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Semantic modeling has great potential for dealing with the vast

streams of new data that organizations will encounter in the future.

Making semantic modeling a reality requires the development of a

new set of computer languages and protocols, termed M, to connect

models to other models, data to models, and data to data. This

Executive Report discusses semantic modeling and prototype

applications of M in ERP systems, retail operations, and agriculture.
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We live in a world filled with data.
The success of business depends
on the underlying flow of data and
information for effective manage-
ment. Since the 1960s, the advent
of low-cost data collection meth-
ods, such as bar codes, along with
advances in database technology
have drastically improved the
amount, quality, and timeliness of
data in all organizations [45]. This
long-term trend has contributed to
significant improvements in pro-
ductivity, especially in the areas of
logistics, supply chain manage-
ment, quality assurance, market-
ing science, and the financial
management of complex organi-
zations.

Rapidly emerging technologies
such as Auto-ID and the Electronic
Product Code (EPC) combined
with interactive sensor networks

will create even larger data
streams of greater complexity. By
some estimates, the amount of
data generated each year is grow-
ing by as much as 40%-60% for
many organizations. EMC, a lead-
ing manufacturer of data storage
devices, recently noted that “com-
panies are struggling to figure out
how to turn all those bits and
bytes from a liability into a com-
petitive advantage” [34].

Dealing with increasing volumes
of data will require innovative
standards and information archi-
tectures to improve integration
and communication between
hardware, software, and business
entities. However, the bigger ques-
tion is this: how are we going to
analyze and make sense of these
large volumes of data? 

A new research initiative, the MIT
Data Center, addresses this impor-
tant issue of generating value from
data. The mission of the Data
Center is to create innovative
ways of making sense of data
through new computer languages
and protocols. Semantic modeling
provides a general description of
these new technologies that will
eventually connect data and vari-
ous mathematical models
together for improved analysis,
business decision making, and
better day-to-day operations
within large and small systems [9,
43]. This greater connectivity will
spur new waves of productivity as
managers learn to take advantage
of the models and data within and
outside of their organizations. This
development represents the next
logical step for the Internet.
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The specific activities of the Data
Center involve the research and
development of a new computer
language called M that will
achieve Semantic Modeling in
practice. David Brock — coauthor
of this report, principal research
scientist at MIT, and founder of the
MIT Data Center — is credited
with the idea of M. Designed as
open source code, M serves as
the base system capable of linking
models to other models, data to
models, and data to data. All of
these activities will occur through
an Intelligent Modeling Network
that spans organizations. The con-
ceptual design of M is such that
network growth, in terms of
adding more models and data,
occurs at minimal cost to end
users. This lowers the marginal
cost of expansion, thus creating
an incentive for active participa-
tion. A large Intelligent Modeling
Network will offer great value to
industry.

This Executive Report discusses
the framework, details, and back-
ground of proposed standards for
a language and protocol — M —
that will enable computers to
describe and share models and to
assemble new models automati-
cally from a general repository [6,
7]. This will substantially increase
the “clockspeed” [17] of modeling
and the computational efficiency

of applying models to perform the
functions of “sense,” “under-
stand,” and “do” that compose the
underpinning of creating smart
objects within supply chains, in
addition to other business activi-
ties of importance in achieving
competitive advantage. The new
computer language infrastructure
includes open standards with two
specific purposes: (1) communica-
tion of models between comput-
ers to create interoperability; and
(2) the ability to run distributed
models across the Internet. 

In a sense, this effort is a step
beyond linking the physical world,
the underlying concept that has
made Auto-ID technology success-
ful. Networks, of physical objects
or of abstractions like models,
share the premise that leaps in
productivity arise from the free
flow of information. Creating an
Intelligent Modeling Network will
accelerate the flow of information
to the advantage of many busi-
nesses and will form the back-
bone of a new type of Internet.
Simply put, forging stronger links
between models and data will
result in productivity gains for the
business.

It is important for IT managers to
understand the direction of vari-
ous types of connective technol-
ogy research, including Semantic
Modeling and M, as a means of

planning for future computing
systems. Some element of this
planning becomes inevitable if
firms desire to get the greatest
benefit from the explosive growth
in data available within businesses
and entire supply chains. Com-
puter languages and architectures
currently exist that could enable
immediate intra-organizational
implementation of interoperable
systems on a limited scale.
Understanding these technologies
is an important first step in orga-
nizing computing functions to
accommodate the increasing
amounts of data expected during
the next several years. This report
forms a solid base for IT profes-
sionals to gain insight into the
emerging field of Semantic
Modeling.

The sections that follow describe
initial research on designing a net-
work for abstract objects like
models, including the under-
pinnings of Semantic Modeling
and an overview of M.

The final part of this report
describes three prototypes of
Semantic Modeling currently
under development at the Data
Center. The prototypes deal with
enterprise resource planning
(ERP) systems, retail operations
(lot sizing for short lifecycle
products), and agricultural
modeling (harvest risk) [42]. 
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THE MODERN CONTEXT
OF MODELING

There is no question that recent
developments such as Auto-ID
technology [8, 12, 35] will further
increase the amount of data avail-
able for business decision making
by using computing systems that
sense and interact with the physi-
cal world. In the field of logistics
management alone, these com-
puting systems open new oppor-
tunities in terms of track and trace
[25, 39], theft detection [26],
improved service parts inventory
management [24], and the control
of production and logistics within
military [14] and civilian supply
chains. However, analyzing the
large volume of raw data pro-
duced by Auto-ID technology in
an orderly way requires the use
of new mathematical models
to provide representations and
understanding.

Managers from all business disci-
plines frequently comment that
the process of building mathemat-
ical models lacks productivity.
Implementing mathematical mod-
els is complex, time-consuming,
and requires advanced technical
capabilities and infrastructure.
Although there is a strong history
of applying models to help man-
agers make decisions about com-
plex systems, specialists often
develop these comprehensive
models internally within business
organizations or academia. This is
commonly an application-specific
job, and the same model-building
technique must be reinvented
for each new situation. Though

internal development can lead to
significant breakthroughs, this
approach depends on trial and
error, mathematical intuition,
and an extensive knowledge of
technical publications. 

In the 1980s, software companies
began embedding models into
software packages installed
on network servers, enabling
organizational-wide modeling
ability. This approach improved
the productivity of modeling but
limited users to a relatively small
set of proprietary methods for
problem solving. In all cases,
internal development, or pack-
aged software, models have
become highly structured with
few opportunities for creative
applications. Proprietary systems
also reduce the possibility of shar-
ing models between business
applications that exist outside the
computing environment under
which the original model imple-
mentation took place.

Part of the problem can be traced
to traditional thinking about infor-
mation theory. Today computers
are faster, memory is cheaper,
and bandwidths are plentiful, yet
the tasks performed on these
machines, such as e-mail, docu-
mentation, and data storage,
are nearly the same as they were
10 years ago. Computers primarily
store, manipulate, and transmit
data to people. Without direct
human interaction, computers
essentially do nothing. 

