The agility in this approach is
clear. The models evolve as the
feature matures, and testing is

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 1199

Cycle 0 Cycle 1 Cycle 3 Cycle 4Cycle 2
Ar chi t ectur e

1.0

Requir ement s

Car ds

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Ar chit ect ur e

1.1

Ar chi t ectur e

1.2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feat ure 1

Feat ure 2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feat ure 3

Feat ure 4

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feat ure 5

Feat ure 6

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feat ure 7

Cycle 0 Cycle 1 Cycle 3 Cycle 4Cycle 2
Ar chi t ectur e

1.0

Requir ement s

Car ds

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Ar chit ect ur e

1.1

Ar chi t ectur e

1.2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feat ure 1

Feat ure 2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Cycle 0 Cycle 1 Cycle 3 Cycle 4Cycle 2
Ar chi t ectur e

1.0

Requir ement s

Car ds

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Ar chit ect ur e

1.1

Ar chi t ectur e

1.2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feat ure 1

Feat ure 2

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feat ure 3

Feat ure 4

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feat ure 5

Feat ure 6

Feature/Component Requirements Card

Feature/Component ID: Planned Cycle:

Feature/Component Name:

Feature/Component Type:

Feature/Component Description:

Est. Work Effort:

Requirements Uncertainty (H,M,L):

Dependencies with other Features:

Feat ure 7

Envision cycle Explore cycle

Release
planning

BI vision

Project
scope
and

boundaries

Review
and

adapt

Iteration
planning

Develop

Build cycle

Model in small
increments

Prove it
with code

Inspect
and test

Figure 8 — Modeling in ADW.

tightly integrated into the develop-
ment cycle. It’s important to note
that the value of modeling lies
primarily in the act of creating the
model, not in the artifact itself;
and this value increases if the
modeling activity is a collaborative
and open discussion. I’m sure you
can recall various whiteboard ses-
sions with team members where
good ideas emerged through the
act of discussing a problem and
sketching alternative approaches.

Note that modeling is not neces-
sarily equivalent to documenta-
tion, although models can be
maintained as archival documents
for future reference. It is important
to understand the cost involved
in maintaining your models.
Modeling serves one of two pur-
poses: it helps you understand
what you are working on or com-
municate your ideas to others.
Once the goal is accomplished,
the model should be discarded or
be kept and maintained. Too
often, we are afraid to discard a

model once it has served its pur-
pose. Unfortunately, keeping a
model without maintaining it can
cause unintended problems. It
doesn’t take long before the
model no longer accurately
reflects the working code. Ambler
outlines the following principles
for modeling:

� Discard temporary models.
These models have served
their purpose.

� Formalize contract models.
These models are needed to
capture agreements.

� Update only when it hurts.
While it is important to main-
tain formalized models, this
should not be the highest
priority.

Practice 8: Barely Sufficient Modeling

This practice is most likely to
wake the sleeping giants. For
more than a decade, the devel-
opment mantra has been that
success lies in comprehensive

requirements analysis and
exhaustive design. The inherent
problem with this approach is that
it is difficult and time-consuming
and offers false security, since
things inevitably change and initial
understandings are often wrong.

There are actually two extremes
in data warehouse and database
modeling: (1) nonexistent model-
ing, which leads to patchwork sys-
tems; and (2) excessive modeling,
which leads to overburdened
development and documentation.
The aim of Agile Modeling is to
find the sweet spot between these
extremes that is appropriate for
each ADW project (see Figure 9).
Highsmith uses the following anal-
ogy: If you are trekking through
the desert, you will benefit from
a map, a hat, good boots, and a
canteen of water. But you won’t
make it if you burden yourself
with hundreds of gallons of water,
too much gear, and a collection
of books about the desert. But it
would be foolish to try to make
the journey without a minimum
of supplies.

While modeling is critical to suc-
cess, effective Agile Modeling
requires producing only the
models necessary to achieve the
intended goal of either under-
standing or communicating. One
of the goals of Agile Modeling is
bare sufficiency. That is, agile
models should accomplish but
not exceed their intended goals.
Agile models have the following
characteristics:

VOL. 4, NO. 12 www.cutter.com

2200 BUSINESS INTELLIGENCE ADVISORY SERVICE

Sweet spot

• Nonexistent modeling

• Poorly thought-out software

• Significant rework

• No documentation

• Excessive models

• Overburdened development

• Loss of focus on working software

• Excessive model maintenance

Agile Modeling goal:

Model enough to explore and document your system effectively,

but not so much that it becomes a burden.

