
The Journal of
Information Technology Management

Cutter
IT Journal

Vol. 29, No. 3
March 2016

Technical Debt:

The Continued Burden on
Software Innovation

Opening Statement

by Tom Grant . 3

Technical Debt: It’s Not the Real Problem

by Declan Whelan . 6

Using Technical Debt to Make Good Decisions

by John Heintz . 11

Managing Technical Debt with the SQALE Method

by Jean-Louis Letouzey . 16

The Psychology and Politics of Technical Debt:
How We Incur Technical Debt and Why Retiring It Is So Difficult

by Richard Brenner . 21

Addressing the Hidden Obstacles to
Innovation and Digital Disruption

by Ram Reddy . 28

Vendor-Driven Technical Debt: Why It Matters and What to Do About It

by Mohan Babu K . 33

“A major portion of technical

debt — if not the vast major-

ity — seems to spring from

a very well-understood,

well-identified source: time

pressures. Not only do time

pressures compel developers

to cut corners, but they

become the chief obstacle

to fixing the code.”

— Tom Grant,

Guest Editor

NOT FOR DISTRIBUTION

For authorized use, contact

Cutter Consortium:

+1 781 648 8700

service@cutter.com

Cutter IT Journal®

Cutter Business Technology Council:
Rob Austin, Ron Blitstein, Tom DeMarco,
Lynne Ellyn, Vince Kellen, Tim Lister,
Lou Mazzucchelli, Ken Orr, and
Robert D. Scott

Editor Emeritus: Ed Yourdon
Publisher: Karen Fine Coburn
Group Publisher: Chris Generali
Managing Editor: Karen Pasley
Production Editor: Linda M. Dias
Client Services: service@cutter.com

Cutter IT Journal® is published 12 times
a year by Cutter Information LLC,
37 Broadway, Suite 1, Arlington, MA
02474-5552, USA (Tel: +1 781 648
8700; Fax: +1 781 648 8707; Email:
citjeditorial@cutter.com; Website:
www.cutter.com; Twitter: @cuttertweets;
Facebook: Cutter Consortium). Print
ISSN: 1522-7383; online/electronic
ISSN: 1554-5946.

©2016 by Cutter Information LLC.
All rights reserved. Cutter IT Journal®
is a trademark of Cutter Information LLC.
No material in this publication may be
reproduced, eaten, or distributed without
written permission from the publisher.
Unauthorized reproduction in any form,
including photocopying, downloading
electronic copies, posting on the Internet,
image scanning, and faxing is against the
law. Reprints make an excellent training
tool. For information about reprints
and/or back issues of Cutter Consortium
publications, call +1 781 648 8700
or email service@cutter.com.

Subscription rates are US $485 a year
in North America, US $585 elsewhere,
payable to Cutter Information LLC.
Reprints, bulk purchases, past issues,
and multiple subscription and site license
rates are available on request.

Part of Cutter Consortium’s mission is to

foster debate and dialogue on the business

technology issues challenging enterprises

today, helping organizations leverage IT for

competitive advantage and business success.

Cutter’s philosophy is that most of the issues

that managers face are complex enough to

merit examination that goes beyond simple

pronouncements. Founded in 1987 as

American Programmer by Ed Yourdon,

Cutter IT Journal is one of Cutter’s key

venues for debate.

The monthly Cutter IT Journal and its com-

panion Cutter IT Advisor offer a variety of

perspectives on the issues you’re dealing with

today. Armed with opinion, data, and advice,

you’ll be able to make the best decisions,

employ the best practices, and choose the

right strategies for your organization.

Unlike academic journals, Cutter IT Journal

doesn’t water down or delay its coverage of

timely issues with lengthy peer reviews. Each

month, our expert Guest Editor delivers arti-

cles by internationally known IT practitioners

that include case studies, research findings,

and experience-based opinion on the IT topics

enterprises face today — not issues you were

dealing with six months ago, or those that

are so esoteric you might not ever need to

learn from others’ experiences. No other

journal brings together so many cutting-

edge thinkers or lets them speak so bluntly.

Cutter IT Journal subscribers consider the

Journal a “consultancy in print” and liken

each month’s issue to the impassioned

debates they participate in at the end of

a day at a conference.

Every facet of IT — application integration,

security, portfolio management, and testing,

to name a few — plays a role in the success

or failure of your organization’s IT efforts.

Only Cutter IT Journal and Cutter IT Advisor

deliver a comprehensive treatment of these

critical issues and help you make informed

decisions about the strategies that can

improve IT’s performance.

Cutter IT Journal is unique in that it is written

by IT professionals — people like you who

face the same challenges and are under the

same pressures to get the job done. Cutter

IT Journal brings you frank, honest accounts

of what works, what doesn’t, and why.

Put your IT concerns in a business context.

Discover the best ways to pitch new ideas

to executive management. Ensure the success

of your IT organization in an economy that

encourages outsourcing and intense inter-

national competition. Avoid the common

pitfalls and work smarter while under tighter

constraints. You’ll learn how to do all this and

more when you subscribe to Cutter IT Journal.

About Cutter IT Journal

Cutter
IT Journal

Name Title

Company Address

City State/Province ZIP/Postal Code

Email (Be sure to include for weekly Cutter IT Advisor)

Fax to +1 781 648 8707, call +1 781 648 8700, or send email to service@cutter.com. Mail to Cutter Consortium, 37 Broadway,

Suite 1, Arlington, MA 02474-5552, USA.

SUBSCRIBE TODAY

Request Online License
Subscription Rates

For subscription rates for online licenses,

contact us at sales@cutter.com or

+1 781 648 8700.

Start my print subscription to Cutter IT Journal ($485/year; US $585 outside North America)

THE SOMEWHAT-HIDDEN COST OF
RAPID SOFTWARE INNOVATION

One of the defining characteristics of software inno-

vation, as opposed to other types of innovation, is the

speed and ease of production. Other than time and

labor, the only resources needed are relatively inexpen-

sive hardware and software. Inventing a new type of jet

propulsion, industrial ceramic, Alzheimer’s treatment,

or oil extraction method requires far more expensive

equipment and other materials — not to mention more

time, skilled personnel, and, in many cases, extra effort

to meet regulatory requirements — than building a new

social media service.

Usually, this ease of innovation is cause for celebration.

The entry requirements into the software market are

lower than, say, the automobile market. The speed with

which innovation can radically transform the way peo-

ple work and play is so great that we have come to take

it for granted and even judge companies like Apple on

the basis of whether they can make every year an annus

mirabilis of discontinuous product innovation. Even in

the more prosaic world of software innovation in corpo-

rate IT, we urge companies to go much faster than they

are in building and deploying new software systems

and criticize them for not seizing the opportunity for

profound “digital transformation.”

There is a price tag for innovating this quickly and

easily. One of the costly line items is technical debt, the

increased drag on the ability to do software innovation

that arises from a very specific source: failing to code

with a proper level of care and diligence. Writing code

is much like another procedural exercise — writing

laws and regulations. The less care one takes in the

process of creating these instructions, the harder it will

be to diagnose unintended problems and fix them, or

even to build on the existing procedural foundations.1

Ambiguous intent, excessive complexity, untraceable

logical paths, untested scenarios, and other problems

are the inevitable result of rushing into “production”

both statutes and compiled code. In the case of soft-

ware, these problems take the form of cyclomatic com-

plexity, indecipherable naming conventions, inadequate

unit testing, and other problems.

As Cutter Fellow Ward Cunningham, who devised the

concept of technical debt, was quick to point out, all

forms of technical debt are not necessarily bad.2 For

example, a software team might want to experiment

with a new approach to cloud-based storage to help an

application scale. In this case, dotting all the program-

ming i’s and crossing all the unit testing t’s is not mer-

ited. If the experiment fails, the extra work spent on

code review, proper naming conventions, and other

steps needed to prevent future technical debt would

be wasted effort. On the other hand, if the experiment

succeeds, it is imperative that the team go back and

clean up the code. Failing to do so will make it harder

to either build on or fix that code.

Of course, we would not be talking about technical

debt if teams took the time to refactor, as well as other

steps needed to “do it right.” Temporary measures

become permanent, which imposes a burden on the

team. The greater the technical debt, the harder it is

to work with the code base, slowing down further

software innovation.

What stops highly skilled, dedicated professionals from

doing it right in the first place? Some technical debt is

inadvertent, even unconscious: a developer fresh out of

college, for example, might not understand how impor-

tant clear naming conventions are and may need men-

toring on how to avoid some common complexity traps

when designing classes. However, a major portion of

technical debt — if not the vast majority — seems to

spring from a very well-understood, well-identified

source: time pressures.

Opening Statement

3Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

by Tom Grant, Guest Editor

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

There is a price tag for innovating this quickly

and easily. One of the costly line items is tech-

nical debt, the increased drag on the ability to

do software innovation that arises from a very

specific source: failing to code with a proper

level of care and diligence.

©2016 Cutter Information LLCCUTTER IT JOURNAL March 20164

Here is where the ease of software innovation becomes

a burden. Not only do time pressures compel develop-

ers to cut corners, but they become the chief obstacle to

fixing the code. In the face of increasing demand from

the business side of the organization (sales, marketing,

and executives in software companies; internal cus-

tomers and executives in IT organizations), which nei-

ther understands how software innovation works nor

cares about the particulars of writing good code, devel-

opers are hard-pressed to justify investing the time in

short-term refactoring, even if it has long-term benefits.

GRAPPLING WITH TECHNICAL DEBT

That very cursory description of the problem over-

simplifies and overlooks many important details. For

instance, we have not gone near the differences between

technical debt and other kinds of debt, the different

forms of intentional and unintentional technical debt,

the specific coding sins that lead to technical debt, or

the steps needed to both eliminate current debt and

prevent future debt. On that last front, opinions vary

widely, from “Run a static code analysis tool once in a

while” to “Just don’t write poor code.” Fortunately, in

this issue, we have many good articles that help flesh

out these critical details.

Our first article, by Declan Whelan, provides a more

complete overview of technical debt. Whelan is one of

the cochairs of the technical debt working group for the

Agile Alliance, to which I was also a contributor.3 While

he argues that technical debt is more a symptom of

larger organizational and team problems than a prob-

lem unto itself, he lays out a clear method for diagnos-

ing and addressing technical debt, which he believes

is a much larger burden on software innovation than

most realize.

Our next contributor, Jean-Louis Letouzey, is the other

cochair of this working group and a noted expert on

technical debt. Letouzey provides an introduction to a

very specific strategy for dealing with technical debt,

the SQALE method. In his article, he explains how

SQALE measures technical debt at both the system and

portfolio levels. While elements of SQALE will be mys-

terious to some business users, both they and the soft-

ware teams can look at the output of assessment tools

that perform SQALE analysis to see the current amount

of technical debt and understand (if only in the rough

outlines, for business users) the burden it imposes.

John Heintz, a Cutter Senior Consultant who has helped

many clients deal with technical debt problems, uses

the cost of change as the starting point for his article.

Heintz then lays out a strategy for using technical debt

assessment as the basis for better technical and business

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

In the face of increasing demand from the

business side of the organization, which nei-

ther understands how software innovation

works nor cares about the particulars of writ-

ing good code, developers are hard-pressed

to justify investing the time in short-term

refactoring, even if it has long-term benefits.

UPCOMING TOPICS IN CUTTER IT JOURNAL

APRIL

Bhuvan Unhelkar and San Murugesan

IoT Data Management and Analytics

MAY

Robert N. Charette

The Role of Ethics in Algorithm Design

JUNE

Barry Devlin

Big Data Analytics

decisions and offers examples of companies that have

pursued this kind of strategy successfully. Echoing

Cunningham’s dictum that not all technical debt is

necessarily bad, and certainly not all technical debt is

worth removing, Heintz cites one example of a vendor

that intentionally increased technical debt in the short

term because that was the right business decision at

the time.

Next, Richard Brenner warns against the risks of using

the technical debt metaphor too loosely. In many cases,

he argues, people have confused the metaphor with

the reality, including situations where people look for

objective measures of debt. Like other authors in this

issue, Brenner believes that technical debt is a symptom

of other maladies in the organization, and he provides a

simple list of measures for preventing further technical

debt accrual.

Ram Reddy then provides a picture of technical debt

that goes beyond the boundaries of a single software

system, which is often the implicit basis for describing

and assessing technical debt. Not only does techni-

cal debt have an impact on other, related systems

(e.g., on the applications that depend on a debt-ridden

identity management system), but it also appears in the

integration code that binds systems together. Technical

debt exists throughout the services catalog, including

the “shadow IT” systems that the IT organization

struggles to bring into the official fold. One of the most

damaging effects of technical debt from this IT services

catalog perspective, Reddy argues, is the way in which

debt locks into place systems that should be candidates

for retirement.

In our final article, Mohan Babu K explains that not all

technical debt results from developers typing on key-

boards. Babu K expands the concept to include the drag

on the portfolio and projects created by the failure to

upgrade vendor-provided software. Over time, the cost

of maintaining, integrating, and extending these sys-

tems increases if IT departments do not perform these

upgrades. He cites the enterprise architect as someone

well positioned to help organizations decide on the

priority and timing of upgrades.

THE COST OF TECHNICAL DEBT
CONTINUES TO INCREASE

As demonstrated by this very rich menu of perspectives

on technical debt and the lively debate that discussions

like these inspire, Cunningham struck a nerve with the

technical debt concept. Whether you believe that the

technical debt problem is larger or smaller than others

might think, a symptom or a cause of organizational

dysfunction, and/or an absolute or subjective measure

of that dysfunction, it is an unintended cost of the ease

of software innovation that organizations must take

seriously. The sources of technical debt, such as the

ever-increasing demand for new software, are not going

away. The software landscape continues to grow in

complexity, with new devices, frameworks, integra-

tions, and other features. Therefore, we cannot afford

to make the job of software innovation any harder than

it already is.

ENDNOTES

1In a similar vein, musician Frank Zappa once said, “The United

States is a nation of laws, badly written and randomly enforced.”

2To hear Cunningham explain the nature of technical debt and

his inspiration for creating the concept, see: http://c2.com/

cgi/wiki?WardExplainsDebtMetaphor.

3For the complete package of support materials that the working

group has provided, see: www.agilealliance.org/resources/

initiatives/technical-debt.

Tom Grant is Practice Director of Cutter Consortium’s Agile Product

Management & Software Engineering Excellence practice and also

a member of the Business Technology & Digital Transformation

Strategies practice. Dr. Grant is a creative problem solver, bringing

his expertise in serious games and collaboration to business and soft-

ware development organizations to increase team productivity through

innovation. His well-rounded experience brings a unique richness to

his insights, equipping him to offer practical solutions.

Dr. Grant’s expertise in software development and delivery has a par-

ticular focus on Agile, Lean, application lifecycle management (ALM),

product management, serious games, collaboration, innovation, and

requirements. Dr. Grant has contributed to client success in various

market segments, including government, manufacturing, and finance,

through ALM and Agile assessments; selecting tools and creating

metrics for software development and delivery; and creating software

vendor, corporate, and product strategies.

Most recently, Dr. Grant was a Senior Analyst at Forrester Research.

Previously, he served as VP of Product Management at Xythos, a

small collaboration software company, and led product management

teams at Oracle and various Silicon Valley firms. He is a widely

published author and sought-after speaker at many industry events.