Yet computers have far greater
unrealized capability. With current

technology, it is possible to design
large-scale Internet systems that
might allow computers to store
and analyze vast quantities of
information and to share these
results automatically with other
computers throughout the world.
Networks of computers have the
potential to operate independently
or collectively without human
interaction.

The failure to take full advantage
of the computer’s potential lies
not in the hardware or communi-
cations technologies but in the
lack of languages and standards
that allow systems to share data
and interface models across mul-
tiple applications and domains.
The consensus is that this lack
of integration is a barrier to
increased productivity for a wide
range of situations.

Semantic Modeling challenges
the long-standing philosophy that
emphasizes individual effort in
formulation and implementation
of mathematical models. The
ultimate goal is to build an inte-
grated modeling structure to
accelerate the development of
new applications.

RECENT DEVELOPMENTS
THAT SHOW THE FUTURE

Some important premises of
Semantic Modeling already exhibit
signs of practical implementation.
These include greater integration
of data and information, improved
search capabilities, and a relative
approach to information and data
organization.
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Amazon.com has recently
announced A9, a tool that can
complete searches of information
located on HTML Web pages as
well as in the text of thousands of
books [22]. Eventually, A9 hopes
to incorporate the ability to per-
form even more specialized
searches by accessing other pro-
prietary databases. The chief
executive of A9 has commented
that he wants to help curb infor-
mation overload by allowing peo-
ple to organize the Web in a more
personal way. With A9, each user
can have his or her own view of
information gathered by Internet
searches. All of A9’s activities
point toward the Semantic
Modeling goals of greater integra-
tion, improved search capabilities,
and a relative approach to orga-
nizing information. 

Outside of the Internet, other
developments also point toward
greater integration. For example,
in the US, there are billions of
embedded microcontrollers in
cars, traffic lights, and air condi-
tioners, which provide specialized
instructions for control based on
sensing specific aspects of the
environment. These microcon-
trollers all act in total isolation.
Ember, a company headquartered
in Boston, Massachusetts, has
developed a “mesh network” that
holds the potential of allowing all
of these microcontrollers to com-
municate with one another [11].
One practical application of mesh
network technology involves the
integration of home electrical

systems without the need for
hardwiring. Ember markets a
device that allows a homeowner
to turn off all electric lights
through a single switch that
does not require rewiring. There
are almost endless opportunities
to establish communication con-
nections for a wide variety of
microcontrollers.

Just as Internet searches cannot
gather all potentially useful infor-
mation, and microcontrollers lack
integrated communication within
a network, the science and appli-
cation of mathematical modeling
often occurs in isolation with only
occasional reporting at confer-
ences and in academic journals.
Often these means of sharing
ideas are somewhat closed, with
little information reaching the
business world. With the explo-
sion of data streams, models
provide a useful means to make
sense of data. In the past, the
lack of widespread use of models
has been due to several factors,
including an inability to apply
models to data quickly. Over-
coming these limitations is a com-
plex task. One option to meet this
challenge involves building net-
works based on semantics. The
next section explores this idea in
greater depth.

A SEMANTIC-BASED 
INTERNET SEARCH

Existing Internet standards do
not provide any semantics to
describe models precisely or
to interoperate models in a

distributed fashion. For the most
part, the Internet is a “static repos-
itory of unstructured data” that is
accessible only though extensive
use of search engines [16, p. 377].
Though these means of finding
data have improved since the
inception of the Internet, human
interaction is still required, and
there are substantial problems
concerning semantics. In general,
“HTML does not provide a means
for presenting rich syntax and
semantics of data” [16, p. 7].

For example, one of the authors of
this report recently did a search
for “harvest table, oak” hoping to
find suppliers of home furniture.
Instead, the search yielded a num-
ber of references to forestry and
the optimal time to harvest oak
trees. Locating the URLs relating
to furniture required an extensive
review of a number of different
Web sites. This time-consuming
process of filtering can only be
accomplished though human
involvement.

With inaccurate means of per-
forming specific searches based
on one semantic interpretation of
data, information, or models, it is
nearly impossible for the Internet
to advance as a productive tool
for modeling.

Types of Webs

The problem of semantics stems
from the fact that keywords are
the means used to describe the
content of Web pages. Each
keyword may have multiple
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meanings, creating a situation of
great difficulty when attempting to
accomplish an exact search. The
difficulty increases by an order of
magnitude when attempting to do
phrase-based searches. Without
exact search capability, it is
impossible to create any sort of
machine-understandable lan-
guage for the current “Web of
Information.”

Though the search engine issue
has not been resolved, industry
forces are pushing for a new type
of Internet, characterized as the
“Web of Things.” Driven by devel-
opments in Auto-ID technology
and ubiquitous computing, the
Web of Things aims to link physi-
cal objects to the Internet using
radio frequency identification
(RFID) tags as real-time communi-
cation devices and to “shift from
dedicated computing machinery
(that requires user’s attention, e.g.,
PC’s) to pervasive computing
capabilities embedded in our
everyday environments” [46]. 

Aiding this effort is EPCglobal,
Inc.,1 an international standards
organization formed by EAN
International (to be renamed GS1)
and the Uniform Code Council
(UCC; to be renamed GS1 US).
EPCglobal administers the EPC
numbering system, which pro-
vides the capability to identify
an object uniquely. With serial
identification for physical objects,
searches accomplished through
Internet search engines or propri-
etary IT infrastructures will be

much more effective in finding
an exact match. This provides the
ability to do track and trace across
entire supply chains as well as
other computerized functions
important to logisticians. Linking
the physical world, using Auto-ID
technology and ubiquitous com-
puting, will form the basis for a
revolution in commerce by pro-
viding real-time information and
enabling smart objects [37, 41, 44]. 

Impressive as the effort to create
the Web of Things is, it still does
not address the question of
semantics in describing objects
beyond the use of a simple serial
number. There exist a large num-
ber of abstractions, such as math-
ematical models, that cannot be
characterized by a unique serial
number no matter how sophisti-
cated the syntax. Without the abil-
ity to provide unique identification
of an abstraction, the Internet will
serve little useful purpose in link-
ing mathematical models together
in a way similar to the manner
that the Web of Things will even-
tually link the physical world. 

In the future, the definition of a
model and the sharing of models
through a network will become as
important as the model itself. To
accomplish this higher goal, the
Internet must become a “Web
of Abstractions,” in addition to a
Web of Information and a Web
of Things.

Creating a Web of Abstractions
requires a semantic definition of
models that is precise and can be

machine-understandable. Given
this capability, models can be
searched, organized, categorized,
and executed — sequentially and
in parallel — creating multiple,
large-scale synthetic environ-
ments. These synthetic modeling
environments will exist only in vir-
tual reality and offer the potential
for creating a dynamic metastruc-
ture for specific classes of models. 

Through a Web of Abstractions,
models can be matched much
more quickly to practical prob-
lems, along with the available
data, and shared beyond single
end-user applications. This capa-
bility is of great value both to prac-
titioners and researchers alike
who are interested in gaining the
maximum value in modeling
logistics for practical decision
making.