Figure 9 — The goal of Agile Modeling.

http://www.cutter.com

1. Agile models fulfill their
purpose. If the purpose is to
communicate, then the driving
modeling questions are “To
whom?” and “To communicate
what?” If the purpose is under-
standing, then the drivers are
“What is the question?” and
“Who needs to be involved?”

2. Agile models are understand-
able. They are developed using
the correct “language” for the
intended audience, and they
provide just enough detail to
achieve their purpose.

3. Agile models are sufficiently
accurate. Models do not need
to be 100% accurate. Models
must be accurate enough to
serve their purpose. If a logical
data model refers to the cus-
tomer as a “client” rather than
a “customer,” it may still be suf-
ficiently accurate to serve its
intended purpose.

4. Agile models are sufficiently
consistent. Similarly, models
need not be 100% consistent.
Models must, however, be con-
sistent enough to serve their
purpose. If an employee’s first
name appears as a varchar(30)
in the source system model
but as a varchar(50) in the
staging data model, it is clearly
inconsistent. Is this a show-
stopper? Probably not.

5. Agile models are sufficiently
detailed. Sufficient detail
depends on the audience and
purpose. For example, a con-
ceptual architecture like the
one in Figure 4 (on page 11) is

perfectly fine for a high-level
discussion about the flow of
data. However, the developers
need much more detailed logi-
cal and physical data models
for the implementation of that
architecture.

6. Agile models provide positive
value. Does the value of the
model outweigh the cost of
creating and maintaining it? In
many cases, flipchart diagrams
and digital snapshots are just
as valuable as a more detailed
ERwin or Visio diagram, and
the flipchart diagrams are faster
and easier to create.

7. Agile models are as simple
as possible. Limit the level of
detail to only what is needed
to serve the purpose. Limit the
notational symbols to only what
is necessary to serve the pur-
pose. Sometimes a rough block
diagram will achieve the same
purpose as a more formal
entity-relationship diagram
with all of its notational power.

Practice 9: Build the Right
Project Team

The Agile Manifesto value “Indi-
viduals and interactions over

processes and tools” is a recogni-
tion that no formalized develop-
ment process can substitute for
the right people. We have learned
that people are not plug-and-play
resources. As Highsmith states,
“Getting the right people (which
of course implies getting rid of the
wrong ones) and the right man-
agers determines project success
more than any other factor” [7].
My own experience supports this
claim.

Data warehousing requires a
broad and varied set of technical
skills. Additionally, strong linkage
between technical developers and
the business needs of users is crit-
ical. Finally, executive support
for an ADW approach is essential.

Whenever possible, I advocate the
ADW project organizational struc-
ture that is depicted in Figure 10.
In this structure, the overall proj-
ect has a specific executive spon-
sor. The BI manager must have a
clear understanding of the needs
of users as well as an understand-
ing of data warehousing funda-
mentals to help manage user
expectations. The agile project
manager must be well versed in
the APM methods summarized

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 2211

User

community
Development

team

Executive

sponsor

BI manager
Agile

project
manager

Figure 10 — An ADW organizational structure.

previously. The role of the agile
project manager is different from
that of a traditional project man-
ager. This group makes up the
core project steering committee,
which may involve other appropri-
ate participants as well. Project
participant roles are as follows:

1. The executive sponsor:

� Provides vision and direc-
tion to the agile team

� Conducts periodic execu-
tive reviews

2. The agile project manager:

� Serves as the primary point
of contact between the
rest of the stakeholder
community and the devel-
opment team

� Facilitates collaborative
design and development

� Ensures that agile develop-
ers have the necessary
“tools”

� Communicates and collab-
orates with the BI manager

3. The BI manager:

� Represents the user
community

� Liaisons with select users
for reviews and feedback

� Communicates and
collaborates with the
agile project manager

The development team must
comprise the best developers
with the appropriate mix of data

warehousing skills for the project.
Additionally, ADW developers
must have the willingness and
ability to work in an agile environ-
ment. Some extremely talented
data warehouse developers are
uncomfortable with the lack of
comprehensive up-front require-
ments and exhaustive design
that mark traditional development.
In my experience, however, once
they participate in a few iterations,
developers warm to the approach,
because it more accurately reflects
how developers naturally work.