Dr. Grant earned his PhD in political science from the University

of California at Irvine. He can be reached at tgrant@cutter.com.

5Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

As an Agile coach and consultant, I hear a lot about

technical debt from my clients. In fact, it is a major issue

for almost all of them. In the 2011-2012 CRASH Report

from CAST Software, the remediation cost for technical

debt was estimated at $3.61 per line of code.1 I believe

the actual financial impact to be much higher, as the

report did not include secondary impacts such as

increased time to market or the cost of replacing

disgruntled software developers who grew tired of

wrangling legacy code and moved on.

If there is rampant technical debt with most software

products and services, why don’t organizations do

something about it? Well, it’s complicated. Let’s take a

step back and look at what we mean by technical debt

and how we can measure it. Then let’s take a longer

look at why technical debt exists and what you can do

to address it.

WHAT IS TECHNICAL DEBT?

As most — if not all — of us know, it was Cutter Fellow

Ward Cunningham who coined the term “technical

debt.” Currently, there is an initiative within the Agile

Alliance to further define and recommend ways to

address technical debt. In a soon-to-be-released white

paper, the group states the following:

When taking shortcuts and delivering code that is not
quite right for the programming task of the moment,
a development team incurs Technical Debt. This debt
decreases productivity. This loss of productivity is the
interest of the Technical Debt.2

It can be hard to communicate the size and impact of

technical debt. If you were to wander into the kitchen

of a restaurant and see grease on the floors, flickering

fluorescent bulbs, dirty dishes piled up, and mouse

droppings everywhere, you would be appalled. You

don’t need to be a foodie or restaurant owner to recog-

nize that there is something seriously wrong and that it

had better improve fast or the restaurant will be in seri-

ous trouble. It is difficult for most people to see techni-

cal debt in a similar way. I have resorted to printing out

large methods or classes and taping them on the wall

to make the complexity visible. However, this does not

evoke the same visceral reaction or sense of urgency

that a filthy kitchen does.

Technical Measures

There are static analysis tools you can use to measure

technical debt,3 such as SQALE,4 FindBugs, PMD, and

Code Climate. These tools can help provide insights,

especially when you observe trends in the generated met-

rics over time (e.g., reduced cyclomatic complexity over

time could be a sign that technical debt is decreasing).

Team Measures

Often, technical measures don’t provide a complete

picture. For example, if there is legacy code rife with

technical debt that rarely needs to be changed, then

the technical metrics alone may provide an overly

pessimistic view. For this reason, I recommend that

teams also measure and track responses to the follow-

ing questions:

n On a scale of 1 to 5, how happy are you working

in the code base?

n What percentage of your time do you spend work-

ing around technical debt versus working on new

features?

n How long do you feel it would take to address the

main technical debt in the code?

You can measure these things right away with no

infrastructure or tooling costs.

Make Your Technical Debt Visible

However you choose to measure technical debt, it

is crucial to find ways to make the measures visible.

Perhaps your teams could share technical measures

and trend graphs at iteration reviews and planning

sessions. Technical debt measures and trends could

be “information radiators” in the team rooms.

©2016 Cutter Information LLCCUTTER IT JOURNAL March 20166

Technical Debt: It’s Not the Real Problem

by Declan Whelan

ROOTING OUT ROOT CAUSES

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

7Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

WHY IS THERE RAMPANT TECHNICAL DEBT?

Technical Debt Is Normal, Isn’t It?

While technical debt as a metaphor is clear and strong,

like any metaphor it has limitations. Most of us incur

financial debt during our lives, and it is often the right

thing to do. Most of us could not own a house or a car

without incurring debt. So having technical debt, by

analogy, seems like a normal state of affairs. No big

deal. Shrug. Suck it up!

This attitude leads managers and decisions makers to

not take technical debt seriously. Do not fall into this

trap. Instead, include technical debt in project and port-

folio planning. Include specific mechanisms to measure,

track, avoid, and mitigate technical debt.

Technical Abilities

I was a professional programmer and independent

consultant for 20 years before I was introduced to Agile

methods. The level of craftsmanship I mastered in the

following five years of applying Agile technical prac-

tices eclipsed everything I had previously learned at

university and on the job. The level of craftsmanship

in many companies is simply not up to the challenge

of building products and services at Internet pace.

When I work with recent graduates, I usually ask them

if they have been exposed to any of the Agile practices

during their undergraduate work. The answer is almost

always disappointing. Something like “We learned

about Scrum — you know, the stand-ups, user stories,

scrum master, and that stuff. But we never learned

about test-driven development or simple design.” As

a result, the code they write is usually complex and

overdocumented. They have learned that they get the

best marks when they stop coding the moment their

program works and then document the crap out of it.

Thus, the seeds of technical debt are born.

Technical Practices

Another trap I have seen organizations fall into is using

Scrum without any supporting Agile engineering prac-

tices. Scrum provides tools for managing new features.

However, there are no explicit mechanisms for manag-

ing technical debt work and no guidance on technical

practices to deal with technical debt. This is a potent

one-two combination that can result in Scrum teams

building feature after feature as the technical debt

mounts. Furthermore, this accumulation is often invis-

ible because the teams naturally increase their story

points to factor in the technical debt so their velocity

stays the same. Everything looks fine as the big ball of

mud grows and grows. Scrum without strong technical

practices is a great way to build massive technical debt.

Silver Bullets

For most developers, working on a greenfield project is

nirvana. We don’t have to deal with past mistakes and

can often start with the coolest new technologies that

will help us avoid some of the pitfalls we encountered

in earlier projects. However, there are often high expec-

tations of how quickly we can deliver, especially if the

new technology choices were framed as more effective

than earlier ones.

As we start the project, we are learning these new tech-

nologies and possibly about new markets and competi-

tors as well. As a result, there will be pressure to deliver

that will likely cause us to take on technical debt for

the first release. But it’s not such a big deal, we tell

ourselves, because we rocked the first release.

By the time we get to the second release, there is again

pressure to deliver at a rate matching our pace for the

first release. This can be difficult, though, as we have

already accrued some technical debt. The predictable

result is that we likely take on even more technical debt.

You can see where this is going. Fast-forward a few

years and a few releases, and the project will be mired in

technical debt. It will take forever to get new features out.

At this point, the organization will take stock of its

options. Probably someone will suggest some cool new

technology that will address a lot of the shortcomings

of the current product. A rewrite will be proposed, and

the organization will start the cycle over again. And

this new project is doomed to the same fate because

the organization has failed to address the root cause

of technical debt — which is not taking it seriously in

the first place. Very sad. Very wasteful. Very avoidable.

When first starting new products, organizations must

take technical debt into account. They need to measure

and track technical debt and mercilessly refactor the

code on a regular basis.

Most of us could not own a house or a car

without incurring debt. So having technical

debt, by analogy, seems like a normal state

of affairs.

©2016 Cutter Information LLCCUTTER IT JOURNAL March 20168

Projects

Projects are one of the prime contributors to technical

debt. Projects are fine for … well … project work. If

the nature of your work is relatively short term with

a clearly defined end of life, then projects may be a

suitable management approach. If instead you build

products or services that will require future releases

and ongoing support, then projects are likely the worst

way to manage this work. This is because every deci-

sion will be tuned to meeting the next project deadline.

There will be no mechanism to optimize for the long-

term sustainability of the product or service. Despite

the best intentions of people working on the project, the

technical debt will mount, because accruing this debt

will not negatively impact the project delivery date. In

fact, taking on technical debt is often the best way to

achieve project success: “Let’s just hack this out, and

we’ll fix it later.” Later never comes, however, and the

cycle repeats with the next project.

To break this cycle, organizations need to shift planning

away from projects and toward products and services.

This allows planning horizons to extend beyond typical

project timelines. The extended timelines enable organi-

zations to staff appropriately for the product timeline.

The teams can now make better long-term decisions

about technical debt because their focus shifts to the

long-term viability of the product or service.

Handoffs

Our current organizational structures reflect an empha-

sis on functional roles where we place people doing

similar work together — as on an assembly line. This

may have been a good way to build cars many decades

ago, but it is wholly ineffective for responding at

Internet pace to the ever-changing context in which

information products and services live.

As information flows from customers through the

organization’s process, information is inevitably lost.

As information is lost and the systems are built, the

developers will make assumptions or incorrect decisions

about how the business works or how the system should

operate. Each incorrect assumption or abstraction is

embodied as technical debt in the code. In this way,

technical debt accumulates around the knowledge loss

in organizational handoffs.

Dynamic Inconsistency

In economics, dynamic inconsistency5 describes how

our preferences for certain decisions may change at

different points in time. For example:

Scenario A: Choose between:

A1 One apple today

A2 Two apples tomorrow

Scenario B: Choose between:

B1 One apple in a year

B2 Two apples in a year plus one day

While some people might pick A1, almost no one would

select B1. However, the scenarios are formally identical.

We exhibit dynamic inconsistency if we choose A1

today and in 364 days choose B2 instead.

With technical debt, we know that we should be taking

care of it all through the project. However, our bias for

dynamic inconsistency can lead us to build new features

each iteration with little attention to technical debt. This

is “double trouble,” because new code must coexist

with the existing technical debt, and over time we

end up with tangled layers of technical debt. And the

interest on the technical debt compounds over time.

ADDRESSING TECHNICAL DEBT

I no longer think of technical debt as a problem. It is a

symptom — a symptom of deeper system problems in

our organizations. Trying to fix technical debt by simply

fixing the code is like bailing a boat that is taking on

water. It is likely necessary, but it won’t stop the water

coming in. We need to find and fix the root causes of

the technical debt. There are no silver bullets, but here

are some things to consider:

Learn How to Write Cleaner Code

Support teams in improving their craft. Team-based

learning is ideal, as the team members can support

each other. Invest in technical training and encourage

the use of pair and mob programming so that good

practices spread and individuals can learn together.

Trying to fix technical debt by simply fixing

the code is like bailing a boat that is taking

on water.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

9Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

Relentless Refactoring

Technical debt metrics may point to poorly written

code, but if that code rarely changes, should we really

invest time to make that code better? Our efforts

might be better directed to improving code that

changes more frequently. A simple tactic popularized

by Robert Martin is to apply the Boy Scout Rule:

Leave the campground cleaner than you found it.6

This is a simple and powerful approach that focuses

improvements on the areas of code that change the

most. Teams could incorporate this rule into their

working agreements.

The improvements could be very small, such as renam-

ing a variable or removing an unnecessary comment.

Yet these improvements will compound over time.

Planning Technical Debt Work

Some organizations may feel sufficient pain from tech-

nical debt that they want to address it more quickly

than application of the Boy Scout Rule alone can accom-

plish. Some teams create technical debt reduction stories

and negotiate with their product owners to allocate a

percentage of their capacity to technical debt reduction.

I have seen teams negotiate for technical debt iterations.

One interesting twist on this is to keep a separate

backlog of technical debt tasks. Then, when a feature

is being developed in that area of the code, pull the

technical debt task into the work for that feature.

Whatever you choose to do, make that work visible.

Proceed with Caution

Removing technical debt from legacy code that does not

have tests can be unsafe. Your teams may need to learn

and apply new techniques such as the approaches intro-

duced by Michael Feathers in his classic book Working

Effectively with Legacy Code.7 One technique Feathers

suggests to extract existing code into new methods

and classes (Extract Method and Extract Class refactor-

ings) to build oases of code that can then be unit tested.

Retrospectives

Each team should run a retrospective focused on explor-

ing technical debt. Have team members provide meas-

ures of the technical debt, root causes, and what they

can do as a team about the situation. Then ask them to

provide a list of obstacles they see to improving the sit-

uation and any suggestions they may have for overcom-

ing them. Do the same at the middle management and

executive levels. Collate and compare the results and

support the teams and management in putting technical

debt remediation measures into place.

Form Stable Teams

When teams have an extended responsibility to main-

tain products beyond project timelines, they will start

to make better longer-term decisions, since they will

have to live with the consequences. This will have a

positive impact on technical debt. As a bonus, people

will have more pride in their work, and there will be

better onboarding for new team members.

Avoid Handoffs

Organize teams around the value flow and customer

communication channels rather than around team func-

tions. In other words, build teams that reach as close

to the customers as possible both in understanding their

needs and in delivering the product or service to them.

Every handoff is a place where knowledge and value

is lost.

Introduce Experiments

No matter how you decide to tackle technical debt,

frame each change as an experiment rather than “rolling

out” wholesale changes to the organization. Use retro-

spectives to guide experiments. Form a hypothesis, run

the experiment, and measure the results. Most impor-

tantly, reflect on the results and let that new knowledge

guide your next experiment. Create a backlog of experi-

ments as a Kanban board to focus on sustainable change.

For example:

Action: Provide Agile technical training to three teams.

Hypothesis: Agile technical training will have a
positive impact on technical debt, as teams will have
better insights and skills for managing legacy code.
We expect to see team happiness about working in
the code improve by 1 point (on a scale of 1 to 5) after
applying these techniques for two months.

No matter how you decide to tackle technical

debt, frame each change as an experiment

rather than “rolling out” wholesale changes

to the organization.

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201610

WRAPPING UP

In 1967 Melvin Conway posited that “organizations

which design systems are constrained to produce

designs which are copies of the communication

structures of these organizations” (aka Conway’s Law).

Technical debt is likewise a reflection of weaknesses in

the organization’s communication channels. Treat tech-

nical debt as a symptom of larger systemic issues within

your organization. It is giving you valuable feedback to

better understand how to improve your product and

service delivery.

Use retrospectives to tease out that feedback in a coher-

ent way across multiple teams and management levels.

Measure your technical debt and make the metrics and

the debt itself visible. Perform experiments to reduce

the impact of technical debt. Rinse and repeat.

ENDNOTES

1Sappidi, Jay, Bill Curtis, and Alexandra Szynkarski. “The

CRASH Report — 2011/2012 (CAST Report on Application

Software Health).” CAST Software, 2012.

2Letouzey, Jean-Louis, et al. “Technical Debt Initiative.”

Agile Alliance, June 2015 (www.agilealliance.org/resources/

initiatives/technical-debt).

3”List of tools for static code analysis” (Wikipedia).

4”SQALE” (Wikipedia).

5”Dynamic inconsistency” (Wikipedia).

6Martin, Robert C. Clean Code. Prentice Hall, 2009.

7Feathers, Michael C. Working Effectively with Legacy Code.

Prentice Hall, 2005.

Declan Whelan is an Agile consultant, cofounder of Leanintuit, and a

director at the Agile Alliance. Mr. Whelan works with organizations

to improve their products and services through Agile and Lean prac-

tices. His personal mission in 2016 is to change the conversation

around technical debt. Rather than viewing it as a problem to be fixed,

we need to view it as feedback to drive improvements to our product

and service delivery. He can be reached at declan@leanintuit.com.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

“Knowledge is power,” wrote Francis Bacon. Making

decisions without important information can result in

poor choices. That is especially true with respect to

technical debt. Using a technical debt framework to

inform our decision making is a powerful technique to

help us quickly and confidently make better judgments.

I’ve worked with numerous organizations that have

benefited from understanding their technical debt this

way, and in this article, I will share stories about three

different clients and how they were able to make good

decisions for their businesses based on the data we

found during technical debt assessments.