The Representation 
of Model Schema

Previous research in computer sci-
ence consistently states that the
missing structure necessary to
create a Web of Abstractions is an
ontology. Simply stated, “An ontol-
ogy specifies what concepts to
represent and how they are inter-
related” [16, p. 34]. This structure
provides order when conducting
searches and serves the important
purpose of creating a crude form
of intelligent behavior. For exam-
ple, one group of researchers
involved in the early aspects of
using computers to create artifi-
cial intelligence concluded that
“the clue to intelligent behavior
whether of men or machines, is
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highly selective search, the drastic
pruning of the tree of possibilities
explored” [15, p. 6]. Properly con-
structed, an ontology reduces
search time for abstractions, cre-
ating a free flow across a network.
With the thousands of models that
do not find widespread applica-
tion in practice, the capability to
conduct a quick and accurate
search improves the chances
that more applications will occur.

There are two important aspects
to consider when using an ontol-
ogy to organize abstractions
like mathematical models for
machine-understandable searches.
First, the ontology assumes that a
semantically precise definition of
an abstraction (model) exists.
Absence of this in the current
schema presents a problem
because the classification of
mathematical models depends
on keywords that might have dif-
ferent meanings under different
contexts (e.g., planning and
scheduling).

Second, because meaning arises
by the way one model is con-
nected or related to other models,
an ontology also serves an indirect
definitional function. This is impor-
tant in visualizing the big picture of
the relationships between different
types of models. It also drastically
decreases search time by reducing
the number of possibilities in
reaching an exact semantic
match. However, there are signifi-
cant drawbacks concerning the
establishment of an ontology that

is robust enough to include all
mathematical models in existence.

The Limitations of Representing
Models Using Ontologies

By definition, ontologies are rigid
and inflexible and assume that
one absolute definition exists for
each knowledge element. The
idea is to establish a set structure
of definitions and relationships
between different abstractions
(models) that are canonical and
eternal. This means that the use-
fulness of an ontology for model-
ing depends on intensive study
and rigorous examination of the
canon put forth. It is unrealistic to
believe that any independent body
of academics or practitioners
could formulate an all-inclusive
canon that would stand the test of
time. The ontology approach is a
throwback to the philosophy of
scholasticism that dominated
Western thought during the high
middle ages. History has proven
that canonical structures, meant
to organize and communicate
knowledge, often have the unin-
tended outcome of restricting the
adoption of further innovations
that exist outside the bounds of
the canon.

In addition, rigid ontological struc-
tures lack the ability to adapt
based on inductive reasoning.
There is no ability to learn auto-
matically from specific examples
that occur through time and to
generalize to form a new element
of knowledge contained in the
ontology. This was the major

limitation of expert system archi-
tectures and a leading reason for
the decline in the application of
expert systems in practice. 

A final major drawback involves
the difficulty in merging separate,
distinct ontologies into a whole.
For all the advantages of a rigid
structure in organizing abstractions
(models) and reducing search
time, there is no easy translation
or interface to integrate two differ-
ent classes of models. We believe
that advances will take place
only through the free exchange
between widely disparate fields
of modeling. Without this ability,
efforts in establishing computer
languages to share and interoper-
ate models will be difficult. 

A Relative Approach to Model
Representation

To overcome the disadvantages of
traditional ontologies in computer
science, we advocate the aban-
donment of a single, unified struc-
ture to represent abstractions
(models).2 The reality is that the
representation of objects and their
interrelation is almost entirely
dependent on a person’s view-
point. In other words, as opposed
to a single ontological representa-
tion for models, we propose a
more flexible means of descrip-
tion, so that others may construct
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their own particular representa-
tions and unique ways for con-
necting them together.

Furthermore, our approach pro-
vides the means for building
dynamic, on-the-fly model tax-
onomies; that is hierarchical
organizations of models that are
generated as a function of an indi-
vidual’s point of view. In our sys-
tem, there is no one classification
scheme (ontology) but rather,
multiple ones. Simply put, several
ontologies can exist simultane-
ously with no contradictions.

With this approach, a model
is an atomic element that may
subscribe to one or more classifi-
cation hierarchies. These tax-
onomies may be mutually agreed
upon industry standards — essen-
tially, commercial data dictionar-
ies, proprietary schemes, or
dynamically generated groupings
for particular applications. In all
cases, the representations, rela-
tions, and organization of models
will be dynamic and configurable
to the task. Later in this report, we
provide an example of model rep-
resentation that is integral to our
view of the schema necessary to
create the Web of Abstractions.

In the next two sections, we dis-
cuss the practical and theoretical
aspects of combining advances in
computer science with the exist-
ing body of mathematical models
that have been developed by
logistics researchers over a period
of many years. The prospect of
doing Semantic Modeling for

large-scale business applications
draws upon the intersection of
computer science and the prac-
tice of modeling. We anticipate
other disciplines such as linguis-
tics, graph theory, and discrete
mathematics to be important
in the development of Semantic
Modeling. 

SEMANTIC MODELING

Most would agree that modeling is
a craft industry analogous to the
production of automobiles prior
to the advent of the assembly line.
Although models are ubiquitous
management tools, they are, for
the most part, isolated from one
another. In other words, a model
from one domain, such as
weather forecasting, does not
interact with another, such as
logistical systems.

The reason for this is obvious.
Until very recently, humans were
the only ones who built, used,
and shared models. Our limited
cognitive ability naturally restricts
the number and diversity of
models we can accommodate.
Computers, on the other hand,
have the ability to execute and
communicate models with vast
numbers of other computers.
With ever-increasing processing
power, data storage, and network-
ing bandwidth, the computing grid
is poised to revolutionize our abil-
ity to understand and manage the
physical world. With its standards
and languages, the Internet pro-
vides the backbone for communi-
cation, but it does not provide the

mechanism for describing and
integrating diverse models. The
future is a form of modeling on
demand similar to other efforts
in establishing a computer grid
that resembles electric power
distribution [28].

Our goal is to turn modeling into
a mass production system based
on standardization, scale, and
interoperability. In summary, this
means that a Semantic Modeling
language capable of achieving this
functionality must include the fol-
lowing [16, p. 8]:

1. “A formal syntax and formal
semantics to enable automated
processing of their content”

2. “A standardized vocabulary
referring to real-world seman-
tics enabling automatic and
human agents to share infor-
mation and knowledge” 

Achieving this goal will mean that
practitioners can produce models
in a timely manner with greater
productivity and relevance. This
anticipates a new era for comput-
ers in terms of insight and aware-
ness, and it implies the ability to
organize data and define the
inputs and outputs of models in
a semantically precise way.

The mechanism we put forth to
mass produce models and create
interoperability draws inspiration
from current efforts to improve the
search capabilities for the Web of
Information. The World Wide Web
Consortium (W3C) is responsible
for initiating select efforts to
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improve overall Web searching
capabilities.3 Some of the initial
work conducted by W3C forms a
reference base for our research in
developing and implementing a
Web of Abstractions.