The selection of ADW users is
another critical success factor. It
should be apparent by now that
the role of the user in ADW is any-
thing but passive. Users must be
committed to the project. They
must have a sense of ownership
of project success or failure. They
must also be willing to contribute
their time and effort to the envi-
sioning phase and the frequent
reviews in the exploration phase.
The user community should
include a good cross section of
the entire user population.

In this report, I periodically
referred to “project stakeholders.”
All projects have some involve-
ment by people who are not nec-
essarily developers or users,
but who have some “skin in
the game.” Author and Cutter
Consortium Senior Consultant Rob
Thomsett categorizes stakeholders
into three levels of participants,
each with a different potential
impact on the project [11]:

1. Critical. These participants can
prevent project success before
or after implementation. They
are showstoppers.

2. Essential. These participants
can delay your project from
achieving success, but you can
work around them if necessary.

3. Nonessential. These are inter-
ested third parties. They have
no direct impact on project
success, but if they are not
included, they can become
essential or critical.

WRAP-UP AND FINAL
THOUGHTS

This report discusses how to
transform agile principles into
agile practices that enable devel-
opment teams to create a higher-
quality data warehouse that better
accommodates the needs of the
user as these needs evolve. By
providing users with working fea-
tures early and frequently, agile
data warehouse developers can
avoid many of the pitfalls inherent
in data warehousing projects.
Users’ expectations will naturally
align with what is being devel-
oped and demonstrated. Devel-
opers’ understanding of user
needs will naturally become more
refined and more accurate. The
system will evolve into a high-
value business tool that serves its
intended purpose. Responsibility
for success will be shared equally
among all stakeholders. It is even
possible that users may determine
that the system is sufficiently
complete before the end of the

VOL. 4, NO. 12 www.cutter.com

2222 BUSINESS INTELLIGENCE ADVISORY SERVICE

http://www.cutter.com

scheduled project cycle, reducing
development cost and increas-
ing ROI.

ADW establishes an environment
that promotes continuous innova-
tion by satisfying the requirements
of users. It also promotes system
adaptability by establishing the
ability to rapidly respond to
change and accommodating
future user requirements. ADW
can also increase ROI by deliver-
ing working applications early as
well as reducing development
schedules.

In 2002, IEEE Software reported
that agile methods demonstrated
significant improvements in pro-
ductivity, cost, and cycle time rela-
tive to industry benchmarks. The
findings indicated an increase in
productivity of 15%-23%; a reduc-
tion in development cost of 5%-
7%; and a reduction in time to
market of 25%-50% [9]. Currently,
Cutter Consortium metrics experts
are conducting a similar assess-
ment of agile methods, and pre-
liminary findings look quite
favorable (published results are
forthcoming).

As I mentioned at the beginning
of this report, I have experienced
both data warehousing successes
and failures. In my assessment
of project failures or struggles, I
consistently come to the same
conclusions. To be successful,
data warehousing projects require
a high degree of user/developer
interaction, adaptation, and the
right people. Thus far, my

experiences with applying agility
in data warehousing have been a
resounding success. Perhaps the
best testimonial to the success of
ADW is a recent conversation I
had with my wife. During the days
leading up to the final executive
review and project wrap-up, my
wife wondered how things were
going. When I told her that the
project would be finished in two
days, she asked, “If this is the end
of the project, then why aren’t you
all stressed out and staying up all
night?” She’s obviously grown
familiar with the traditional proj-
ect home stretch. She already
prefers the new approach.

As with anything new, the princi-
ples and practices that I have
been incorporating into ADW are
evolving and maturing with expe-
rience. I recently started a new
ADW project, and so far, so good.
However, I fully expect to incorpo-
rate the lessons learned during
this project into the refinement of
ADW practices. So stay tuned, I
may have an update for you in my
next report. Meanwhile, I hope
you will consider running an ADW
project in your organization. Try it
on a smaller data mart or a revi-
sion of your current data ware-
housing system. If you do it right,
I know you’ll be pleased with
the outcome.