MAKING GOOD DECISIONS IN YOUR PROJECTS

Making decisions is a part of every day, in every job.

You’ve probably asked at least one of these questions

today:

n Should we start project X?

n Should we cancel project Y?

n Should we reinvest in another project?

n Should we put some features on hold, or speed

them up?

Only sometimes are these questions easy to answer,

and often they create conflict and indecision. Today’s

complex business landscape, combined with increasing

expectations, creates growing pressure for decisions

to be made quickly and accurately. We can’t afford to

make the wrong decision, and we can’t afford inaction.

While risk analysis is frequently used to help make

decisions, an often-overlooked risk involves time. We

need to get to market; we want to quickly respond to

change. Responding to change, however, means that we

must remain responsive over time. Building for only the

short term can easily create unmaintainable systems.

This poses a significant risk to our futures because the

competition and technology landscape are constantly

changing. The following questions can help uncover the

effect that time has on our project:

n What is the risk that we will slow down?

n What are the consequences of slowing down?

n How can we prevent our slowing down?

In addition to factoring in time directly, we need to

consider the cost of delay. We can calculate how much

it costs us to not release features.1 Measuring and calcu-

lating this cost can affect many of our decisions.

THE COST OF CHANGE

Figure 1 shows that increasing the cost of change leads

to slowing down our customer responsiveness.2 One of

the primary reasons that we slow down is because it

gets harder and harder to change things. If the cost of

change in our systems goes up, then at some point we

become less responsive, and we slow down. Here, we

are breaking the cost of change into two different com-

ponents. One of them is the basic underlying cost of

change, the natural or optimal cost of change for our

systems. The second curve shows the additional cost of

change due to technical debt. When our systems have

high technical debt, it makes everything harder to do.

11Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

Using Technical Debt to Make Good Decisions
by John Heintz

STAY OUT OF THE MUD

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Figure 1 — Cost of change and customer responsiveness.
(Source: Highsmith.)

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201612

DEFINING TECHNICAL DEBT

What is technical debt? Consider the metaphor of

running through mud. There are two consequences

of running through mud. One of them is low speed,

because the mud has high friction; therefore it slows

you down. The second consequence is that mud is much

less stable, making it much easier to injure yourself,

such as twisting your ankle or falling. These conse-

quences are metaphors for developing with systems

that have high technical debt. Everything else about the

systems is harder to do, slower, and more dangerous —

there is a higher risk of failure in production, and the

systems will be harder to maintain.

Even if we have a solid architecture, if it is implemented

on poor-quality code we will still have problems. Making

any changes or extensions to that architecture is hard

because the code must be changed to do so. Our code is

the foundation that we stand on; whether it is solid and

stable or slippery and muddy depends on the level of

technical debt.

How do we measure technical debt? Where does tech-

nical debt show up in our systems?

In Figure 2, the aspects highlighted in blue contribute

to measures of technical debt. Code rule violations are

indications of technical debt. Duplications in the code

are copy-and-pasted blocks that exist in more than one

place in the code base. The lack of comments or public

API documentation is a risk because undocumented

code can be misused accidentally. Code complexity —

meaning McCabe cyclomatic complexity — is an indica-

tion that modules are either easy or hard to understand

depending on how deeply nested the logic is. Code cov-

erage, or rather lack of code coverage, means that we

do not have a safety net of unit tests to tell us when

one change has caused non-local failures.

Each of these things is a measurable aspect of the code,

and against each one of these measurable aspects, we

can assess an estimate of the time needed to fix it. For

example, a code rule violation might take six minutes

to fix, while duplicated blocks of code take two hours

to fix. When estimates for all the aspects are applied,

we can sum up the total effort require to remediate the

total measured debt.

In this example, we have 1,488 days of total effort to

remediate all of the measured technical debt in the

system. Keep in mind that zero measurable technical

debt is not the goal. That would be trying to achieve

“perfect” code, which isn’t exactly the goal in a good,

functioning business system. What we want is appropri-

ately low levels of technical debt so that we do not tend

toward bad customer responsiveness or risks to future

maintainability.

High complexity is an indication of error-prone mod-

ules. One analysis found that at cyclomatic complexity

of 38 units per module (Java class), the risk of errors

occurring was 50% (see Figure 3).3 That is a significantly

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Figure 2 — Aspects of measurable technical debt.

13Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

high number. The lowest risk was at a complexity of 11,

which is a very low cyclomatic complexity for a Java

class, with a risk of error of 28%. The risk rises very

rapidly with increasing complexity.

So what is technical debt again? Technical debt is two

things. First, technical debt is an indication of the total

remediation cost. Again, we do not want to remediate

all the way down to zero but to a responsibly low level,

and then to stay at that responsible level — not to trend

up. So it is an effort cost to fix measurable problems in

the code base. Second, technical debt is an indication

of future risks of failure. In this case, what we can see

is that technical debt gives us a hint at how risky proj-

ects are to our future cost of change or reliability in

production.

When customer responsiveness has started to fall

off precipitously, as in Figure 1, we have only three

strategies that we can apply:

1. We can do nothing, and likely everything will con-

tinue to get worse. Our customer responsiveness will

continue to go down.

2. We can replace the system in a big rewrite. This is,

of course, a high-cost and high-risk endeavor.

3. We can invest in incrementally refactoring and clean-

ing up the system, paying down that technical debt.

None of these strategies is easy, and all have conse-

quences. Once we have gotten to a significantly high

cost of change and low customer responsiveness,

however, they are the only options left to us.

USING TECHNICAL DEBT TO MAKE GOOD DECISIONS:
THREE STORIES

Story 1: The Online Broker That Refactored

My first story is of an online broker in Texas that

refactored and cleaned up their code base.4 They had

a 10-year-old Java-based system in production and

were serving a large number of customers. When my

colleagues and I engaged with them, they were experi-

encing reliability problems with the system and had

themselves concluded that everything was hard to do.

This was a high-friction environment that had become

difficult to maintain.

Figures 4 and 5 show the technical debt at the begin-

ning of the project and at the end of the project. The

key here is that at the beginning of the project, we

measured 740 person-days of technical debt. After the

refactoring effort, only 415 person-days of technical

debt remained measurable in the system. We had made

significant cleanup progress, mostly at the lower levels

of the system.

Figure 3 — Likelihood of error proneness given
cyclomatic complexity. (Source: Terrill.)

Figure 4 — Technical debt at the beginning of the project.

Figure 5 — Technical debt at the end of the project.

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201614

Let’s look at this case in a little more detail. This was an

online broker of precious metals such as gold and silver.

Managing and tracking the financial exchanges was

paramount; the cost of failure was exceptionally high.

We refactored the heart of the application, cleaning

up and exposing the central business logic. We built a

Hibernate object-relational mapping domain model as

the core of the application, refactoring all of the busi-

ness logic that had been strewn about the application

into that core logic. We succeeded in creating a layered

design and a clear dependency-managed system. This

gave us a solid foundation in the application to then

make better, safer decisions going forward.

Providing technical debt measures to the online broker

allowed them to see why they were experiencing relia-

bility problems with the system and why everything

was so hard to do. Here are some of the key things that

changed during this project. At the start of the project,

there were over 90,000 lines of code in the production

system. At the finish of the project, there were just over

70,000. We reduced the size of the system. We removed

lines of code. We also removed significant complexity.

The average complexity at the start of the project was

23 units of cyclomatic complexity per Java class. At the

end of the project, that average went down to 15.

While there were still some classes that had significantly

high complexity, we made substantial changes across

many of the classes, including key central business

classes that were simplified greatly. The duplicated

blocks of code went down from 22% to 7.6%. Admittedly,

7.6% is still a high number for code duplications, but if

we had measured only those code duplications in the

central business domain layer, it would have been a

much, much lower figure than that. The user interface

and top layer of the application were not refactored sig-

nificantly and still had quite a bit of duplication in them.

We also increased the unit test coverage from 0% to

nearly 20%, which was a major increase in testing cover-

age. This gave the development team a modest but solid

safety net with which to work.

Story 2: The Online Retailer That Rebuilt

We also worked with a San Francisco–based, inter-

national online retailer. They have a dozen teams

spread throughout the US, Europe, and India. The

user interface for their system was becoming very

difficult to maintain, very buggy, and very slow to

change. There was already an internal ground-up effort

to replace it. Management, however, was skeptical of

this effort and unsure whether it was actually needed.

We found two important factors for management to

consider. First, our analysis of the code bases showed

that the user interface layer was, by far, the most

technical debt–saturated part of the system, measuring

at least $11.28 per line of code of technical debt. This

is outside of the common range that we usually see,

which is usually $2-$10 per line of code. So this was

significantly tech debt–ridden code.

Second, the Java server pages totaled 762,000 lines of

code. The amount of duplication in this code base, in

this user interface, was over 40%. This was a very high

number, indicating that the ability to maintain this code

had degraded considerably. After we showed manage-

ment this information, they were able to conclude with

confidence that the rewrite effort was justified. The

organization was then able to move forward with a

unified purpose and replace the user interface.

Story 3: The Tool Vendor That Increased Technical Debt

Making good decisions about technical debt would

seem to preclude the notion that you might choose to

increase technical debt. However, we worked with a tool

vendor that chose to do just that. Why was increasing

technical debt a good idea for this company?

The enterprise in question, a Germany-based interna-

tional manufacturer, had adopted both Agile and tech-

nical debt measures. They had stringent targets for their

technical debt, achieving some of the lowest levels of

technical debt we have measured. After making signifi-

cant progress on reducing technical debt in their sys-

tems, a high-value opportunity to win a customer

presented itself, but the company was given an excep-

tionally short time frame in which to land the business.

If they had chosen to continue with the same strategy

of pushing technical debt down, they would have not

been able to deliver in time to win this customer and

their business.

The cleanup period shown on the left of Figure 6 is

what they had been doing; namely, significantly reduc-

ing the technical debt in the system. When this new

opportunity arose, they were presented with the option

of passing on it or duplicating and copying an entire

subsystem, thereby creating a massive amount of dupli-

cation in their systems and increasing their technical

debt significantly. This increase in technical debt was

in violation of their stated policies.

In the end, they made a very reasoned and mature

decision to duplicate the subsystem, while remaining

diligent about technical debt and following up afterward

to pay back the debt they incurred. In the paydown

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

15Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

period, they continued to invest in reducing that debt

and removing the duplication over time by refactoring

the systems. In this way, though they made a business

decision to incur debt that had high payback, they had

the maturity to continue remediating their debt.

CONCLUSION

If time is money, we need to consider the risk of going

slow in the future. We can use cost of delay and cus-

tomer responsiveness as two measures to quantify this

risk. The takeaway, though, is that while going fast

today is critically important, we also need to build the

capability to go even faster tomorrow. If our systems

are going to slow down, and we do not work to prevent

that from happening, then we’re setting ourselves up

for low customer responsiveness problems in the future.

Technical debt measures two things: (1) the total

remediation cost to clean up the measurable code-level

technical debt aspects of the system, and (2) the risk

of future failures. It is an indication of that risk.

What’s next? Here are a number of things to do with

your team:

n Identify the products at risk of going slow.

n Consider using the cost of delay to assess that risk.

n Assess technical debt measures for each at-risk project.

n Use technical debt measures as a leading indicator

to develop a remediation plan to prevent future

problems with customer responsiveness.

ENDNOTES

1Gat, Israel. “Cost of Delay Strategies in the Presence of

Technical Debt.” Cutter Consortium Agile Product

Management & Software Engineering Excellence Advisor,

3 March 2011.

2Highsmith, Jim. “The Financial Implications of Technical Debt.”

Jim Highsmith (blog), 19 October 2010.

3Terrill, Gavin. “Cyclomatic Complexity Revisited.” InfoQ,

31 March 2008.

4To read more about this project, see: Heintz, John. “Modern-

izing the Delorean System: Comparing Actual and Predicted

Results of a Technical Debt Reduction Project.” Cutter IT

Journal, Vol. 23, No. 10, 2010.

John Heintz is a Senior Consultant with Cutter Consortium’s Agile

Product Management & Software Engineering Excellence practice. He

is an experienced Agile manager, particularly in Lean and Kanban. In

2008, Mr. Heintz founded Gist Labs to further focus on the essential

criteria for innovative success. On a recent project, he coached a 100-

person Agile/Lean game studio, helping the organization increase its

throughput of game features per month while coordinating cross-team

communication paths, resulting in a doubling of features in one year.

Mr. Heintz began his career as a technologist and coach, always

seeking solutions with greater leverage and deeper simplicity. His

approach to systems and team building emerged in 1999 while leading

his first Scrum team, coaching XP and test-driven development. Mr.

Heintz has consulted with clients on various engagements, including

for enterprise architecture, development practices, XP and Scrum lead-

ership, Lean value stream mapping, and RESTful/messaging architec-

ture, and has developed an inhouse training course in AspectJ. He

has built single-source hyperdocument SGML publishing systems, a

version-control CORBA/Python CMS, and an AspectJ dependency

acquisition framework, and added test automation to many Java and

.NET systems. He is a regular speaker at industry events, including

No Fluff Just Stuff (NFJS), Architecture and Design World,

Dallas JavaMUG, and Agile Austin. Mr. Heintz holds a BS in

electrical engineering from the University of Michigan. He can be

reached at jheintz@cutter.com.

Figure 6 — Managing technical debt, before and after a significant opportunity.

Since its publication in 2010, SQALE1 has become the

industry standard method for managing technical

debt. This open source, royalty-free method is imple-

mented by multiple static analysis tools, including

the SonarQube platform,2 which is used in more than

50,000 companies, with an estimated 2 million users.3

This article will present the key concepts of the SQALE

method and explain how to use it, either in a day-to-

day context (as, for example, within an Agile project)

or at corporate level to govern a portfolio and optimize

its technical debt. The main goals of the method are to:

n Provide a rough estimation of the principal and

interest of the technical debt of a piece of source

code. It could be a small piece like a file or a com-

plete IT domain build of numerous applications.

n Provide indicators that allow detailed analysis of

the nature of the technical debt.

n Support remediation strategies with relevant indica-

tors. As we will see later, there is no one magic strat-

egy for paying back technical debt. There are many

potential strategies, and the right choice is highly

dependent on the context.

n Be implementable within an automated solution in

order to provide real-time visibility and decision

support.

To achieve these goals, the SQALE method uses four

concepts:

1. A quality model

2. Estimation models

3. Indices

4. Indicators

I will describe each of these concepts below.

THE QUALITY MODEL

The SQALE quality model is the list of good practices that

a project team or organization considers its definition of

“right code.” This list will serve as a reference for esti-

mating the technical debt of the code. Any noncompli-

ance with the quality model creates debt, and, conversely,

there is no debt without the breach of at least one of the

requirements.

If you don’t have such a list and don’t have time to

establish one, you can use the Agile Alliance Debt

Analysis Model (A2DAM) just released by the Agile

Alliance. The A2DAM is a list of very basic good prac-

tices that you can use as a quick start. You can also use

the default list provided by your static analysis tool.

Project retrospectives are good opportunities to adapt

and enrich the initial list to the specific context of your

project.

THE ESTIMATION MODELS

The SQALE method contains two estimation models.