Each abstraction (model) has
unique elements that can be
defined just as a language has
a specific syntax and grammar.
Defining these elements alone will
be of no benefit unless there is a
protocol, or computer language,
to communicate and execute the
elements of models across a large
network like the Internet. Our
efforts in establishing Semantic
Modeling are grounded in the
idea of having data and models
defined and linked in a way that
can be used by machines not just
for display purposes but also for
automation, integration, and reuse
across various applications.
Accelerating the reuse of model
elements across vast networks of
users will lead to the mass pro-
duction of models, which will in
turn be of great benefit to practi-
tioners. In addition, distributed
modeling, a set of geographically
separated model elements work-
ing simultaneously in parallel,
adds additional prospects for
large-scale parallel computing.4

This capability will improve the
utilization of desktop computers
and provide grids of almost unlim-
ited modeling power.

Though W3C provides something
called a Resource Description
Framework (RDF) that defines the
basics of representing machine-
processable semantics [16, p. 9],
no formal computer language has
been put forth that enables the
sharing of models or doing large-
scale modeling in parallel. The fol-
lowing section gives an overview
of our vision for a computer lan-
guage and protocols that achieve
Semantic Modeling. 

SYSTEM ARCHITECTURE

The fundamental idea is to design
a family of standards that enables
the creation of models that inte-
grate automatically into an execut-
ing synthetic environment. In this
way, developers can formulate
models within their particular
areas of expertise and know that
the resulting models will interoper-
ate in a shared environment. We
believe it is possible, with suffi-
cient care in the definition, to cre-
ate such a language that is both
precise and expressive in its
description yet constrained in its
breadth to ensure compatibility.

The goal is to create synthetic
environments that receive
data from the physical world (e.g.,
through Auto-ID technology) and
then produce inferences, interpre-
tations, and predictions about the
current and future states of the
environment. 

This interpolated or extrapolated
state data is essential for any auto-
mated decision system. In other

words, the estimated environmen-
tal states support networks of
decision making algorithms so
that they can make informed deci-
sions and deliberate plans (that
feed back to the physical world.)
This type of modeling is essen-
tially the underlying basis for
automated control, monitoring,
management, and planning.

M is currently in the initial stages
of research and development
at the Data Center. Comprising
several important elements, M’s
purpose is to serve as the funda-
mental language to link models
and data together.

In essence, M resembles peer-to-
peer networking. In this type of
architecture, computers running
M can communicate and share
models and data as equals. There
are no servers. The important ele-
ment in achieving peer-to-peer
sharing is a new vision of how to
attach a semantically precise defi-
nition to a model or data element,
along with a series of computer
languages and protocols to group,
sort, interconnect, and match
semantic definitions in a machine-
understandable way. With this
approach, the relationships
between a large group of models
and data — all preassigned, pre-
cise semantic definitions through
M — provide a mapping of con-
nections between models and
other models, data and models,
and data to data, all within a net-
work. Deeper meaning arises
through the visualization of these
connections, either individually or
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group to group. Figure 1 provides
a simple representation of model
connections where the output of
one model can become the input
of another model.

To achieve these connections, the
structure of M must be made up
of two languages and two proto-
cols. A comprehensive dictionary
of words and various meanings is
also included. The following pro-
vides brief definitions for each
element of M.

Data Modeling Language
(DML) is a semantic for
describing modular, interop-
erable model components in
terms of individual outputs,
inputs, and data elements.

Data Modeling Protocol
(DMP), once a connection
between models and data is
established, coordinates the
communication sequence
between the computing
machines that host models in
terms of outputs and inputs.

Automated Control Language
(ACL) establishes the connec-
tion between models and data
based on DML (descriptor of
inputs, outputs, and data) and
ACP, which locates the appro-
priate connections.

Automated Control Protocol
(ACP) helps model outputs
and inputs locate one another
within a network, even if the
individual models exist in dif-
ferent host systems and organi-
zations. The ACP identifies

potential connections and
takes priority over the DMP,
which is a coordinating activity
after achieving connections
through the ACL.

The dictionary is a common
resource containing words with
multiple meanings. The dictio-
nary will utilize established
sources such as the Oxford
English Dictionary, WordNet,
and various specialty dictionar-
ies from the medical field,
operations, logistics, and other
disciplines. 

With M, model inputs, outputs,
and data elements are described
through DML by using words from
the dictionary to express a precise
semantic. In cases where a word
has multiple meanings, only one
definition will be used. Because
multiple words, akin to a phrase

or simple sentence, best provide
accurate descriptions of outputs
and inputs for models and data
elements, we envision the use of
graphs to express syntax, thus giv-
ing a precise semantic meaning.

The graphs produced through M
to represent outputs, inputs, and
data elements will need to be of
the form that operations, such as
sorting, can be applied using com-
puter code. The ACP helps to
locate graphs with commonalities
that are resident in a network.
These commonalities might
include: (1) similar structure; (2)
an output of one model that might
match the input of another model;
(3) a connection between a data
element and the inputs for a par-
ticular model; or (4) a connection
between two or more data ele-
ments contained within the
network.

©2005 CUTTER CONSORTIUM VOL. 5, NO. 1

EXECUTIVE REPORT 99

Model B

Model A

Data Element

Data Element

Data Element

Data Element

Data Element

Data Element

Data Element

OUTPUTS

INPUTS

Figure 1 — Connecting models.



Upon enumeration of appropriate
matches, the ACL makes a con-
nection and the DMP coordinates
operation in parallel across the
separate computing platforms. We
anticipate the use of graph theory,
linguistics, and discrete mathe-
matics to refine the conceptual
framework for M and Semantic
Modeling.

The basic premise is that models
and data are similar to building
blocks where a precise semantic
definition aids in making connec-
tions. As a practical matter, we are

currently examining the use of
models and data contained in
computer spreadsheets as a
means of demonstrating the initial
feasibility of M and Semantic
Modeling. After prototype testing,
M will become a standard set of
languages and protocols. 

It is important to note that M
substantially differs from the
Semantic Web. The goal of M is to
build an interoperable environ-
ment specifically for models and
data that depends on a common
dictionary to define words used

for semantic definitions, but not
complete ontologies that attempt
to categorize knowledge ele-
ments. The relative, distributed
approach of M is in contrast to
the RDF Schema put forth by the
Semantic Web, which includes
a syntactical convention and a
“schema, which defines basic
ontological modeling primitives
on top of RDF” [16, p. 9]. 

In summary, Figure 2 shows the
interaction of the major compo-
nents of M.

AN EXAMPLE FROM LOGISTICS

Researchers at the 2001 Logistics
Educators Conference presented
an interesting article about the
implication of advanced planning
and scheduling systems (APS) on
supply chain performance [10].
The article also contained an
appraisal of the changes needed
in academic curriculums to
ensure that students receive
proper education about the role of
APS in supply chain management.
Based on these comments, we
decided to investigate the litera-
ture of finite capacity scheduling
(FCS), an important subsegment
of APS, to find an initial example
for demonstrating the aspects of
Semantic Modeling.

In general, there are many solution
methods for FCS. A nonexhaustive
list includes mathematical pro-
gramming, simulation, heuristics,
genetic algorithms, neural net-
works, theory of constraints, and
expert systems. Of this list, the first
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three are frequently found in prac-
tice, with the most common being
heuristics. About 80% of commer-
cial scheduling packages use
heuristic solution approaches [31]. 