ABOUT THE AUTHORS

Dr. Ken Collier is a Senior
Consultant with Cutter
Consortium’s Business
Intelligence and Agile Project
Management Practices. He brings
more than 15 years’ experience
in advanced computing and tech-
nology to Cutter. With expertise
in data warehousing, BI, software
engineering, and agile methods,
Dr. Collier extends his experience
across many industries. Dr. Collier,
who is also President of KWC
Technologies, Inc., was recently
a VP at KSolutions, Inc., where he
was responsible for BI solutions
and services that included over-
seeing and managing multiple
software development projects.
Formerly, he was the head of the
BI practice in KPMG Consulting’s
Knowledge Management
Solutions group.

Dr. Collier spent 10 years as a
tenured associate professor of
Computer Science Engineering
at Northern Arizona University,
where he developed and taught
graduate-level courses in data-
base theory, data mining, and
software engineering. There, he
also cofounded the Center for
Data Insight, a leading center of
excellence in data mining and
advanced analytics. Dr. Collier
holds a Ph.D. in computer science
engineering from Arizona State
University. He can be reached at
kcollier@cutter.com.

©2004 CUTTER CONSORTIUM VOL. 4, NO. 12

EXECUTIVE REPORT 2233

Agile data warehousing establishes

an environment that promotes

continuous innovation by satisfying

the requirements of users.

Jim Highsmith is a Fellow of
the Cutter Business Technology
Council, Director of Cutter
Consortium’s Agile Project
Management Practice, and is
considered a leader of the agile
methodology movement. He
is a frequent keynoter at Cutter
Summits and symposia.
Mr. Highsmith is President of
Information Architects, Inc. and
has 20-plus years’ experience as
an IT manager, product manager,
project manager, consultant, and
software developer. He consults
with IT and product development
organizations and software com-
panies worldwide to help them
adapt to the accelerated pace
of development in increasingly
complex, uncertain environments.
Mr. Highsmith is the author of
Agile Project Management:
Creating Innovative Products;
Agile Software Development
Ecosystems; and Adaptive
Software Development: A
Collaborative Approach to
Managing Complex Systems,
which won the prestigious Jolt
award for product excellence.
Mr. Highsmith is coauthor of the
Agile Manifesto and a founding
member of the AgileAlliance. He
can be reached at jhighsmith@
cutter.com.

REFERENCES

1. Adelman, Sid, and Larissa Moss.
“Data Warehouse Failures.” The
Data Administration Newsletter,
Issue 14.0, October 2000.

2. The AgileAlliance. The
Agile Manifesto, 2001 (www.
agilemanifesto.org).

3. The AgileAlliance. “Principles
Behind the Agile Manifesto,”
2001 (www.agilemanifesto.org/
principles.html).

4. The AgileAlliance. “Test-Driven
Development.” Version 1.2, June
2003 (www.agilealliance.org/
programs/roadmaps/Roadmap/
tdd/tdd_index.htm).

5. Ambler, Scott W. Agile
Modeling: Effective Practices
for Extreme Programming and
the Unified Process. John Wiley
& Sons, 2002.

6. Cunningham, Ward, and Jim
Shore. “Framework for Integrated
Test.” December 2004 (http://
fit.c2.com).

7. Highsmith, Jim. Agile Project
Management: Creating Innovative
Products. Addison-Wesley, 2004.

8. Kimball, Ralph. The Data
Warehouse Toolkit: The Complete
Guide to Dimensional Modeling.
2nd ed. John Wiley & Sons, 2002.

9. Reifer, Donald J. “How Good
Are Agile Methods?” IEEE
Software, Vol. 19, No. 4, July/
August 2002.

10. TechTarget. Data Warehouse
Failures survey, 2004 (http://
searchdatabase.techtarget.
com/pollResult/0,294375,sid13_
gci921937,00.html).

11. Thomsett, Rob. Radical
Project Management. Prentice
Hall PTR, 2002.

VOL. 4, NO. 12 www.cutter.com

2244 BUSINESS INTELLIGENCE ADVISORY SERVICE

http://www.cutter.com

Ly
nn

 W
in

te
rb

oe
r

Co
ns

ul
tin

g
&

Tr
ai

ni
ng

Agile Success for DW/BI Teams

DW/BI teams that want to benefit from the incremental style
of Agile development face a unique set of challenges. Cutter
Consortium’s Lynn Winterboer will help you succeed.