One is used to estimate the time to remediate each debt

item contained within the code and identified by the

static analysis tool. This time is the principal associated

with the debt item and is called the remediation cost. As

an example, during the last week, a project team made

some quick-and-dirty implementations in order to sat-

isfy an important deadline. In doing so, they made

15 violations of their definition of right code. Using

the SQALE estimation model, the tool will estimate

the associated remediation cost as 3h 20min. In other

words, by taking some shortcuts, the team has “bor-

rowed” 3h and 20min of work, time that they will

have to spend later to implement the code correctly.

The second model estimates the impact of the debt

items on the business and is called the non-remediation

cost. It estimates the future additional costs, such as

extra work imposed on anyone working with the code,

that arise from technical debt. This cost could also be

considered as the cost of delaying the remediation.

Therefore, with SQALE, each debt item has two costs:

the remediation cost and the non-remediation cost.

All these calculations are performed by the analysis

tools supporting the method. Most of these tools have

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201616

Managing Technical Debt with the SQALE Method
by Jean-Louis Letouzey

HOW DO YOU RATE?

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

17Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

SQALE estimation models already preconfigured, so

you can start analyzing your code with their default

settings. As with all estimation models, it will be bene-

ficial to adjust them after you have seen the results.

When you add all the remediation costs of all the

debt items discovered by the code analysis, you get

the technical debt of the component, application, or soft-

ware domain. When you add all the non-remediation

costs of a software component, you get the business

impact (the interest part) of the component.

THE INDICES

I have already introduced the technical debt index and

the business impact index resulting from the two esti-

mation models of the method. These two indicators

should be monitored and made transparent to all the

participants in a project. Everybody will know at all

times how much technical debt the project is facing in

terms of either principal or interest.

Another important index is the SQALE debt ratio,

which is the technical debt divided by the budget of the

project. To get back to the financial metaphor, one way

to evaluate the health of a company is to calculate its

debt ratio, which is the ratio between the company’s

debts and assets. By analogy, the SQALE debt ratio

allows you to monitor the health of your projects and

applications.

THE INDICATORS

The most used indicator is the SQALE rating (see

Figure 1).

It is obtained by plotting the SQALE debt ratios of proj-

ects and applications on a grid in order to yield a simple

letter grade: A, B, C, D, or E (see Figure 2). A low debt

ratio produces an A grade, whereas a high debt ratio

results in a E grade. Associating colors to each grade

allows the tool to present a global map of a very large

portfolio, thus enabling users to immediately identify a

potential threat (see Figure 34).

The second most used indicator is the SQALE pyramid,

which represents the distribution of technical debt in

terms of quality characteristics (see Figure 4). This

indicator can be read in two ways:

1. The analytic view (represented by the numbers in

the left column and the light blue bars)

2. The consolidated view (represented by the numbers

in the right column and the dark blue bars)

Let’s start with the analytic view. In the example shown

in Figure 4, the debt related to reliability is 8d 1h. If this

amount is perceived as more debt than is desirable, the

development team can initiate training or coaching on

one or more factors that are the cause of this debt (e.g.,

inadequate exception handling, or a potential null

pointer exception). By taking these steps, the team can

limit the rate of future technical debt accumulation and

improve the reliability of the delivered code.

Figure 1 — An application summary in SonarQube.

Figure 2 — An example of a SQALE rating grid.

Figure 3 — A city-like representation of a large portfolio.

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201618

Now let’s see how to interpret the consolidated view of

the pyramid, which is obtained when we add the debt

of all lower characteristic levels for a given characteris-

tic. These calculations are shown by the numbers in

the right columns. Take the example of changeability,

which has a consolidated value of 12 days. Agile

projects generate a large number of change cycles to

the code. The necessary quality characteristics to sup-

port these developments are testability, reliability, and

changeability. Because changeability builds on reliabil-

ity and testability, the true distance between the current

state of the code and the target state of having easily

changeable code is the summation of the debt associ-

ated with each of the three characteristics (2d 5h + 8d 1h

+ 2d 1h = 12d 7 h [rounded to 12d by the tool]). This

consolidated value answers the following question from

a business representative: “How far are we from having

changeable software?” This consolidation mechanism is

applicable to all characteristics.

The last SQALE indicator I want to introduce is the

SQALE debt map. This is a bubble graph on which an

item (a file, a component, an application) is represented

on two axes, the technical debt and the business impact

(see Figure 5). I will discuss its usage later on.

MANAGING THE TECHNICAL DEBT OF A PROJECT
OR AN APPLICATION

Once you know how much debt you are facing and you

have the ability to analyze the nature of the debt, you are

in quite a good position to start paying your debt back.

The first instinct would be to rush in and fix the debt

items that have a very high impact (non-remediation

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Figure 4 — A SQALE pyramid.

Figure 5 — A SQALE debt map at the file level.

19Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

cost) and a low remediation cost. Such remediations will

have a very high ROI and so they will be easy to justify.

While this logic sounds rational, in many cases it is not

optimal. In reality, you will find that some debt items,

including some with very high impact, are located in

pieces of code that also have a structural debt issue.

These pieces should be completely refactored because

they are too complex, have bad coupling, or appear to

be duplicated code. In such cases, if you start fixing the

high-impact issues first, the time you spend on those

items will be lost when you fix the structural issues

later. There are frequent scope dependencies between

debt items, and this should be taken into account in the

prioritization.

So, because the prioritization of refactoring is more

complex than it appears at first glance, the SQALE

method supports three different strategies that corre-

spond to different contexts. The key input is the avail-

able budget for the refactoring.

Case 1

You are far from the delivery date, and you are able to

allocate time to address a large percentage of your total

technical debt (at least 60%).

In this case, as I explained before, you need to improve

the quality of code by first fixing the structural debt. In

practice, this is equivalent to making it testable. This is

the technical debt associated with the first level of the

SQALE pyramid, and it relates to issues such as too

complex methods, duplicated code, and so on. After

that, you pay back the debt associated with the next

layer of the SQALE pyramid, which is reliability. And

you continue up to the highest level of your pyramid.

Case 2

You have limited time. You can’t repay the debt

related to testability because it’s structural and too time-

consuming. You will be constrained to deliver your

application with remaining debt. Thus, it would be wise

to reduce the business impact (or the non-remediation

cost) of this debt. You will focus your efforts on fixing

the issues with the highest potential business impact.

These are, in general, the issues related to reliability

and security. In the case of the example in Figure 4,

you will need about 8d and 2h.

Case 3

You have very limited time. You can’t pay back all the

debt associated with reliability and security, so you

focus on the remediations that have the highest return

on investment. In this case, you use the debt map (in

Figure 5), and you fix files in the upper left corner,

because their fixes have a very high ROI.

As noted earlier, this last strategy to improve the code

is not optimal, because you will probably fix potential

bugs in pieces of code that should be refactored for

structural reasons. If so, this time will be lost. We can

say that this is the quick-and-dirty way to manage

technical debt.

These three cases summarize how the SQALE method

provides relevant indicators that help teams and other

interested parties make the optimal debt remediation

decision, whatever the context.

MANAGING THE TECHNICAL DEBT
OF A LEGACY PORTFOLIO

From a management point of view, it is very beneficial

to get a transparent view of the technical debt of the

complete portfolio. To do so, the SQALE method pro-

poses using a portfolio-level debt map. In this case, the

points on the map are applications. Each application is

positioned according to its technical debt density and its

non-remediation cost density. This allows teams, portfo-

lio managers, executives, and others to analyze the situ-

ation of the complete portfolio and to compare all the

different applications whatever their technology, size,

or context.

Consider the example shown in Figure 6. App B con-

tains about 5 times more technical debt than App A. All

things being equal, the technical debt of App C is 40

times more dangerous than that of App A. Using the

debt map in this way will help you to analyze the situa-

tion and identify which parts of your portfolio need

attention.

If an application provides very little business value and

its annual maintenance workload is very low, the fact

that it is not well positioned in the debt map (meaning

that it is in the top-right corner) is not worrisome. On

the contrary, if an application is critical and its code is

not of good quality (i.e., also positioned at the top-right

portion of the debt map), this represents a risk, and pay-

ing back the technical debt of this application may be a

high priority.

If an application provides very little business

value and its annual maintenance workload is

very low, the fact that it is not well positioned

in the debt map is not worrisome.

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201620

In order to get such visibility and decision capability, it

is important to use consistent estimation models across

the whole organization. This is not so easy to achieve,

because each business unit will find good reasons for

using its own models. Establishing common estimation

models is a corporate initiative and should be spon-

sored at the C level. It may require some external con-

sulting support to achieve consensus among all the

business units.

PARTING THOUGHTS

In addition to the debt ratio and the rating, the SQALE

method includes many more useful indicators that pro-

vide deep insights into an organization’s technical debt

situation and support optimal decisions about it. This

set of graphic indicators helps to establish a visual lan-

guage for reporting the current state of a project or port-

folio. This visual language is tool independent, which is

an important contribution to the success of the method.

ENDNOTES

1The method definition document and other related articles

and blog posts are available at www.sqale.org.

2The SonarQube platform is an open source project powered

by SonarSource. Most of the graphics samples provided in

this article are screenshot-produced with this tool.

3Campbell, G. Ann. “Mainstream: Noun. The Principal

or Dominant Course, Tendency, or Trend.” SonarQube (blog),

30 September 2015 (www.sonarqube.org/mainstream-noun-

the-principal-or-dominant-course-tendency-or-trend).

4The map provided in Figure 3 is produced by a SonarQube

plugin developed by Excentia (www.excentia.es).

Jean-Louis Letouzey is an expert consultant at Inspearit and the

author of the SQALE method for managing technical debt. Mr.

Letouzey consults to the world’s leading organizations for the

implementation of corporate solutions for managing technical debt.

He is also frequently embedded in due diligence teams for assessing

the technical debt of the acquired software. Mr. Letouzey is a frequent

technical speaker at international conferences. He can be reached at

jl.letouzey@gmail.com.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Figure 6 — A SQALE debt map at the application level.

Many long-standing problems like technical debt owe
their longevity to two factors — not dealing effectively
with their causes and not dealing effectively with their
resilience. Because what limits our ability to deal with
technical debt might not be technical, it is useful to
explore possible psychological and political sources of
the longevity of the technical debt problem. Below are
five possibilities:

1. Important generators of technical debt lie beyond
the control of IT.

2. The technical debt metaphor suggests unfavorable
and misleading associations.

3. The language we use to discuss technical debt affects
our ability to deal with it.

4. We regard technical debt as a real thing, rather than
the abstract construct it is.

5. Cultural debt leads some to regard IT as an expense
to be minimized rather than a strategic partner.

After exploring these five factors, I will suggest five
guidelines for designing effective technical debt
management policy.

THE TECHNICAL DEBT GENERATION PROBLEM

Conventional definitions of technical debt attribute it to
purely technical activity. For example, many hold tech-
nical debt to be a result of substandard IT practices,1, 2

which contradicts Cutter Fellow Ward Cunningham’s
original conception of the problem (see sidebar “The
Cunningham Definition of Technical Debt”),3, 4 but such
definitions are now widely accepted. In this article, I
define technical debt as the collection of technology
artifacts that we would like to revise or replace for
sound engineering reasons. This definition includes
Cunningham’s notion and adds both substandard
practices and obsolescence as sources of technical
debt. From the technical perspective, this definition
is well described by Martin Fowler’s Technical Debt
Quadrant,5 which is a 2x2 matrix classification6 in which
the axes are intention and prudence (see Figure 1).

Although the general view of technical debt is that
IT generates it, technical debt can result from nontech-
nical decisions taken entirely outside IT. Consider this
example:

A year ago, Company A acquired Company B. Consoli-
dating their IT functions was supposed to improve effi-
ciency, but technological incompatibilities have delayed
consolidation. While maintenance continues for some of
the former Company B’s systems, the combined enter-
prise is carrying technical debt and paying interest on it.7

21©2016 Richard Brenner. All rights reserved. Vol. 29, No. 3 CUTTER IT JOURNAL

The Psychology and Politics of Technical Debt:
How We Incur Technical Debt and Why Retiring It Is So Difficult
by Richard Brenner

HANDLING TD WHEN IT’S OUT OF YOUR HANDS

THE CUNNINGHAM DEFINITION OF
TECHNICAL DEBT

In 1992, Ward Cunningham described technical debt this way:

Shipping first time code is like going into debt. A little debt
speeds development so long as it is paid back promptly with
a rewrite.... The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as interest
on that debt. Entire engineering organizations can be brought
to a stand-still under the debt load of an unconsolidated
implementation, object-oriented or otherwise.

Figure 1 — Martin Fowler’s Technical Debt Quadrant.
(Source: Fowler.)

©2016 Richard Brenner. All rights reserved.CUTTER IT JOURNAL March 201622

In this example, the debt is technical only in its manifes-

tation. It is not technical debt in the usual sense, because

Company A+B incurred it as a result of the acquisition,

which did not anticipate the full cost of consolidating

the two enterprises.

Technical debt can arise for more mundane nontech-

nical reasons when organizational elements ask IT to

“do whatever you have to do” (DWYHTD) to solve

an urgent problem. Consider these scenarios:

n Sales debt: “We need this now, or we’ll lose the

account. DWYHTD!”

n HR debt: “The law requires that we comply by

December 31. DWYHTD!”

n Customer support debt: “We’re so swamped with

calls on this problem that we can’t deal with anything

else. DWYHTD!”

n Budget debt: “Sorry, we cannot approve the resources

for moving the final 30% of users from SharePoint

2007. Maybe next year. DWYHTD!”

In these examples, total spending consists of budgeted

fiscal spending plus new technical debt, which IT incurs

on behalf of other organizational elements. Budgetary

processes control fiscal spending, but typically technical

debt is uncontrolled. Managing technical debt accumu-

lation in these situations would require enterprise pol-

icy changes.

Such policy changes must entail some form of account-

ability on the part of the organizational elements IT

serves. We can reasonably expect people in those organi-

zational elements, at times, to experience any mandated

behavioral changes as curtailments of their freedom. If

they do, we would likely observe a phenomenon called

psychological reactance,8 which tends to intensify opposi-

tion to perceived restrictions of freedom that circum-

stances might require.

Reactance can be a powerful behavioral determinant,

as former US Air Force Major Martin Fracker argues.

In 1994, as a cognitive psychologist and member of the

faculty at the Air Command and Staff College, Fracker

proposed psychological reactance as an explanation

for Saddam Hussein’s refusal to withdraw from

Kuwait in 1990 despite the hopelessness of his position.9

Researchers have investigated an analogous dynamic

with respect to information systems adoption.10

THE TECHNICAL DEBT METAPHOR PROBLEM

Metaphors, which have the form “A is B,” juxtapose

concepts from disparate domains to underscore a partic-

ular idea.11 Consider the metaphor “My son’s bedroom

is a war zone.” His bedroom isn’t literally a war zone,

though it is messy. The A concept (my son’s bedroom)

is the topic, and the B concept (war zone) is the vehicle.

To say “These technological artifacts are debt” is to use

a metaphor to associate the topic, namely the techno-

logical artifacts, and the vehicle, namely financial debt.

Metaphors are powerful because they associate the topic

and vehicle in compact, memorable ways. Consider

some associations that the technical debt metaphor

evokes. Perhaps the most fundamental is the interest

on technical debt, which usually appears in the form

of depressed IT productivity. The metaphor communi-

cates the idea that outstanding technical debt has real,

ongoing, undesirable consequences.