A detailed analysis reveals that
each model for FCS exhibits
primal properties based on the
solution method or algorithms
employed [36]. Table 1 summa-
rizes the capabilities of each
model in its pure application
without modification.

Understanding that each model
class for FCS listed in Table 1 —
math programming, simulation,
and heuristics — does not fully
address all attributes commonly
found in commercial FCS prob-
lems is important in supporting
the belief that future advances will
come from combining existing
models in new ways to address a
wider range of attributes.

A recent article provides sub-
stantial background about FCS
from the perspective of practical

implementation, including several
references to a group of models
that provide different FCS capa-
bilities [40]. Essentially the entire
group deals with the same sched-
uling problem. This body of
research provides insight for a
simple example that highlights
how elements from different
models can combine to produce
new models with better perfor-
mance, thus demonstrating the
importance to practitioners and
researchers of developing a com-
puter language and protocols to
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Attribute Math 
Programming  

Simulation Heuristic 

Hold time  X X 

Queue time  X X 

Customer service   X  

Forecast bias   X  

Set-up cost X  X 

Holding cost  X  X 

Overtime cost  X  X 

Capacity X  X 

Production lot size  X  X 

Production sequence  X  X 

Customer due date X X X 

Family structure  X   

X = Functional  

Table 1 — Comparison of Different Scheduling Approaches



facilitate this process with some
degree of automation.

The example set forth below deals
with various types of models used
to schedule production for manu-
facturing lines common to the
consumer-goods industry. With
high demands for customer ser-
vice, it is important for consumer-
goods companies to schedule the
production of end items with
proper consideration given to the
risk of being out of stock as well
as to the capacity constraints that
might limit production in times of
peak demand. Based on state-
ments made in the literature, all of
these models were implemented
at the same consumer-goods
company during a span of 15
years. The following provides a
description of each model:

Model A — Deterministic
Simulation [38]. With bias-
adjusted safety stocks that use
customer-service levels as an
input, production planning
occurs for each item indepen-
dently. All items run on a pro-
duction line are summed to
give a total capacity load. This
model initially assumes that
infinite capacity is available
for production and does not
consider set-up or inventory-
carrying cost. However, the
model does provide a method
for safety-stock planning that
considers dynamic forecasts
and the impact of forecast bias
in planning safety-stock levels.

Model B — Mathematical
Programming [1]. Exploiting

the fact that consumer goods
have a family structure defined
by package size, production
can be planned using a two-tier
hierarchichal structure in
which product families are
sequenced, with disaggregation
taking place to form end-item
schedules. This approach pro-
vides optimal solutions based
on cost and utilizes an innova-
tive mathematical formulation
that yields near instantaneous
solutions to mixed-integer math
programming problems.

Model C — The MODS
Heuristic, Sequence
Independent [3]. An approach
to scheduling using the
Modified Dixon Silver (MODS)
method to calculate near-
optimum production schedules
based on inventory and set-up
costs and inventory set-up time.

Model D — The MODS
Heuristic, Sequence
Dependent [13]. Building
on the MODS method, this
approach utilizes the nearest
neighbor variable origin
(NNVO) heuristic as a second
step to sequence production
based on a “from-to” table of
changeover costs between
items. 

Relationship to Proposed System
Architecture

By looking at working models as
an aggregation of interchangeable
elements, the possibilities for
identifying new combinations are
numerous. Using our system defi-
nitions, the DML describes various

elements of models, such as the
bias-adjusted safety-stock method
used in Model A, that are modular
and interoperable. The ACP pro-
vides a mechanism for various
model elements to locate each
other across a network like the
Internet. Analyzing the examples
of Models A, B, C, and D, it
appears that the developers
located model elements as a
function of many years of study
in the FCS area combined with
mathematical intuition.

In the situation where distributed
modeling takes place, the DMP
allows for communication
between active models located
on separate computing platforms.
For example, bias-adjusted safety
stock (Model A) might be calcu-
lated on one computing platform
with the results being transferred
to another platform that contains
the MODS heuristic (Model C). In
this case, the DMP establishes the
order to run the models and the
timing of data transmissions. The
final part of our system architec-
ture is the ACL, which establishes
the formal connections based on
the DML descriptors of model
inputs, outputs, and data. The ACL
is needed because the decisions
from one model (outputs) might
become data (inputs) for another
model. This is the case for Model
A, which can provide safety stocks
(output) as an input to Models B,
C, and D. The ACL matches the
outputs of one model to the
appropriate inputs for another
model.
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Establishing Semantics 
for Logistics Models

The starting point for the goal of
building an interoperable system
based on DML, ACP, DMP, and ACL
is a semantically precise definition
of a model. Given that most
model descriptions depend on
keywords, which might have a
number of different meanings, we
propose an alternative approach
to define a model. The intent of
DML is to label models semanti-
cally in such a way that common
elements can be machine under-
standable and interoperable.

Our approach to the semantic-
labeling problem involves forgoing
attempts to describe the various
algorithms employed in each
model. Rather, we focus on the
data (inputs) and the decision
variables (outputs) required for
each model as a unique base for
machine understanding and the
grouping together of common
models. This assumes that a spe-
cial, unique relationship exists
between a model and its data.

As a practical matter, we believe
that a definition of a model in
terms of data inputs will provide a
more precise semantic than a def-
inition derived from classifying the
algorithm used for each modular
component (model). Keyword
definitions for the complex algo-
rithms that comprise models are
notorious for having different
semantic meanings. In addition,
the keyword descriptions often
have no meaning at all to business

practitioners that do not have
extensive formal training in logis-
tics or management science.

Table 2 illustrates how data inputs
can become a tool for establishing
semantic meaning. 

From Table 2 we note that Models
A, B, C, and D all share the data
inputs D1, D2, D3, D4, and D7. This
provides a natural way to catego-
rize Models A, B, C, and D into the
same group. This also implies that
models using the same data will
deal with the same initial problem
(in this case, scheduling of pro-
duction lines for the consumer-
goods industry) and that all four
models are interoperable with
respect to the data. Any of the four
models could be applied to the
same data set to gain the result of
a production schedule. By defin-
ing a model in terms of its data
inputs, the outcome is a precise
semantic that allows assignment
of the model to a common group.

Further, the use of input data as a
means of establishing semantics
also aids in distinguishing differ-
ences between models in a
group. Likely, the data inputs for a
group of models will not be identi-
cal if different solution methods
(algorithms) are used. From Table
2, we notice that none of the four
models share all the same data
inputs yet all of these models are
capable of producing a schedule
(output) for a manufacturing
process characteristic of the con-
sumer-goods industry. This offers
a way to identify differences

between models within the same
group as categorized by data. This
also provides an indirect indica-
tion of the solution methods (algo-
rithms) employed.

For example, Models B, C, and D
share the commonality of requir-
ing a capacity limit (D11), inferring
that these models belong to a
class of FCS systems and perhaps
are interoperable. In another case,
Table 2 shows that Models A, B, C,
and D all have service level as a
parameter (D7), implying that this
class of models includes some
aspect of safety stock. Other
safety-stock models, not men-
tioned in this example, might offer
alternative ways to calculate
safety stocks using the same data
requirements. Because all of
these models share the same set
of data inputs, they are interopera-
ble with Models A, B, C, and D.