Introduction to Agile
Analytics
This one-day course explains the Agile
approach in the context of Data Warehousing
and Business Intelligence projects (DW/BI),
providing a helpful foundation for the Agile
Analytics courses that follow. Participants learn
agile concepts and terms and practice apply-
ing them to their own DW/BI projects in class.
Topics covered include:

 Why Agile?

 The Agile Manifesto: guiding values and
principles

 Agile frameworks: Scrum and Kanban

 Agile projects, programs and portfolios

 Requirements: user stories

 Epics and story slicing

 Intro to Agile testing practices

 Intro to the Agile infrastructure

 Getting started: iteration zero

This class is geared to data professionals who
are interested in understanding what “Agile”
means. Data warehouse and BI project
managers; directors and leaders; business
users; architects, designers, developers, and
administrators; testers; business intelligence
practitioners; business analysts and product
owners.

Agile Analytics: Program
and Project Management
Agility calls for planning for what you know
now and being prepared to adjust in the face
of change. Agile Analytics planning is a highly
collaborative process that includes long-range
DW/BI roadmapping to establish future vision,
and short-horizon planning of near-term deliv-
ery projects. This one- to three-day course will
walk you through program roadmapping and
project chartering sessions to introduce you to
a set of effective practices for facilitating col-
laboration between technical team members,
end users, and management stakeholders.
This course will show you how to:

 Charter an Agile BI/DW project using the
Agile project management framework

 Coordinate an effective and collaborative
program roadmapping session

 Use innovation games for ideation,
convergence, and prioritization

 Estimate and prioritize Agile BI/DW
projects and features

 Map features, epics, and stories into
iterations and releases

Some of the topics you’ll discuss may include
program roadmapping; program inception;
project chartering, sizing, and prioritizing;
projects and features; and story mapping.

Agile Product
& Project

Management

Agile Analytics: Developing
in Iterations
While Agile frameworks themselves are fairly
simple in concept, putting the concepts into
practice takes a mindset shift and daily disci-
pline. This two-day course continues the
refinement of the product backlog, expands
on estimation techniques, and explains how a
DW/BI team steps through each iteration.
Participants learn the tactical steps taken by
an Agile team in an iteration and the reasons
and benefits that drive each step. This class
will show you how to:

 Plan and commit to an iteration

 Groom stories in the backlog so they are
ready for the Agile team

 Estimate and prioritize user stories

 Deliver value in each iteration

 Build an Agile data team

Some of the topics covered include iteration
planning, running an iteration, iteration moni-
toring, finalizing an iteration, and building an
Agile DW/BI team.

Agile Analytics: Design
Agile projects require effective collaborative
modeling practices for cross-functional teams.
Most projects are more uncertain in the early
stages than when near completion. Therefore,
the traditional “Big Design Up Front”
approach has proven to be costly and risky
when much of what was originally designed
requires modifications throughout the project.

Agilists focus on “Sufficient Design Up Front,”
in which they do enough initial design to gal-
vanize developers and testers around a shared
understanding of the problem domain, archi-
tecture, and data models. This two-day course
introduces an Agile modeling approach that
strikes the right balance between “Sufficient
Design Up Front” and just-in-time modeling.

While this course is centered around technical
modeling, it begins with problem domain
modeling since just-in-time modeling is very
related to the domain of interest. This course
will help your teams:

 Identify what is (and is not) an Agile model

 Avoid overbuilding solutions and design
only what is needed

 Capitalize on domain modeling

 Identify and understand users, their roles,
and personas

 Leverage use cases to develop user stories

 Determine the right level of up-front design

 Deliver immediately with iteration zero

 Minimize unnecessary work

 Define technical debt and understand how
it impacts your success

 Use safe techniques for making incremental
design changes

Agile Analytics: Testing
Testing discipline, practices and automation
are key enablers for an agile DW/BI team.
This one-day course provides the testing
framework for successful agile data projects,
including details on database testing
strategies, test data sets, story testing,
behavior-driven development (BDD), and test
automation practices and tools.