Yet a metaphor’s associations can be a source of trouble,

because we cannot control which attributes of the

metaphor’s vehicle the reader or listener will choose

to associate with the metaphor’s topic. I call this

phenomenon unintended association.

Unintended association can be helpful. In finance,

short-term debt usually carries a higher interest rate

than long-term debt. In software engineering, we do

not often consider the difference between short-term

and long-term technical debt, but the distinction

can provide useful guidance for decisions regarding

incurring new technical debt or retiring existing

debt, as discussed by software engineering expert

Steve McConnell.12 McConnell13, 14 (as well as Raul

Zablah and Christian Murphy of the University of

Pennsylvania15) has shown how numerous other attrib-

utes of financial debt have technical analogs. Through

unintended association, the debt metaphor suggests

new insights that are potentially helpful in managing

technical debt.

Unintended association can be problematic, however.

If my two sons share a bedroom, saying that it’s a war

zone can evoke images of conflict between my sons,

when I intend to communicate only messiness. So it is

with the technical debt metaphor. Although we usually

regard financial debts as having been incurred con-

sciously, we aren’t always aware of incurring technical

debt. Moreover, we can readily assess, unambiguously,

the amount of financial debt we owe. Not so with

We can readily assess, unambiguously, the

amount of financial debt we owe. Not so

with technical debt.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

23Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

technical debt. The impulse to “measure” technical debt

arises, in part, from this unintended association. More-

over, people unfamiliar with managing technology

might regard as incompetent any IT managers who are

unaware of how they incurred technical debt, or who

don’t know precisely how large the debt is. Disabusing

them of these notions can be difficult, in part because

of unintended associations with regard to the technical

debt metaphor.

Some more troublesome unintended associations stem

from the social status of debtors in society. For many,

excessive financial debt evokes images of profligate

spending, laziness, and moral decay. These associations

can hinder IT leaders as they urgently advocate for

resources for technical debt management. Because of

unintended association, some decision makers outside

IT might regard technical debt as arising from misman-

agement within IT, as evidenced by IT’s ignorance of

how they acquired the debt or how large it is. To the

extent that they adopt this attitude, they’re unlikely

to support enterprise policy changes or additional

resources for technical debt management within IT.

THE LANGUAGE PROBLEM

The language we use to describe problems influences

how we think about them, and how — or how well, or

whether — we solve them. For example, using the word

interest affects how we regard technical debt. Interest

rates on financial debts are relatively constant. Our

experience with financial debt can thus suggest that the

“interest rate” on technical debt is likewise relatively

constant, even though it can fluctuate wildly, as I will

discuss below. This misperception can lead to mis-

placed priorities for technical debt management if

we don’t account for interest rate fluctuations.

Yet more problematic language associated with the

technical debt metaphor is the word technical. Many

regard the term technical debt as appropriate, because

it refers to a collection of technical artifacts. From that

perspective, the term is apt.

But much technical debt has nontechnical sources. In

situations like the Company A+B example above, the

uncovered consolidation cost is usually called technical

debt, but it is probably more properly regarded as enter-

prise debt that has a technological manifestation — a

phrase that, unfortunately, does not quite roll off the

tongue. The cost of retiring that debt, and the interest it

accrues until its retirement, should be accounted for not

as an IT operating expense, but as an IT expense associ-

ated with the acquisition. Labeling the debt in question

technical debt obscures its true nature and typically

prevents organizations from allocating resources

sufficient to promptly retire it.

As we’ve seen, to meet the urgent needs of various

organizational elements, IT sometimes incurs new tech-

nical debt, or defers retiring existing debt. To speak of

these artifacts as technical debt, without reference to the

reasons why the debts were incurred or remain, is an

unfortunate use of language that tends to mistakenly

identify IT as the debtor, thus insulating the true debtor

from the debt. That error, in turn, can lead to errors in

resource allocation, preventing debt reduction and

retirement. Worse, it can obscure the true source of

mismanagement, if any. Use of the word technical is

at the root of this difficulty.

THE MEASUREMENT PROBLEM

When we seek solutions to problems, among the first

questions we ask is, “How big is the problem?” Gauging

the scale of the technical debt problem requires estimat-

ing both current debt and its interest charges. Both tasks

are problematic. Let’s consider debt estimation first.

Rarely can we estimate the absolute amount of technical

debt in a given system. The urge to do so, and the urge

to reject claims that absolute measurement is difficult if

not impossible, are likely related to what psychologists

call the reification error.16 Philosophers call it the Fallacy

of Misplaced Concreteness.17

The logical fallacy of reification occurs when we treat

an abstract construct as if it were a concrete thing.

Although reification can serve as helpful mental short-

hand, it can produce costly cognitive errors. For exam-

ple, advising someone who’s depressed to get more

self-esteem is unlikely to work, because self-esteem isn’t

something one can order from Amazon (or anywhere

else). One can enhance self-esteem through counseling,

reflection, and many other means, but it isn’t a concrete

object one can “get.” Self-esteem is an abstract construct.

Technical debt is likewise an abstraction. We can discuss

“measuring” it, but attempts to specify measurement

procedures will eventually confront the inherently

Much technical debt has nontechnical

sources.... Labeling the debt in question

technical debt obscures its true nature and

typically prevents organizations from allocat-

ing resources sufficient to promptly retire it.

©2016 Richard Brenner. All rights reserved.CUTTER IT JOURNAL March 201624

abstract nature of technical debt, leading to debates

about both definitions and the measurement process.

Consider, by contrast, national infrastructure debt asso-

ciated with aging highway bridges.18 Because bridges

are physical things, successive independent assessments

of this debt are likely to yield a fairly narrow distribu-

tion of results (low σ). On the other hand, independent

“measurements” of total technical debt in a software

system are much more likely to yield a broad distrib-

ution of results (high σ), because those results are

affected by differences among the measuring proc-

esses and the definitions of technical debt.

Moreover, technical debt as a management tool has

meaning only relative to our intentions and ongoing

activities. If we measure the technical debts of two

systems that depend on a substrate technology that

has just undergone a change, we might find that

Debttotal = Debt1 + Debt2. But if we decide to retire

System 2, and therefore suspend further maintenance

and development on it, then for management purposes

Debt2 vanishes. It can vanish because it isn’t real.

One additional point about debt measurement is worth

clarifying. Unlike total technical debt, we can make

reasonable estimates of incremental technical debt — the

technical debt we would incur as a result of a particular

contemplated implementation. The incremental techni-

cal debt is the cost of upgrading that implementation to

the form we would have deployed if we were doing it

“right.” Estimating that effort is as straightforward

(or not) as any other estimate. The distinction between

measuring total technical debt and estimating incremen-

tal technical debt is that we need not detect the latter;

we know what we’re planning not to implement. By

contrast, a measurement of total technical debt would

require identifying all debt in the entire asset base.

Estimating interest on technical debt is no less prob-

lematic. Even if we could measure technical debt

absolutely, the interest on that debt can fluctuate dra-

matically. In some time periods, the interest charge for

a particular technical debt component might be zero if

we aren’t working on any system components that carry

that debt. When we do work on those components, the

interest charges can suddenly escalate. Contrast this

with interest charges on financial debt, which typically

depend only on the loan terms rather than what we’re

doing at any particular time.

Moreover, distinguishing between issuing new technical

debt and paying interest on existing debt can be diffi-

cult. For example, Antonio Martini and Jan Bosch of

Chalmers University of Technology have identified

a phenomenon they call debt contagion,19 whereby

creating new system elements to be compatible with

elements identified as debt effectively causes debt prop-

agation. Although we can regard debt contagion as new

technical debt, we could also argue that at least some

part of it is metaphorically equivalent to borrowing

funds to pay interest on existing debt. Because such

borrowing signals an urgent need to retire the debt that

led to it, tracking it as a distinct system attribute would

be valuable to anyone intent on setting priorities for

managing technical debt.

At times, interest charges on technical debt can be so

high that we effectively default. Default occurs when

the organization cannot meet — or elects not to meet —

the interest payments20 on some component of technical

debt. This happens, for example, when an organization

declines to undertake a project because doing so would

involve modifying system components that are so bur-

dened with technical debt that the probability of suc-

cessful modification is unacceptably low, or the cost

thereof would be unacceptably high, even if it could be

completed on time. One might find comments in code

such as “Don’t ever touch this again” or “Do not mod-

ify. Contact Lisa to talk about when I can do it for you.”

Sadly, the authors of such comments have all too often

moved on.

Technical debt defaults are damaging. We might choose

not to undertake some projects; we might not even

propose others. Worse, defaults can actually limit our

imaginations. Although numerous static analyzers for

technical debt and technical debt interest have been

studied,21-23 static analyzers aren’t yet capable of esti-

mating the cost of opportunities lost because of projects

not undertaken, projects not proposed, or concepts not

even imagined. We can only presume such costs to be

very high indeed.

THE CULTURAL DEBT PROBLEM

Edgar Schein of MIT’s Sloan School of Management

defines organizational culture as “a pattern of shared

basic assumptions learned by a group as it solved its

problems of external adaptation and internal integra-

tion.”24 As information technologies have progressed,

Technical debt defaults are damaging. We

might choose not to undertake some projects;

we might not even propose others.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

25Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

some organizational cultures haven’t adapted well

enough or rapidly enough. When cultures view IT as a

service organization, a remnant perhaps of the middle

or late 20th century, it’s not uncommon for some to

regard IT as a source of expense to be minimized rather

than as a strategic partner.25-26 Trends toward strategic

acceptance of IT are only slightly favorable, according

to recent surveys of CIOs.27 It is illuminating to view

this artifact of organizational culture as a form of

cultural debt.

Cultural debt, like technical debt, imposes interest

charges. This form of cultural debt contributes to an

alignment of organizational political power that con-

strains IT resources and tends to increase technical debt.

Viewed from this perspective, some components of

technical debt are actually the interest charges for

cultural debt.

The condition persists, in part, because of a phenome-

non known as the identified patient, as discussed by

family therapist Virginia Satir.28 In affected families,

the identified patient is the troubled family member

who serves as scapegoat, or whose symptoms serve

an unhealthy family function. In some enterprises bur-

dened with cultural debt, IT is the identified patient,

enabling other organizational elements to operate

in what they mistakenly regard as healthy balance.

Although these organizational elements believe them-

selves to be coping as best they can with IT’s failure

to address its technical debt problem, the root cause of

the trouble might be cultural debt, in which everyone

plays a role.

Attempting to address technical debt while leaving

cultural debt unaddressed — or growing — is unlikely to

produce the desired results. Until everyone in the organi-

zation accepts their responsibility for technical debt for-

mation, and supports policy changes that enable rational

technical debt management, durable and superior organi-

zational performance will remain beyond reach.

FIVE GUIDELINES FOR MANAGING TECHNICAL DEBT

The five problem areas described above suggest the

outlines of a program for managing technical debt.

1. Control Issuance of New Technical Debt

Issuing technical debt is an essential enterprise function.

It enables IT to provide services to organizational

elements whose current budgetary authorization is

otherwise insufficient for accomplishing their legitimate

missions in unanticipated situations. Controlling the

issuance of new technical debt restricts this deficit

spending to activities both necessary for and closely

aligned with enterprise objectives.

Nearly all projects generate new debt. Lessons learned

documents that report on technical debt generation can

support organizational learning about technical debt

management.

When IT issues new technical debt on behalf of a busi-

ness unit, sound technical debt management policy

would hold that unit accountable for the debt and its

interest charges. We can rate this debt using Fowler’s

Technical Debt Quadrant, adjusting interest charges

accordingly. High-quality technical debt is debt that is

issued with intention, and prudently; its interest rate

could be adjusted downward. Low-quality technical

debt is debt that results from inadvertent recklessness;

its interest rate could be adjusted upward. This concept

illustrates the importance of future research into project-

ing interest charges on new technical debt.

2. Exploit the Psychology of Communications

Organizations can manage debts only if they recognize

them. In the finance domain, the term obligation is often

used in place of debt. It communicates powerfully the

idea that debt must be repaid.

Any organizational asset — culture, HR processes, test-

ing gear, the sales process, the product lineup, brands,

and more — can accumulate debt. A term more general

than technical debt, such as asset obligation, could com-

municate this concept. Organizations can reach their

potential only if they are aware of all their asset obli-

gations and only if they manage them successfully.

Technical debt is just one form of asset obligation.

When we encounter reactance to new debt control poli-

cies, a typical management response is tighter controls.

A more effective approach might emphasize concrete

examples of the new freedoms that become available

as the organization liberates itself from the burdens of

accumulated technical debt.29

Attempting to address technical debt

while leaving cultural debt unaddressed —

or growing — is unlikely to produce the

desired results.

©2016 Richard Brenner. All rights reserved.CUTTER IT JOURNAL March 201626

3. Be Guided by the Indirect Effects of Technical Debt

Technical debt (or asset obligation) retirement programs

should focus foremost on reducing interest charges. For

example, if we know that some debt component will

reduce productivity for a particular project, applying

resources to retire that debt component might be pru-

dent. But elevated maintenance and development costs

are just the most obvious forms of interest on technical

debt. Indirect effects can be far more costly. An often-

overlooked component of interest charges appears in

the form of recruitment and retention costs pertaining

to people who must labor on debt-ridden asset bases.

Examine the organization carefully to identify all indi-

rect effects of technical debt.

4. Make Technical Debt Projections

IT can incur technical debt on its own behalf, but as

we’ve seen, enterprises frequently incur technical debt

at the behest of organizational elements other than IT.

Even more important are the external forces that result

in technical debt creation. For example, we know that

CSS4 is coming.30 When it is released, almost every

website in the world will incur some degree of new

technical debt. Indeed, every new release of substrate

software, and much new hardware, can also create

new technical debt. Rare is the enterprise that forecasts

externally driven technical debt and forecasts resource

allocations accordingly. Organizations that do so will

soon gain competitive advantage.

5. Address Outstanding Cultural Debt

Enterprise leadership must assess whether the enter-

prise culture views IT as an expense to be minimized

or as a strategic partner. If the former, expense mini-

mization might have progressed so far that technical

debt has reached levels that IT cannot effectively

address alone. A transformation of enterprise culture

that leads to a strategic role for IT is a necessary

prerequisite to gaining control of technical debt.

PARTING THOUGHTS

While technical debt is certainly a problem, it can also

be a symptom of an imbalance in the enterprise. If

an imbalance exists, purely technical approaches to

addressing the technical debt problem are unlikely to

achieve much more than short-term relief. Resolving

organizational imbalance, if it exists, could entail some

degree of organizational transformation.

Cultural transformations are difficult, in part, because

even after we successfully identify what must change,

moving an organization as one toward that goal can be

even more challenging. In this instance, because of a

“virtuous cycle,” the effort to manage technical debt

can provide enterprise leaders the leverage they need.

If the enterprise can hold accountable the organizational

elements on whose behalf IT now issues technical debt,

political power within the enterprise can be rebalanced,

which would then facilitate the control of technical debt.

IT can then assume the strategic role so necessary for

enterprise success.

ENDNOTES

1“How to Calculate Technical Debt.” Deloitte Insights

(sponsored content in The Wall Street Journal), 21 January

2015 (http://deloitte.wsj.com/cio/2015/01/21/how-to-

calculate-technical-debt).