The reader must keep in mind
that we view models in an atomic,
elemental way. Taking an example
from chemistry, a single element
like calcium (Ca) can become
part of many different molecules,
such as calcium hydroxide
(Ca(OH)2) or calcium chloride
(CaCl2), through chemical reac-
tions. In a similar way, a single
model, for example bias-adjusted
safety stock (Model A), can be
combined with Models B, C, and
D to create entirely new model
forms. Data inputs, as part of DML,
hold the key for developing an
open architecture for models to
combine automatically such as in
chemical reactions.
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To summarize, the descriptors
we put forth as the basis for DML
include data inputs as the primary
semantic for grouping models
and the initial basis for machine
understanding. Model outputs
are only important in providing (1)
general guidance concerning the
objective of the modeling effort
and (2) some definitions of model
outputs that may in turn become
model inputs in other situations.

We do not believe that semantic
description of algorithms based
on keywords will play a significant
role in the design of DML. One
important means of classification
that we have not mentioned
involves the assumptions of the
model. The use of assumptions
as a precise semantic of a model
provides an interesting area for
future research. 

An Example of Multiple Ontologies

As an illustration of the fact that
multiple ontologies exist with
respect to the definition of a
model and its relationship to other
models, we now examine a final
example involving Models A, B, C,
and D.

Depending on viewpoint, the
library of models could be used
in two different ways:
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Table 2 — Data Inputs to Models A, B, C, and D

Data Input Model A Model B Model C Model D 

D1. Beginning inventory X X X X 

D2. Forecast demand (by week) X X X X 

D3. Historical shipments (by week) X X X X 

D4. Historical forecast (by week) X X X X 

D5. Hold time (days) X    

D6. Queue time (days) X    

D7. Service level (percentage in stock) X X X X 

D8. Set-up cost ($/changeover)  X X X 

D9. Set-up time (hrs/setup)   X X 

D10. Holding cost ($/week)  X X X 

D11. Capacity limit (hrs/day)  X X X 

D12. Family structure (end items per group)  X   

D13. Overtime cost ($/hr)   X X 

D14. Sequence dependent set-up cost  
(from-to table of changeover costs) 

   X 
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From a production planner
standpoint — given a specific
beginning inventory, end-item
demand forecast, and target
safety-stock levels, the models,
could provide a computer-
generated schedule of the
timing and amount of produc-
tion needed at a manufacturing
plant 

From a supply chain manager
standpoint — given a specific
beginning inventory, end-item
demand forecast, and target
safety-stock levels, the models
could provide an accurate pro-
jection of inventory levels in
plant warehouses. This infor-
mation could be used to deter-
mine the overall size of the
warehouse.

There is evidence in the literature
that this group of models has in
fact been used in both of these
ways. This brief example shows
that the same library of models
has different meanings different
relationships depending on the
viewpoint of end users. This
aspect of relative relationships
makes the establishment of rigid
ontologies difficult to achieve
in practice. Though we have
an idea how to handle this
obstacle in producing machine-
understandable semantics, there
certainly needs to be more
research conducted in this area
before totally abandoning single
ontology architecture.

It appears that the key to building
multiple ontologies depends on
the relationships between models.

When faced with systems charac-
terized by intricate relationships,
engineers sometimes employ
graph theory to provide represen-
tations for complexity. Using this
approach, we believe the edges
of the graph hold the answer to
establishing different ontologies
for the same group of models.

THE FIRST BUSINESS
APPLICATIONS

Choosing a set of prototype busi-
ness applications for M and
Semantic Modeling is a difficult
task because the computer lan-
guage and concept can apply to a
wide range of industries. A num-
ber of early prototypes have been
identified, including ERP systems,
applications in medicine, the auto-
motive industry, agriculture, the
entertainment industry (video
games), environmental science,
retail, financial services, manu-
facturing planning and control
systems, legal services, and engi-
neering [9]. Applications in the
automotive industry alone, includ-
ing driver information systems,
make up an entire discipline.
The following presents an over-
view of three chosen from this
initial group.

ERP Systems 

Simply stated, an ERP system
identifies and plans the “resources
needed to take, make, ship, and
account for customer orders” [4].
To achieve these important tasks,
ERP incorporates a variety of
models and data to plan and
control all the resources in a

manufacturing or service-oriented
company.

With the established success of
ERP packages in practice, it is
realistic to think about what
changes in technology might
happen that will further enhance
ERP. Currently, most organizations
implement packaged ERP soft-
ware that contains a single model
for a specific business process. If
the model does not fit exactly,
substantial modifications are
required. Managers often com-
plain that this process of adapta-
tion reduces overall organizational
productivity.

One of the first prototypes of M
deals with building a network of
ERP models that could automati-
cally match to data within organi-
zations. These models include
forecasting, production planning
and scheduling, lot sizing, logisti-
cal, and financials. The ultimate
goal is an Intelligent Modeling
Network that would partially
replace packaged ERP software,
providing a more flexible model-
ing environment for decision
making in business.

Building an Intelligent Modeling
Network as a replacement for ERP
makes sense because ERP is, at
its essence, a data management
tool. Therefore, it is reasonable
that any advancement in the
way that data is organized and
matched to models will have a
significant impact on the structure
of ERP software.
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Such a system is possible only
through development of open
standards and protocols for col-
lection, sharing, and matching
data to models. Without a system
based on open standards, interop-
erability will not be possible, and
the economics of building suitable
interfaces will overwhelm the
economic value of the new
infrastructure.

Retail Operations

Direct marketing offers an inter-
esting case for the application of
M because large quantities of data
exist and there are many opportu-
nities to apply models from man-
agement science to determine
proper inventory levels. In general,
direct marketing companies have
impressive data management
systems to support day-to-day
decision making. Retailing is a
data-rich environment; however,
so many different models could
potentially apply to retail data that
a need exists for a flexible model-
ing system like M.

One of the first experiments
in prototyping M involves the
national catalog and online
retailer Lillian Vernon Corporation
of Rye, New York. The company
was established in 1951 and mar-
kets gift, houseware, gardening,
seasonal, and childrens’ products.
Well known for offering unique
merchandise with especially good
values, Lillian Vernon shipped
more than 3.8 million packages in
2003, employing 3,500 people dur-
ing the peak holiday season. More

than 1,700 new products are intro-
duced each year, and the total
product line averages over 6,000
items [27].

With such a large assortment of
items, many with relatively short
lifecycles and seasonal sales,
inventory management is a com-
plex issue. Given the uncertain
demand for such items, deter-
mining the proper lot size of mer-
chandise to order is a common
problem. To illustrate the breadth
of the problem, Figure 3 shows
examples of four typical demand
patterns for seasonal and ongoing
merchandise.