Agile Consulting
Lynn Winterboer provides expert advice drawn
from her training and experience. Data ware-
house teams and BI teams will benefit from
Lynn’s deep experience in these fields. She
will work alongside your Agile team as she
mentors, guides and teaches. Her services
include:

 Coaching and mentoring of team members
new to Agile

 Assessing and coaching existing Agile
DW/BI teams that want to improve their
Agile mindset and delivery approach

 Facilitating team problem-solving, working
sessions, or planning

 Modeling a particular team role (such as
ScrumMaster or product owner) for a time
to help identify and train a successor.

Lynn Winterboer will help your team get
started on its Agile journey and take Agile
to the next level.

Consulting, Training & Exec Ed

Cutter Consortium consulting, training,

and executive education offerings are

developed and presented by its Senior

Consultants: you’ll benefit from cutting-

edge ideas, methods, and strategies

presented by the thought leaders who

developed them.

Cutter’s extensive offerings can be

customized to meet your organization’s

needs and ensure everyone shares

the same base knowledge and is well-

equipped to take on the challenges

of new ways of doing business.

Lynn Winterboer

Cutter Consortium
37 Broadway, Suite 1

Arlington, MA 02474-5552, USA

Tel: +1 781 648 8700

Fax: +1 781 648 8707

www.cutter.com

sales@cutter.com

Ab
ou

t t
he

 P
ra

ct
ice Business Intelligence

Practice
The strategies and technologies of business intelligence and knowledge
management are critical issues enterprises must embrace if they are to remain
competitive in the e-business economy. It’s more important than ever to make
the right strategic decisions the first time.

Cutter Consortium’s Business Intelligence Practice helps companies take all their
enterprise data, augment it if appropriate, and turn it into a powerful strategic
weapon that enables them to make better business decisions. The practice is unique
in that it provides clients with the full picture: technology discussions, product
reviews, insight into organizational and cultural issues, and strategic advice across
the full spectrum of business intelligence. Clients get the background they need to
manage technical issues like data cleansing as well as management issues such as
how to encourage employees to participate in knowledge sharing and knowledge
management initiatives. From tactics that will help transform your company to a
culture that accepts and embraces the value of information, to surveys of the tools
available to implement business intelligence initiatives, the Business Intelligence
Practice helps clients leverage data into revenue-generating information.

Through Cutter’s subscription-based service and consulting, mentoring, and training,
clients are ensured opinionated analyses of the latest data warehousing, data
mining, knowledge management, CRM, and business intelligence strategies and
products. You’ll discover the benefits of implementing these solutions, as well
as the pitfalls companies must consider when embracing these technologies.

Products and Services Available from the Business Intelligence Practice

• The Business Intelligence Advisory Service
• Consulting
• Inhouse Workshops
• Mentoring
• Research Reports

Other Cutter Consortium Practices
Cutter Consortium aligns its products and services into the nine practice areas
below. Each of these practices includes a subscription-based periodical service,
plus consulting and training services.

• Agile Software Development and Project Management
• Business Intelligence
• Business-IT Strategies
• Business Technology Trends and Impacts
• Enterprise Architecture
• IT Management
• Measurement and Benchmarking Strategies
• Enterprise Risk Management and Governance
• Sourcing and Vendor Relationships

Senior Consultant
Team
The Senior Consultants on Cutter’s Business
Intelligence team are thought leaders in the
many disciplines that make up business
intelligence. Like all Cutter Consortium
Senior Consultants, each has gained a stellar
reputation as a trailblazer in his or her field.
They have written groundbreaking papers and
books, developed methodologies that have
been implemented by leading organizations,
and continue to study the impact that business
intelligence strategies and tactics are having
on enterprises worldwide. The team includes:

• Verna Allee
• Stowe Boyd
• Ken Collier
• Clive Finkelstein
• Jonathan Geiger
• David Gleason
• Curt Hall
• Claudia Imhoff
• André LeClerc
• Lisa Loftis
• David Loshin
• David Marco
• Larissa T. Moss
• Ken Orr
• Raymond Pettit
• Ram Reddy
• Thomas C. Redman
• Michael Schmitz
• Karl M. Wiig

http://www.cutter.com