2Kniberg, Henrik. “The Solution to Technical Debt.” Crisp

(blog), 12 July 2013 (http://blog.crisp.se/2013/07/12/

henrikkniberg/the-solution-to-technical-debt).

3Cunningham, Ward. “The WyCash Portfolio Management

System.” Addendum to the Proceedings of OOPSLA ‘92. ACM,

1992.

4Cunningham, Ward. “Ward Explains Debt Metaphor” (video;

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor).

5Fowler, Martin. “TechnicalDebtQuadrant.” Martin Fowler

(blog), 14 October 2009 (http://martinfowler.com/bliki/

TechnicalDebtQuadrant.html).

6Lowy, Alex, and Phil Hood. The Power of the 2x2 Matrix: Using

2x2 Thinking to Solve Business Problems and Make Better Decisions.

Jossey-Bass, 2004.

7I choose not to use the term technical interest to refer to the

interest rate on technical debt, because that term is already

in use in the insurance industry.

8Brehm, Sharon S., and Jack W. Brehm. Psychological Reactance:

A Theory of Freedom and Control. Academic Press, 1981.

A transformation of enterprise culture

that leads to a strategic role for IT is a

necessary prerequisite to gaining control

of technical debt.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

27Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

9Fracker, Martin L. “Conquest and Cohesion: The Psychological

Nature of War.” In Challenge and Response: Anticipating US

Military Security Concerns, edited by Karl P. Magyar. Air

University Press, 1994.

10Matthias, Thomas, et al. “Psychological Reactance and

Information Systems Adoption.” In Organizational Dynamics

of Technology-Based Innovation: Diversifying the Research Agenda,

edited by Tom McMaster, et al. Springer, 2007.

11Compare the metaphor “A is B” to the simile “A is like B.” In

the literature of technical debt, similes and metaphors, which

are both figures of speech, are often confused with each other,

and with analogies. An analogy, by contrast, is not a figure of

speech; it is a logical argument. For a most illuminating and

complete discourse on the subject, see Clark, Brian. “Metaphor,

Simile and Analogy: What’s the Difference?” Copyblogger,

3 May 2007 (www.copyblogger.com/metaphor-simile-and-

analogy-what%E2%80%99s-the-difference).

12McConnell, Steve. “Technical Debt.” Construx (blog),

1 November 2007 (www.construx.com/10x_Software_

Development/Technical_Debt).

13McConnell, Steve. “Managing Technical Debt —

Construx Webinar.” Construx, September 2011 (video;

www.youtube.com/watch?v=lEKvzEyNtbk).

14McConnell, Steve. “Managing Technical Debt.” Construx,

June 2008 (www.construx.com/uploadedFiles/Construx/

Construx_Content/Resources/Documents/Managing%

20Technical%20Debt.pdf).

15Zablah, Raul, and Christian Murphy. “Restructuring and

Refinancing Technical Debt.” Proceedings of the IEEE 7th

International Workshop on Managing Technical Debt (MTD).

IEEE, 2015.

16Levy, David A. Tools of Critical Thinking: Metathoughts for

Psychology. Allyn and Bacon, 1997.

17Whitehead, Alfred North. Science and the Modern World.

Pelican Mentor (MacMillan), 1948.

18“2013 Report Card for America’s Infrastructure.”

American Society of Civil Engineers, March 2013 (www.

infrastructurereportcard.org/a/documents/2013-Report-

Card.pdf).

19Martini, Antonio, and Jan Bosch. “The Danger of Architectural

Technical Debt: Contagious Debt and Vicious Circles.”

Proceedings of the 12th Working IEEE/IFIP Conference on

Software Architecture (WICSA). IEEE, 2015.

20Downes, John, and Jordan E. Goodman. Dictionary of Finance

and Investment Terms. 2nd edition. Barron’s, 1987. In the finan-

cial domain, a default occurs when the debtor fails to meet

scheduled payments, which could include principal in addi-

tion to interest. In the metaphor, however, we rarely make

payments that combine principal and interest. Typically,

principal is paid only during dedicated efforts to retire

technical debt.

21Tomás, Pedro, María José Escalona, and Manuel Mejías.

“Open Source Tools for Measuring the Internal Quality of

Java Software Products: A Survey.” Computer Standards &

Interfaces, Vol. 36, No. 1, November 2013.

22Maldonado, Everton da S., and Emad Shihab. “Detecting and

Quantifying Different Types of Self-Admitted Technical Debt.”

Proceedings of the IEEE 7th International Workshop on Managing

Technical Debt (MTD). IEEE, 2015.

23Falessi, Davide, and Alexander Voegele. “Validating and

Prioritizing Quality Rules for Managing Technical Debt: An

Industrial Case Study.” Proceedings of the IEEE 7th International

Workshop on Managing Technical Debt (MTD). IEEE, 2015.

24Schein, Edgar A. Organizational Culture and Leadership. 4th

edition. Jossey-Bass, 2010.

25Ross, Jeanne W., and David F. Feeny. “The Evolving Role of

the CIO.” In Framing the Domains of IS Management Research:

Glimpsing the Future through the Past, edited by Robert W.

Zmud. Pinnaflex, 2000.

26Ross, Jeanne W., and David F. Feeny. “The Evolving Role of

the CIO.” Center for Information Systems Research (CISR)

Working Paper No. 308. Sloan School of Management, MIT,

August 1999.

27“2016 State of the CIO Survey.” CIO, January 2016.

28Satir, Virginia. Conjoint Family Therapy. Revised edition.

Science and Behavior Books, 1967.

29I owe this insight to the work of University of Oklahoma

communications professor Claude H. Miller and his coauthors

on health communications. See: Miller, Claude H., et al.

“Psychological Reactance and Promotional Health Messages:

The Effects of Controlling Language, Lexical Concreteness, and

the Restoration of Freedom.” Human Communication Research,

Vol. 33, No. 2, March 2007.

30Etemad, Elika J., and Tab Atkins, Jr., eds. “Selectors Level 4,

Editor’s Draft.” W3C, 9 February 2016 (http://drafts.

csswg.org/selectors-4).

Rick Brenner is Principal of Chaco Canyon Consulting. He works

with people in dynamic problem-solving organizations who make com-

plex products or deliver sophisticated services that need state-of-the-

art teamwork and with organizations that achieve high performance

by building stronger relationships among their people. Mr. Brenner

focuses on improving personal and organizational effectiveness, espe-

cially in atypical situations, as in the case of continuous change, tech-

nical emergencies, and high-pressure project situations. From 1993

to 2014, he taught a course in business modeling at the Harvard

University Extension School. He publishes a weekly e-mail newsletter

and has written a number of essays that are available at his website,

www.chacocanyon.com. He is the author of the e-book Leading

Virtual Meetings for Real Results. He can be reached at

rbrenner@chacocanyon.com.

The IT function in the typical Fortune 500 company is

increasingly expected to enable business innovation and

support digital disruption while ensuring secure and

reliable operations of existing enterprise applications.

The expectations of IT are funded by IT budgets that

are subject to regular cuts during the fiscal year when

the company does not meet performance targets or

experiences other competitive pressures. In the market-

place, shorter product and service lifecycles are creating

enormous pressure for businesses to innovate to retain

profitable market share.

One major obstacle to business agility and innovation is

technology debt (TD). TD obstacles manifest themselves

as non-IT executives complain that “we can’t launch

this new product/service as our IT systems will not

allow us to.” From an IT standpoint, the inability

of existing IT systems to support the proposed new

product/service launch is a result of past technology

“workarounds” that were implemented to meet an

accelerated timeline or reduced budget.

Given this history, how can the IT function engage

with the business to remove technology debt and enable

business agility and innovation? It is nearly impossible

to prevent technology debt from being created —

product/service lifecycles are getting shorter, making

time to market an imperative for which taking shortcuts

becomes a necessity. (The only exceptions that come

to mind are of systems being developed and deployed

for highly regulated environments or mission-critical

applications in areas such as medicine and defense.)

However, the size and scope of the technology debt

being created can be contained, and on rare occasions

some technology debt can be prevented, with proper

analysis of the impact of a proposed workaround on

business process agility/scalability.

Within IT, we have existing methodologies that can help

non-IT executives engage with and take ownership of

retiring technology debt. Despite enterprise architecture

(EA) being touted for over a decade, rarely do we see

companies map business architecture (BA) to underlying

IT applications and supporting systems infrastructure.

Transforming the EA function from a conceptual

group to one that is responsible for creating the solution

architecture will lay the groundwork for engaging

business/functional owners in making the tradeoffs

for workarounds.

In this article, I will explain how to get business engage-

ment and “buy-in” to remove technology debt using

existing IT processes such as the quarterly/annual

budgeting process, design reviews, and functional

walkthroughs. To obtain funding and business sponsor-

ship for TD remediation projects, it is important to get

non-IT executives to understand and support the TD

remediation challenges. Understanding how technology

debt is created is essential to preventing, containing,

and retiring the debt.

TECHNOLOGY DEBT CREATION AND GROWTH

For discussion purposes, I will expand the definition

of “technical debt” to “technology debt” to include dif-

ferent layers of the technology stack that composes a

business application or function.1 For example, the tech-

nology stack could consist of custom-developed code,

configuration options for a COTS package, and the

underlying database, computing, storage, network, and

presentation layers that together deliver business func-

tionality. The functionality could be a simple order

entry (OE) system or a more complex ERP system with

integrated business functions.

Figure 1 depicts an OE system and its components

across the technology stack. At its inception, the system

would have been designed to work with other layers of

the stack through the application and Web service lay-

ers. The proper design for interaction is depicted with

the thick bidirectional arrow. During the development

phase, to meet performance goals or deal with resource

constraints, workarounds are written to interact directly

with other systems (such as the CRM and general

ledger [GL] applications). These shortcuts — point-

to-point integrations — are shown in Figure 1 as thin

bidirectional arrows. For simplicity, the diagram shows

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201628

Addressing the Hidden Obstacles to Innovation and
Digital Disruption
by Ram Reddy

SEEING IS BELIEVING

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

29Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

point-to-point interactions with just one application; in

reality, there would be hundreds of point-to-point inte-

grations with other applications and systems (such as

the operational data store) by the time the OE system

goes into production.

Once the OE system is in production, more integrations

are added over time to deliver incremental functional-

ity. The workarounds developed are typically not well

documented, and the developers who wrote them

would likely have moved on. The mostly undocu-

mented workarounds (see Figure 1) create a “lock-in”

between the OE, CRM, logistics, GL, MRP, and other

layers of the technology stack. This lock-in grows over

time as more and more upstream and downstream

integrations are created. Any major changes to, or

replacement of, systems requires a thorough analysis

and remediation of the hundreds of integrations. This

is an example of technology debt that needs to be

remediated before enterprise applications in the

lock-in category can support new capabilities or

enable innovative business processes.

There are other sources of technology debt besides the

example given above. To meet a reduced project bud-

get, project teams make suboptimal choices on infra-

structure areas such as servers, storage, and so on.

While these choices allow teams to deliver systems that

meet the current need, they may limit future growth —

creating technology debt that needs to be addressed at a

future date.

Technology debt can grow exponentially, especially if

the company achieves business success using the IT sys-

tem with workarounds. Successful workarounds create

lock-in with the functional users of the system, making

change difficult if not impossible. The IT workaround

in production could consist of software shortcuts, quick-

and-dirty definition of databases, and/or suboptimal

systems infrastructure choices. The successful IT system

will propagate through integration with upstream and

downstream systems. Years later, when the business

wants to change upstream or downstream systems to

launch a new product/service, the production system

may not support this without the workarounds being

modified or replaced. In some instances, replacing the

workarounds will have an adverse impact on current

operations.

Systems inherited through mergers/acquisitions and

“shadow IT” add to the technology debt. The size of

the problem in most mature companies makes it a

Herculean task, and no one wants to clean the prover-

bial Augean stables, especially if the debt is not visible.

We need to document the technology debt across busi-

ness processes and operational systems before we can

seek non-IT executive support to remediate the prob-

lem. Using business architecture and IT service catalog

processes, the IT function can identify TD areas, obtain

business sponsorship, and secure funding for projects to

remediate the debt.

The business architecture process2 coupled with the

IT services catalog3 gives us the context to build and

maintain an inventory of TD areas and their impact on

business processes, operating costs, and service-level

expectations.

GAINING BUSINESS BUY-IN USING BA
AND THE IT SERVICES CATALOG

For the most part, the IT function is technically capable

of designing and implementing solutions that remediate

technology debt. The challenge lies in obtaining non-IT

executive sponsorship and funding for TD projects.

Figure 2 shows a high-level overview of the IT budget-

ing process that can be used to gain executive spon-

sorship and funding for TD projects. The suggested

Order Entry Application

Application Server Web Server

Security Integration
Services

Process
Orchestration

Operational
Data Store

Reporting
Data Store

Other
Databases

Storage (SAN) Server OS Network (VN)

General
Ledger

Material
Resource
Planning

Logistics

Customer
Relationship
Management

Data Center(s) Cloud Service Providers

Figure 1 — Creating technology debt.

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201630

approach is applicable even if a company does not

have a formal IT services catalog or a BA repository.

Let us assume that the company depicted in Figure 1

decides to move to a cloud-based, software as a ser-

vice (SaaS) provider for sales force automation (SFA),

thereby replacing their existing CRM system. Migrating

to the new platform will require an analysis of the

upstream and downstream business processes that

interact with the current CRM system.

During this analysis, the typical solution architecture

is created with the sole purpose of implementing the

SFA system. As part of the solution architecture, a TD

review of the workaround integrations between the old

CRM systems and other systems also needs to be done.

The review and documentation of the technology debt

in the BA repository should be led by the EA function,

with input from subject matter experts of the various

systems and technology stack areas. This review will

pinpoint areas of technology debt that create process

lock-in, impact scalability, and prevent improvement

of existing business processes. This will result in the

identification of TD remediation projects that should be

funded as capital projects in support of the SFA system.

The SFA project team’s primary focus will be on imple-

menting the new system and not on removing technol-

ogy debt surrounding the CRM system. The TD project

needs to be executed in parallel with the SFA project.

Artifacts from the BA process are critical for gaining

support from non-IT executives for investment in

TD remediation projects. The business process and IT

roadmaps are visually compelling tools that can show

the impact on business capabilities, agility, and preven-

tion of innovation if technology debt is not remediated.

The other funding track for TD remediation projects is

the annual/quarterly IT operating budget review. Most

firms have elements of the data shown in the IT operat-

ing budget arrow in Figure 2. Even if a company does

not have a comprehensive IT services catalog mapped

to every operational system, it will have a high-level

breakdown of the IT operating budget in support of

different functional and technical areas. Areas of tech-

nology debt that would — if remediated — simplify

IT infrastructure/applications, improve service levels,

strengthen security, and repurpose the IT budget

should be identified as part of this review process.

It is not necessary for systems providing new business

capability to come out of the capital budgeting process

or for IT infrastructure simplification projects to come

out of the IT operating budget process. For ease of dis-

cussion, I have simplified the two tracks even though

they are not mutually exclusive in terms of the types

of projects. Similarly, the IT services catalog and BA

processes can be quite extensive and detailed. However,

to educate and engage non-IT executives in the sponsor-

ing and funding of TD remediation projects, high-level

business process maps and IT roadmaps that illustrate

the impact of workarounds should suffice.