With thousands of different
demand patterns, the goal of opti-
mizing risk in terms of customer
service and excess inventory
becomes a complex challenge
in matching the right model to
the right data. The operations-
management literature offers a
number of different solution meth-
ods to optimize risk for retailers.
Most of these require the follow-
ing common data:

1. Historical actual sales per
item, per week.

2. Historical sales forecast
per week.

3. Forecast at time the lot-sizing
decision was made.

4. Customer-service level (actual
sales compared the lot size).

5. Salvage (amount remaining,
if any, after conclusion of the
event).

6. An estimate of the cost
of ordering the lot.

7. Weighted average cost of capi-
tal (inventory-carrying cost).

8. Cost of lost sales.

9. Price breaks on lot size.

10. Transportation method
and cost.

Given a potentially large set of
data and demand patterns, we
hope to apply the DML to label
inputs and outputs of models,
along with data elements, to
match models to data rapidly
using M. In the case of Lillian
Vernon, probably all models
would operate on a single com-
puting platform, so the DMP and
ACP reduce to a simpler situation
where model operation and iden-
tification of connections between
models and data all occur inter-
nally. Likewise, the ACL will make
connections to models only inside
a closed network.

If we can get simple applications
of M, as described in the Lillian
Vernon case, to work in a closed
system with a subset of data and
models, then the next step is to
apply M to an open system. For
example, there are a number of
public sources containing impor-
tant data on demographics and
spatial income distribution. All of
this is potentially useful in predict-
ing sales. Much of this data goes
unused because there is no fast
way to incorporate it into existing
modeling systems. The applica-
tion of M offers the opportunity to
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make full utilization of data and to
match the appropriate model for
analysis.

Agriculture

Overall, there is a general lack of
practical model use within agri-
culture. Yet there have been a
great number of agricultural
models developed at land grant
universities that could potentially
help growers and agribusiness do
a better job of logistics, planning,

and resource optimization. Con-
necting these various models
could lead to the next wave in
agricultural productivity.

One particular area of agriculture,
harvest risk, offers the potential of
introducing models traditionally
used in business to optimize har-
vest operations. The result: better
utilization of harvest assets, fewer
crop losses, and improved crop
quality.

Gathering the harvest represents
a complex managerial problem
for agricultural cooperatives
involved in harvesting and
processing operations: balancing
the risk of overinvestment with
the risk of underproduction. In sit-
uations where uncertain weather
conditions present a risk of crop
loss, the rate to harvest crops
and the corresponding capital
investment are critical strategic
decisions.
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Figure 3 — Weekly demand for various items sold by Lillian Vernon.

Product 1 Product 2

Product 3 Product 4



This common problem in agricul-
ture requires the application of
mathematical models to calculate
risk. The authors recently pre-
sented a case study of the
Concord grape harvest and the
development of a mathematical
model to control harvest risk by
finding the optimal harvest and
processing rate [2].

Mostly grown in the northern US,
Concord grapes are a hardy vari-
ety known for exceptional flavor.
However, like all agricultural
crops, grapes are susceptible to
frost damage during fall harvesting
operations. Therefore, the goal is
to harvest all the grapes before a
fall frost terminates operations.

Since it is impossible to predict
exactly when a frost will occur,
it is important to employ a risk
model to determine the best rate
to process grapes. The model
involves differentiation of a joint
probability distribution that repre-
sents risks associated with the
length of the harvest season and
the size of the crop. This approach
is becoming popular as a means
of dealing with complex problems
involving operational and supply
chain risk. 

The case study notes that harvest
risk is under-researched in agri-
culture. During the course of
model formulation, the authors
conducted an extensive literature
review and found that there were
no similar models for calculating
harvest risk. This prompted a
search for risk models used out-
side of agriculture to address the

problem of a one-time event such
as determining the correct lot size
for perishable items like news-
papers. In many ways, the harvest
risk problem is similar to making
purchases of highly seasonable
items such as fashion goods. With
fashion merchandise, there is a
risk of ordering too much or too
little; either can result in signifi-
cant financial loss.

Likewise, the grape harvest repre-
sents a one-time event where har-
vesting too rapidly requires too
large an investment in equipment,
yet harvesting too slowly means
an increased probability of losing
crop because of a frost. These
types of tradeoffs are very impor-
tant for a variety of business and
agricultural problems.

Looking outside a discipline to
find mathematical models that
might have relevant application
is a time-consuming task. The
authors have noted that their line
of research for the harvest risk
problem dates over eight years.
Most development and application
of mathematical models occurs
in highly specialized domains
where researchers and managers
have large amounts of specific
knowledge but very little general
knowledge about other disci-
plines. It takes years to accom-
plish meaningful research with
realistic application.

The concept of Semantic Model-
ing helps to solve this problem
because it allows for rapid appli-
cation of models to data regard-
less of the domain in which the

model was originally developed.
In essence, Semantic Modeling
and M allow for the free flow of
models over a network in much
the same way that the Internet
facilitates the free flow of informa-
tion through interconnected Web
pages. Simply stated, Semantic
Modeling is an advanced form of
connective technology. Using this
technology, modelers can quickly
search for models from other dis-
ciplines that might solve the prob-
lem at hand. 

In addition, Semantic Modeling
aids in integrating various data
sets. For example, the harvest risk
model relies on a point estimate
of temperatures for a specific
grape-growing region. Differences
in elevation and other physical
and environmental factors can
result in significant temperature
variation within a small area.
When a frost hits a growing
region, it is seldom evenly
distributed.

Semantic Modeling, like Geo-
graphic Information Systems
(GIS), has the capability of inte-
grating various data sets to get a
detailed view of the temperature
characteristics for a region.
For example, data from the US
Geological Survey could be inte-
grated into the harvest risk model
to account for differences in ele-
vation for a specific growing area.
This would give a much more
accurate picture of what propor-
tion of the Concord crop is sus-
ceptible to frost due to its location
in lower elevations where cool air
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tends to accumulate. Sometimes
a few feet in elevation can make
a big difference in frost damage.
Other data from the National
Oceanic and Atmospheric
Administration (NOAA) could also
provide details on surface temper-
ature variation within a growing
region. Combining these data sets
creates a more robust model that
provides an accurate representa-
tion of harvest risk on a spatial
basis.

PRACTICAL CHALLENGES

The history of modeling includes
a tradition of individual or small
team efforts to formulate a single
comprehensive model that pro-
vides a robust solution for a partic-
ular problem. Elements of other
models are rarely incorporated
into such efforts beyond conduct-
ing the standard literature review.
To introduce the system we pro-
pose in this article will require a
culture shift originating in acade-
mic institutions that serve as the
training centers for the modelers
of the future. Developing DML,
DMP, ACL, and ACP as a formal set
of languages and protocols ia a
step forward in changing the cul-
ture of model building. Once prac-
titioners experience the power of
automatically sharing models
between computers, we believe
there will be acceptance in adopt-
ing our system. As more model
builders begin to use the lan-
guages and protocols, the power
of the network will increase,
resulting in productivity gains.

For both we are in the process of
developing a search engine inter-
face that resembles an Internet
browser to locate model elements
residing on a network. The
browser uses data inputs as the
semantic for conducting the
search. Once the appropriate
models are located, another com-
puter interface provides a work-
space for visualization that shows
how various model elements
might fit together to form a practi-
cal solution. The key to the visual-
ization is to show in two or three
dimensions the various combina-
tions of specified models that
might be possible. With this type
of interface, the proper matching
of a model to data and the inter-
operability of models becomes
clear to the user. Ultimately, this
will accelerate implementation in
practice, resulting in the mass pro-
duction of models.

To begin the process of develop-
ment, we are establishing an
online community to define the
data types used by M as a means
for semantic searches. This is a
tedious process; however, there
is no other way to establish a
precise semantic for models.
Previous work conducted by
industry organizations such as
the International Organization for
Standardization (ISO) and various
US government agencies such as
the National Institute of Standards
and Technology (NIST) will aid
this effort. The online community
will also communicate various
aspects of Semantic Modeling and
the state of development of M.

Given that a prototype of M is
achievable within the next year,
the question remains, what incen-
tives will exist for model builders
and practitioners to use Semantic
Modeling? Our approach focuses
on future model building and the
establishment of a repository for
models. However, the hundreds of
logistical models currently in use
present a problem in that these
will need to be coded in the
proper language and protocols
of M. Since many models are run
using proprietary systems, the task
of coding will be significant unless
new methods of interface and
translation are developed. This
has to be part of our efforts in
developing M. 

One idea to provide an incentive
for model builders to use M
involves a new Internet payment
technology [23]. With this sce-
nario, developers could form a
representation of their models
using M and post to the Internet
in machine-understandable for-
mat. Those (either humans or
machines) seeking to find models
would do a search to locate the
best model for their application.
When the user downloads a spe-
cific model found by semantic
search, the developer would
receive a payment determined
in advance or by market forces.
In the case of simpler models, a
smaller “micropayment” might
be more appropriate given the
volume of downloads. This would
provide financial incentive for
developers to select older models
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for coding that have been long
forgotten by practitioners.

We envision a new industry
forming where specialized firms
constantly review old software or
journal articles for signs of models
having commercial value when
coded into M and distributed
using the Internet. In the long
term, existing large companies in
the business of selling packaged
software might yield to a new
generation of firms that specialize
in producing a repository of mod-
els using M. With this scenario,
practitioners benefit because
model applications would more
closely match the problem at
hand, unlike the current situation
where many firms must radically
redesign organizational processes
to meet the demands of commer-
cially packaged software. If noth-
ing else, Semantic Modeling offers
the possibility of assessing the
true value of a model through the
free exchange across a network.

A final hurdle for the implemen-
tation of M involves the adhere-
nce to standards. With every
standards-setting opportunity,
there is always the chance that
adopters will bend standards to
meet their own objectives. This
was the case in the development
of electronic data interchange
(EDI) standards as well as others.
Good design of the standards
along with active industry associa-
tions to monitor adherence are
the means needed to maintain
integrity.

THE UNDERPINNINGS OF
SEMANTIC MODELING

As we conclude this overview of
Semantic Modeling, it is important
to note that the idea of defining
elements of models for the pur-
pose of reuse is not new. Previous
work has concentrated on the use
of structured modeling to define
elements for management sci-
ence techniques [19, 20] and also
for building a system for “meta-
modeling” [32]. The following
provides a brief description:

The theoretical foundation of
structured modeling is formal-
ized in Geoffrion, which pre-
sents a rigorous semantic
framework that deliberately
avoids committing to a repre-
sentational formalism. The
framework is ‘semantic’
because it casts every model
as a system of definitions
styled to capture semantic
content. Ordinary mathemat-
ics, in contrast, typically leaves
more of the meaning implicit.
Twenty-eight definitions and
eight propositions establish
the notion of model structure
at three levels of detail (so-
called elemental, generic, and
modular structure), the essen-
tial distinction between model
class and model instance, cer-
tain related concepts and con-
structs, and basic theoretical
properties. This framework
has points in common with
certain ideas found in the
computer science literature
on knowledge representation,
programming language
design, and semantic data
modeling, but is designed
specifically for modeling as
practiced in MS/OR [manage-
ment science/operations

research] and related fields.
[21]

This approach hints at the possi-
bility of automatically combining
models by using a Structured
Modeling Language (SML). Others
also employ various representa-
tion techniques to aid in the for-
mulation of linear programming
models [33, 47]. These efforts
became part of proprietary
software intended to ease the
difficulty of formulating linear pro-
gramming models. In all of these
cases, the research occurred prior
to the widespread use of the
Internet and the existence of
ample bandwidth. M takes advan-
tage of these relatively new devel-
opments in computer science.

Other academic disciplines have
also experimented with variants of
Semantic Modeling in areas such
as business process design. In one
case, academic researchers have
developed a large library of busi-
ness processes in an attempt to
build new organizations and to
perform benchmarking [29]. As
part of this effort, the researchers
developed a definitional language
for organizational processes and
used a schema similar to an ontol-
ogy as an aid in searching the
library.

For many years, engineers have
used Bond Graphs to represent
power flow (mechanical, electri-
cal, hydraulic, thermal, chemical,
and magnetic) as a means of cap-
turing the common energy struc-
ture of systems and to increase
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insight into engineering system
behavior [5]. This method of link-
ing different energy systems
together with a common repre-
sentation is similar to our efforts
in Semantic Modeling. In addition,
an interdisciplinary movement,
initiated by the engineering com-
munity beginning in the 1960s,
sought to establish general sys-
tems where models from various
academic disciplines, including
the social sciences, could be
shared with the goal of achieving
new applications [18]. More
recently, the establishment of
Math-Net, a global Internet-based
information and communication
system for mathematics, estab-
lishes many knowledge manage-
ment structures that are similar
to Semantic Modeling [30].

Finally, several other groups of
researchers have developed lan-
guages meant to do functions sim-
ilar to Semantic Modeling. These
include Simple HTML Ontology
Extensions (SHOE), DARPA Agent
Markup Language — Ontology
(DAML-ONT), and Unified
Problem-Solving Method
Development Language (UPML)
[16]. However, in no case did we
find any evidence of initiatives to
link models together or to estab-
lish improved semantics for mod-
els in a similar fashion to M.

CONCLUSION

Semantic Modeling will play an
important role in linking models
from a wide number of different
disciplines to an array of different

problems in business. Beyond the
current discussion in this report,
opportunities exist to link other
abstract objects that require a pre-
cise semantic meaning, such as
engineering designs, elements of
financial reporting in a conglomer-
ate, or important aspects of news
feeds that might qualify as an
object. Though the authors are in
the early stages of developing M
and the practice of Semantic
Modeling, there appears to be
great potential to fulfill a need in
the industry to improve the inte-
gration of models and data.

The prospect of sharing, through
standard languages and protocols,
the collective efforts of modelers
throughout the world is beyond
enticing. It has the potential to rev-
olutionize nearly every aspect of
human endeavor, as well as pro-
vide unprecedented benefit and
savings across industry and com-
merce. Yet the challenges and dif-
ficulties are extraordinary, from
theoretic achievability to practical
implementation. Still the rewards
make the journey well worth pur-
suing, which may lead to a true
Intelligent Modeling Network.
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