TACKLING TECHNOLOGY DEBT

Preventing TD

Technology debt can be created in the development,

deployment, and production phases of the software

development lifecycle. BA and functional ownership

of the application/system are critical to preventing the

creation of technology debt. Showing the non-IT system

owner that implementing point-to-point integrations

creates process lock-in and limits future business

process improvements may lead to surprising results.

Well-informed system owners may decide to reduce

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

IT Systems Supporting
Current Operations

IT Services Catalog IT Operating Budget

Current Business
Processes Mapped

to IT Systems

IT Roadmaps to Deliver
New Business

Capabilities
IT Capital Budget

Technology Debt
Remediation

Projects

Scaling Innovative/Disruptive
Capabilities, Improving
Business Processes

Simplifying IT Infrastructure &
Applications, Cybersecurity,
Repurposing IT Budget

Figure 2 — Funding technology debt remediation projects.

31Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

project scope to meet budget reductions instead of

approving workarounds that create technology debt.

Developed over time, an accurate BA repository and a

comprehensive IT services catalog become invaluable

tools in preventing technology debt from being created.

By using artifacts from the BA repository and the IT

services catalog, the adverse potential impact of work-

arounds can be shown on the business process and on

the IT operating budget and service levels.

Containing TD

A major source of technology debt is the shadow IT

functions within companies. In many instances, the IT

function is unable to service the technology needs of a

business unit or function, prompting the business unit

to obtain and implement local IT solutions without the

IT function’s buy-in, budget, or resources. Conversely,

the typical enterprise IT function is stretched thin

and does not have the bandwidth to support ad hoc

business/functional IT needs. Going forward, the enter-

prise IT function should engage, support, and guide

shadow IT to make the optimal technology choices.

Optimal technology deployment may not be feasible if

the business unit/function is evaluating quick-and-dirty

prototype systems. Instead of fighting the business unit

in question, IT should continue engagement and sup-

port, documenting the TD areas that will need to be

addressed at a later date. Increasingly, business proc-

ess innovation enabled by IT systems is coming from

regional/local functional and business areas. The enter-

prise IT function should set aside resources to support

shadow IT. Over time, most successful shadow IT sys-

tems become enterprise IT’s responsibility anyhow, and

engaging early with shadow IT can help contain the size

and scope of technology debt by providing technical

guidance that is typically missing in the business unit

or function.

As part of the functional and technical design review

gates for the OE system in Figure 1, the solution archi-

tect can educate the owners of the GL, MRP, and other

systems about the process lock-in created by the point-

to-point technology integrations. This can turn into a

confrontational situation between the project manager

and the functional owners of the OE, GL, MRP, and

other systems, from whom the project manager will

need resources to address the process lock-in issues.

Tight budget and resource constraints can cause the

functional owners to push back on the project manager.

The objective here is to identify the business processes

outside the OE system impacted by the workarounds and

to get functional owners to sign off on the workaround

design that creates point-to-point integrations with the

GL, MRP, CRM and logistics systems, as it has the poten-

tial to create process lock-ins (depicted in Figure 1). At

a future date, any changes/upgrades to the GL or MRP

processes would have to account for the impact of the OE

workaround integrations. In the worst-case scenario, the

process lock-in caused by the workaround is not discov-

ered until an upstream or downstream system (such as

the CRM or MRP) is modified and causes the OE system

(now in production) to crash.

Typically the IT project team implements the work-

arounds without obtaining signoff from functional

owners of upstream and downstream systems, as that

would require expending scarce resources to obtain

buy-in from these owners. As I’ve just noted, the result

of such avoidance can be disastrous. Instead, discussing

these issues as part of design review processes allows

the business unit owners to provide input and take

ownership of approved workarounds. This process of

engagement allows the IT function to document the TD

areas that may become remediation projects as part of

the annual IT budget cycle.

Retiring TD

A small amount of technology debt is often retired as

part of technical upgrades or maintenance releases. But

in general, most mature companies grow the debt at a

significant rate. Explaining the concept of technology

debt to a non-IT person using Figure 1 can be challeng-

ing. Technology debt gets created because it is easy to

hide in multilayered, complex systems.

The first step to retiring technology debt is to document

the workarounds. The documentation should identify

areas where the workarounds make innovation difficult,

create process inefficiencies, allow security exploits, and

increase IT operating costs. The IT function should use the

existing BA framework to document and inventory the

areas of concern. The second step is to effectively commu-

nicate and gain sponsorship from non-IT owners for the

technology debt retirement projects. The third step is to

ensure successful execution of funded TD remediation

projects.

Consider the example of the OE system in Figure 1. The

BA artifacts for the OE process would show the process

flow of quotes, order placement, order confirmation, ship-

ping notification, and so on. The supporting IT architec-

ture artifacts would map the IT systems enabling the

OE business processes. Similarly, the MRP system BA

artifacts would show process flows for sales orders, fore-

cast, planning, scheduling, order processing, and the like,

with supporting IT systems artifacts.

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201632

The workaround of direct integration to the order

processing module in the MRP system for order confir-

mation in the OE system creates process/system depen-

dencies across OE and MRP business processes. This

workaround would have been in response to the sales

function demanding that a customer’s order confirma-

tion be immediate. Over time, the workaround results

in not having enough product to meet the customer

orders on the committed schedule, as the commitment

was made while bypassing the MRP process flow.

Correcting these types of issues caused by the work-

around with more short-term fixes taxes the IT operat-

ing budget with reduced service levels.

The thin lines in Figure 1 represent hundreds of similar

workarounds between functional business processes

and supporting IT systems. The business and IT archi-

tecture artifacts can help educate non-IT executives

on the existing process lock-ins between subprocesses

across finance, operations, OE, business development,

and so forth. One approach to determining the operat-

ing costs of supporting the hundreds of workarounds

is to review the prior year’s incident response and

problem resolution logs to determine the resources

expended to fix problems caused by the workarounds.

NOT A BURNING PLATFORM

Technology debt is insidious and grows like a giant

underground fungus. On those occasions when a work-

around is exploited to steal data, and the company

gets unwanted publicity, tackling technology debt in

the systems that were breached suddenly becomes

a “burning platform,” and enormous resources are

expended to remediate the workarounds.

A company does not have to wait for a burning platform

scenario to address technology debt. The situation

described in Figure 1 occurs to varying degrees in most

companies with enterprise systems. Retiring this debt

will not happen without efforts being funded and run

as separate projects with stakeholder sponsorship. In

many instances, the sponsorship could run across multi-

ple departments. It requires an organizational view of

the business processes and supporting IT portfolio of

applications.

The IT function supports the systems that enable

business processes within a function (e.g., finance,

sales, manufacturing, HR) and across the functions.

Addressing technology debt within a function (e.g.,

finance) is relatively straightforward, as IT can inform

and seek the CFO’s sponsorship to remediate the debt.

To remediate technology debt that is created across

functions, as in Figure 1, IT needs to educate and gain

sponsorship from multiple non-IT stakeholders. This is

a challenging task, and having the BA artifacts in hand

can help illuminate the problem areas.

If companies do not clearly identify initiatives that pre-

vent, contain, and retire technology debt in their capital

and operating budgets, they are only adding fuel to the

fire. The process and technology lock-in that results will

hinder innovation and increase operating costs.

ENDNOTES

1Ramasubbu, Narayan, Chris F. Kemerer, and C. Jason

Woodard. “Managing Technical Debt: Insights from Recent

Empirical Evidence.” IEEE Software, Vol. 32, No. 2, March/

April 2015.

2Business Architecture Guild (www.businessarchitectureguild.org).

3ITIL (www.itil.org.uk).

Ram Reddy is currently an independent management consultant.

Mr. Reddy most recently served as Vice President for IT Strategy

and Projects at Jacobs Engineering Corporation (JEC). He was

awarded Computerworld’s Premier 100 IT Leaders award in

2015 for helping implement a ”follow the sun” IT support model

for JEC’s global workforce.

Prior to joining JEC, Mr. Reddy held multiple IT leadership positions,

including Chief Enterprise Architect and Director of Enterprise

Applications at SAIC (a major aerospace/defense services firm), where

he worked with senior executives to deliver and maintain IT applications

in support of their business operations. Earlier, Mr. Reddy was the

President of Tactica Consulting Group, a technology and business strat-

egy consulting firm. He has advised Fortune 500 firms on strategic

use of technology, restructuring the IT function for competitive agility,

customer relationship management, and supply chain systems. Before

Tactica, he was the CIO of a Tier 1 supplier in the automotive sector.

Mr. Reddy’s work experience spans industries, including manufac-

turing, contingent staffing, mass merchandising, procurement, and

financial services. He is the author of Supply Chains to Virtual

Integration and has written extensively on realizing strategic busi-

ness goals through information technology. He can be reached at

ramxreddy@outlook.com.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

The term “technical debt” is generally used to describe

the burden created by decisions to cut corners when

designing and coding software. The catchy metaphor

is attributed to Cutter Fellow Ward Cunningham, who

helped us think about how quick-and-dirty solutions set

us up for debt that has to be paid back with interest.1

Technical debt driven by software vendors is a less fre-

quently discussed but significant variation on the theme.

I would like to broaden the conversation around tech-

nical debt to include the challenges of keeping up with

software vendors’ lifecycles. Such vendor-driven tech-

nical debt requires the continual attention of CIOs and

technology executives, who need to balance limited

budgets to cope with technical debt.

In this article, we will examine aspects of the problem

and evaluate some of the techniques to address and

repay technical debt.

TECHNICAL DEBT IN CONTEXT

Technical debt attributable to vendor upgrade cycles

is a topic of intense debate in corporate IT groups, as

well as enterprise architecture forums and online com-

munities.2 Enterprises of all sizes buy or license soft-

ware products, solutions, and tools from vendors. These

products range from small investments in worker pro-

ductivity tools to large investments in ERP systems,

CRM systems, databases, and specialized solutions

designed to meet specific functional needs. The decision

to implement a version of the software — for example,

Oracle Database 12c Release 1 or SQL Server 2008 R2

or SAP ERP 6.0, EP 4 — is generally a strategic

one, requiring considerable analysis, planning, and

resources. Such decisions are taken at a particular point

in time, while considering the organization’s business

needs and constraints in the technology landscape.

Software vendors and solution providers continually

upgrade their product offerings, promising newer tech-

nical and functional capabilities. In order to provide

support, vendors expect clients to keep up with their

upgrade cycles. Software support from a vendor is

critical to IT operations in order to:

n Apply relevant security patches and technical fixes.

The source code for licensed software is generally

owned by the software vendor, which is in a position

to apply relevant updates, patches, and technical

fixes. Such patches — implemented and tested

centrally — are pushed to all clients.

n Ensure compliance and controls over IT systems.

CIOs are required to certify to their stakeholders that

systems meet relevant regulatory and compliance

requirements. For example, the US Sarbanes-Oxley

Act (SOX) requires the CEOs and CFOs of public

companies to attest to the accuracy of financial

reports and establish adequate internal controls

over financial reporting. Passage of SOX resulted in

an increased focus on IT controls, as these support

financial processing and therefore fall into the scope

of management’s assessment of internal controls.

Ensuring software systems are upgraded and man-

aged as per vendor recommendations is a key aspect

of compliance.

Upgrading to a newer version of software recom-

mended by the vendor requires a deliberate impact

assessment to understand the potential impact to sys-

tems upstream or downstream. Such an upgrade may

have to be orchestrated with changes in the rest of the

IT landscape; for example, during a large prescheduled

program.

The vendor’s upgrade cycles may not align with

the customer’s business or technology change cycle.

Therefore, the organization’s IS and business stake-

holders may consciously opt out of a vendor-driven

upgrade cycle, in effect taking on a technical debt that

will need to be repaid by upgrading later. After a few

cycles of not upgrading, the software may fall behind

the vendor’s support cycles, and the vendor may

demand a penalty for supporting older versions. Some

vendors call this “extended support,” and it can be

expensive.3 In some cases, after adequate notice,

33Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

Vendor-Driven Technical Debt: Why It Matters and

What to Do About It

by Mohan Babu K

IT’S NOT ME, IT’S YOU

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201634

vendors may stop support of versions going back sev-

eral generations, such as when Microsoft announced

the end of the support lifecycle for Microsoft Windows

NT 4.0 Server.4 Such action by the vendor may force the

enterprise to repay the debt by upgrading the solution

or looking for an alternative. Repaying such technical

debt by planning an upgrade can be expensive and

disruptive to business.

WHY DO ORGANIZATIONS TAKE ON TECHNICAL DEBT?

IT executives and leaders are increasingly using the

technical debt metaphor to articulate the hidden costs

and tradeoffs associated with decisions that impact

business capabilities and technologies in the organiza-

tion. Martin Fowler, a leading software expert, classifies

technical debt into four types, along two axes: reckless

or prudent, and deliberate or inadvertent.5

Fowler’s elegant model is focused on software develop-

ment, but it can be extended to take a broader view of

the enterprise architecture and application portfolio

(see Figure 1):

n Reckless/deliberate debt. Project teams, including

managers and architects, may sometimes give in to

time-to-market pressures without adequate analysis

or forethought. Such decisions may be reckless, but

they are deliberate. For example, a business unit

might opt to implement a different version of a sup-

ply chain solution, unable to wait for the global ERP

to be rolled out across the enterprise. Such a debt

will have to be repaid when the standard version of

a global solution is finally planned for implementa-

tion at the business unit.

n Prudent/deliberate debt. A project team may take

on a deliberate short-term debt with clear plans to

address it. Such a prudent decision may be taken to

enable the business to react to an external market

change. For example, toward the end of 2015, when

the global price of oil suddenly dipped below US $30

a barrel, oil drillers began reacting by shelving proj-

ects and shutting operations. Across the oil and gas

industry, some $400 billion in expected investment

was cancelled or delayed.6 Amid widespread and

abrupt cost-cutting pressures, executives may find it

easy to postpone technology upgrade projects. In the

oil and gas sector, IT executives are putting off tech-

nology upgrades, deliberately taking on technical debt

that they hope to repay when the sector turns around.

n Reckless/inadvertent debt. This is a likely scenario

in loosely governed organizations where teams are

either ignorant of the consequences of taking on tech-

nical debt or recklessly flout the guiding principles.

An example is that of a design team involved in

a global SAP supply chain rollout that agrees to

requests from the business to customize the solution,

ignoring the fact that such custom development on

a product will make future upgrades more difficult

and expensive. In a review of enterprise systems,

University of Pittsburgh researchers Narayan

Ramasubbu and Chris F. Kemerer explain that

”software update patches supplied by vendors as

part of their maintenance plans could be incompatible

with the customizations implemented by clients.”7

n Prudent/inadvertent debt. Project teams may take a

prudent decision that satisfies the functional needs

at a point in time but may inadvertently miss other

dependencies in the organization. An example is a

global pricing program in North America that misses

a key dependency with a corresponding global CRM

solution implemented in Europe. Despite adequate

due diligence, the inadvertent omission may result

in technical debt when the global solutions are imple-

mented across the regions.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

A business unit opting to implement
a different version of supply chain

solution, unable to wait for the global
ERP to be rolled out

Enterprise architects at oil drilling firms
forced to react to abrupt downsizing

under cost pressures when global price
dips below $30/barrel

Agreeing to trivial business requests to
introduce “custom development” to a

product, ignoring best practices

A global pricing program in North
America misses a key dependency with
a global CRM solution starting in Europe

RECKLESS

DELIBERATE

INADVERTENT

PRUDENT

Figure 1 — Real-world examples of Fowler’s four types of technical debt.

35Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

HOW TO MOVE FORWARD: ACKNOWLEDGE AND
COMMUNICATE THE PROBLEM

Enterprise architects and IT executives recognize the

problem of technical debt, but they may not have the

resources and funding to deal with it. They need tools

and techniques to communicate the problem to their

stakeholders and engage with them.

In order to communicate with stakeholders, one needs

to identify the magnitude and the span of the impact.

In many cases, the impact of a vendor-recommended

upgrade may be limited to a software platform used

locally or regionally. Software platforms used across

business units may have been designed to operate in

a loosely coupled manner, in which case the effect

of upgrades may also be limited. Such a debt may be

addressed with line-of-business application owners

or functional leaders.

In some cases, the problem may be widespread, attribut-

able to an organizational culture of taking on debt dur-

ing periods of high growth. For instance, the impact of

not upgrading a critical ERP application may span busi-

ness functions. Upgrading such a vital application plat-

form may require engagement of senior business leaders

who can influence their peers. Deutsche Bank offers one

example of an engaged senior leader communicating

the technical debt problem. During a press conference,

co-CEO John Cryan publicly acknowledged the root

causes of the problem of technical debt at the bank:

About 80 percent of our 7,000 applications were outsourced
to a multitude of different vendors. Design was basically
done in silos or by joint standards where they were either
hardly used or not used at all. The result is that our sys-
tems do not work together, and they are cumbersome
when it comes to the application and often incompatible.
A figure that worries me in particular ... is that about 35%
of the hardware in the data centers has come close to the
end of its lifecycles or is already beyond that.8

Most executives may not be inclined to use such a pub-

lic forum to acknowledge their problem, but they can

certainly take a page out of Deutsche Bank’s playbook.

Acknowledging the problem of technical debt, and com-

municating that problem to stakeholders, helps set a

foundation for resolution. Such acknowledgement by

IT and functional executives can act as a call to action

that enables project teams to find a way forward.

ADDRESSING TECHNICAL DEBT

In this section, we will look at some of the proactive

and reactive recommendations for dealing with vendor-

created technical debt.

Proactive Engagement

IT executives should proactively engage with stakehold-

ers to continually plan for upgrades to minimize wide-

spread occurrence of software version backlogs. The most

effective technique for addressing technical debt is to

embed vendor-recommended version upgrades into

existing governance and IT management processes,

rather than trying to deal with such upgrades in isolation.

Specific strategies include:

n Align vendor roadmaps with business strategy.

Continual business engagement is an effective way

to align vendor upgrade recommendations with

functional requirements. Business strategies and

roadmaps may indicate the need for newer functional

capabilities and investment plans. During review dis-

cussions, IT executives should highlight existing tech-

nical debt and upgrade recommendations that may

also be addressed in the roadmaps. Such interactions

will ensure stakeholders are continually educated

about technical debt and actively participate in

tackling it.

n Enterprise architecture governance. An effective

Architecture Review Board (ARB) will periodically

review business change proposals against functional

and technical roadmaps. In a previous Cutter IT

Journal article,9 I explain how an ARB can:

l Highlight architecture risk. Do so by enforcing the

architecture principles and best practices during

reviews

l Ensure project alignment with predefined roadmaps

to enable long-term strategies. By taking a cross-

functional view and ensuring visibility into proj-

ects, a well-functioning ARB should be able to

identify situations in which project teams inadver-

tently or deliberately take on technical debt. When

identifying a potential debt, the ARB should also

help teams communicate the impact and guide

them in tactics for addressing it.

n Application architecture and design techniques. IT

executives and enterprise architects have the most

influence when new software platforms are being

introduced into an organization. Design techniques

that can minimize the impact of future technical

debt include:

l Loose coupling. Thoughtful loose coupling of

systems and interfaces and adopting standard,

vendor-neutral integrations can pay dividends in

the long run. Such loosely coupled application

platforms and components could be upgraded

without wider impact to the landscape.

©2016 Cutter Information LLCCUTTER IT JOURNAL March 201636

l Cloud hosting. Cloud-based offerings from software

vendors continue to mature. Moving to a platform

as a service (PaaS) or software as a service (SaaS)

offering from a vendor is a conscious way to cede

control of application management in return for

assured business capability and functionality. Doing

so minimizes the need to manage vendor-driven

upgrades. However, IS managers and teams may

still need to keep track of integrations and data

transfer that may be impacted by such upgrades.

l Configuration before customization. Most commercial

software solutions provide the ability to config-

ure business processes/workflows. Some functional

requirements may be very unique and require cus-

tomization of the platform via writing additional

code. To the maximum extent possible, such cus-

tomizations should be avoided or minimized.

Reactive Remediation

Proactively addressing issues arising from vendor-driven

upgrades may minimize the technical debt challenges in

the future. However, not all such efforts can prevent

technical debt. An ARB, for instance, may agree that a

project should take on a prudent/deliberate debt, with a

clear means of addressing it later. There are several ways

organizations can deal with technical debt after it occurs:

n Pay as you go. An effective way to cope with debt is

to periodically pay it off. However, organizations will

have more than one vendor solution and will have to

orchestrate upgrades across vendor platforms and

solutions in the landscape. Such upgrades should be

planned to coincide with other changes and sched-

uled maintenance in order to minimize business dis-

ruption. Effective techniques for managing periodic

upgrades include:

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Some time ago, I was engaged with a financial services com-

pany involved in an application portfolio-rationalization pro-

gram. The stated objective of the program was to simplify

the company’s IT landscape and minimize the redundant and

duplicate applications. By rationalizing the application portfolio,

the organization expected to save over 30% in operating costs

and to benefit from newer, more efficient infrastructure.

During an initial assessment, the team discovered that nearly

a quarter of the 1,200 applications were running on Windows

2003–based servers. At that time, Microsoft announced an end

of life for the operating system software.1 In order to remain

“supported,” applications had to be migrated out of existing

servers. The objective of the program thus expanded from

application portfolio review to include legacy modernization

and repayment of technical debt built up in the legacy

application landscape.

DESIGN PRINCIPLES

In order to proactively address the technical debt and minimize

future disruptions, the team defined a few key principles:

n SaaS when possible. Consider migration to an application

vendor’s SaaS offering.

l Outcome: Many of the software solutions the organization

had acquired over the years were now being offered as

SaaS services. The team began reviewing all such vendor

offerings and included them in the transition plan.

n Cloud-first upgrade. Where possible, the applications should

be upgraded to run on the cloud.

l Outcome: The team designed a private cloud on Microsoft’s

Azure. Applications running on Windows 2003 servers

were evaluated for “cloud suitability” and included in

the roadmap.

n Configure before customizing. Customization should be

avoided or minimized.

l Outcome: The team discovered that some of the customi-

zations done in the past were no longer required. In a few

instances, business users had to be convinced to do away

with customized functionality. Most of the applications

were upgraded without customizations.

THE RESULT

The program delivered the simplification objective, reducing

operating cost. In addition, this initiative also started the orga-

nization on a journey to migrating applications to the cloud.

The vast majority of applications running on Windows 2003

servers were upgraded to operate on a virtual private cloud on

Microsoft’s Azure cloud platform. Only a small proportion of

applications with specific design constraints were determined

unsuitable for migration. After repayment of existing technical

debt, the upgrade minimized the possibility of falling behind

vendor upgrade roadmaps. This ensured that infrastructure will

be closely aligned with recommendations from the vendor

(Microsoft) that is responsible for managing the platform.

1See www.microsoft.com/en-us/server-cloud/products/windows-server-2003.

CASE IN POINT: A MULTINATIONAL REACTS TO PLATFORM END OF LIFE

37Get The Cutter Edge free: www.cutter.com Vol. 29, No. 3 CUTTER IT JOURNAL

l Defined policy on technology debt. Organizations

can institute a policy explicitly stating that critical

software will not get behind vendor-supported

versions. For example, the policy might state that

“all software must be version n-2 or higher,” where

“n” is the most current vendor version. Such a

policy should also be backed up with executive

support and funding to ensure compliance.

l Dependency matrix. Organizations can use a depen-

dency matrix to show compatibility of software

and infrastructure versions recommended by ven-

dors. The matrix should include most, if not all,

of the dependent platforms in the landscape and

should be used to guide upgrades.

l Cleanup releases. Where feasible, IT leaders should

plan for “cleanup” releases to remediate the

existing technical debt. If it is not feasible to plan

such releases, one could explore opportunities to

include upgrades with other scheduled changes.

l Budgeting for technical debt. The dependency matrix

and other tools can be used to help estimate the

effort involved in handling such upgrades.

n Landscape simplification. IT executives should seek

opportunities in large transformation programs to

tackle technical debt. An example of such a landscape

review is illustrated in the case study (see sidebar

“Case in Point: A Multinational Reacts to Platform

End of Life”).

n Engagement with vendors. Software vendors pro-

vide several venues for engaging with clients. These

range from informal online forums, wikis, and dis-

cussion boards to more formal surveys, technical con-

ferences, and product planning sessions. CIOs and

executives of enterprises with a large investment (or

installation) of a vendor solution might benefit from

engaging in such formal forums to (1) influence back-

ward compatibility of the product in the vendor

roadmap, and (2) seek assistance from the vendor in

addressing technical debt attributable to its product.

n Other mitigation. An organization may review the

impact of vendor end-of-life support and take actions

to mitigate the risk, which could include:

l Self-insuring. The organization might manage

without vendor support if the software is non-

critical, there is no regulatory reason to seek sup-

port, and if analysis of recent history indicates

very few instances where vendor support was

actually sought.

l Outsourcing. The vendor may sometimes sell

or license the source code to enable the client

organization or a third party to support an aging

software product.

CONCLUSION

Technical debt attributable to software vendors is an

ongoing challenge that IT executives need to manage.

As with financial liability, it may not be practical or

prudent to avoid all technical debt. With awareness

of the existence and impact of such debt, however, IT

executives can plan to effectively address it.

ENDNOTES

1Cunningham, Ward. “Ward Explains Debt Metaphor” (video;

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor).

2Ramasubbu, Narayan, and Chris F. Kemerer. “Technical

Debt and the Reliability of Enterprise Software Systems:

A Competing Risks Analysis.” University of Pittsburgh,

February 2015 (www.pitt.edu/~ckemerer/techdebt-MS-

accepted%202015.pdf).

3Forum discussions on standard and extended support include

“SAP Standard Support Fee” (http://scn.sap.com/thread/

3187836) and “Oracle: Waiver of Extended Support” (www.

oracle.com/us/support/library/extended-support-faq-

515467.pdf).

4“Q&A: Support for Windows NT Server 4.0 Nears End;

Exchange Server 5.5 to Follow in One Year.” Microsoft

(http://news.microsoft.com/2004/12/03/q-exchange-

server-5-5-to-follow-in-one-year).

5Cairns, Chris, and Sarah Allen. “What Is Technical Debt?” 18F,

US General Services Administration (GSA), 4 September 2015.

6Crooks, Ed, and Chris Adams. “Oil Majors’ Business Model

Under Increasing Pressure.” Financial Times, 14 February 2016.

7Ramasubbu and Kemerer (see 2).

8Boulton, Clint. “Deutsche Bank Digging Out of Technical Debt,

While Moving to the Cloud.” CIO, 11 November 2015.

9Babu K, Mohan. “Enabling Successful EA Governance with

an Architecture Review Board.” Cutter IT Journal, Vol. 28,

No. 2, 2015.

Mohan Babu K is an Enterprise IS Architect at Syngenta, based in

Greensboro, North Carolina, USA. He has spent nearly two decades

in technology management and has gained a strong insight into the

lifecycle of portfolio management and the global delivery model.

Having lived and worked in a dozen countries on three continents,

Mr. Babu K has also gained an international perspective on business

and society. His viewpoints and papers have been published in several

international technical and nontechnical journals, including Cutter

IT Journal, Business Integration Journal, Research-Technology

Management, IEEE Computer, Computerworld, ACM Ubiquity,

and Sourcingmag, among others. Mr. Babu K is the author of a book

on globalization titled Offshoring IT Services: A Framework for

Managing Outsourced Projects. He can be reached at mohan@

garamchai.com.

Technical debt is a real cost. Whether you’re
looking at it from the perspective of a venture
capitalist or CEO, or from the viewpoint of a
CIO or CTO, or you’re trying to determine if a
merger or acquisition makes sense, knowing
how much money is required to “pay back”
your software’s technical debt may be the
very factor that proves your decision to be
a good one or a very costly one.

In a Technical Debt Assessment and Valuation,
Cutter’s Senior Consultants — led by John
Heintz — examine the quality of the software
under examination through technical and
business lenses. Whether that code is your
own, has been developed by an acquisition
candidate, or by a company you’re investing
(more) in, Cutter’s Technical Debt Assessment
and Valuation will enable you to:

 Get the vital answer to the question,
“Is your software an asset or a liability?”

 Know how much (more) money you will
need to invest in order to fix the code

 Get data and insights you need to guide
the fix-it process for the software

 Identify projects that are likely to get in
trouble at an early stage of the software
lifecycle

 Determine if the technical debt is keeping
your software development staff from
responding quickly and effectively to
customer requests

Plus, you’ll get the tools you need to govern
the software development process on an
ongoing basis to avoid the expense of
future technical debt.

In a Technical Debt Assessment and Valuation,
Cutter’s Senior Consultants will identify the
architecture, design, coding, testing, and
documentation deficits that constitute tech-
nical debt. The assessment combines static
code analytics with dynamic program analyt-
ics to give you “x-rays” of the software being
examined at any desired granularity. You’ll
get a report and/or presentation that provide
you with a dollar figure you can plug into
your financial models so that you can objec-
tively analyze your critical software assets.
Easy-to-understand graphics depicting the
quality of your code and the cost of your
technical debt will enable your team to zero
in on the most hazardous projects and fix
them in a prioritized manner. And you’ll get
operational recommendations that take into

John Heintz, Senior Consultant

CONSULTING

Technical Debt Assessment
and Valuation
A Universal Tool for Evaluating, Governing,
and Managing Software Projects

Do you know the true
value of your software?
Are you sure? Does your
value calculation include
technical debt?

Do You Need a Technical Debt
Assessment?

Are you a CIO looking to ensure delivery

over development?

A CTO in search of early warning signs

your development project is in trouble?

An M&A/due diligence investigator

in need of assurance that the code

you’re acquiring isn’t toxic?

A CEO responsible for governing

the development process effectively

and ensuring the execution of

corresponding go-to-market plans

in a reliable manner?

A venture capitalist determining how

much (more) money to invest in your

portfolio company?

Cutter’s Technical Debt Assessment

and Valuation is customized to meet

your specific needs. For details, contact

your Cutter Account Executive at

sales@cutter.com or +1 781 648 8700.

Agile Product
Management
& Software
Engineering
Excellence

https://www.cutter.com/consulting/technical-debt-assessment-and-valuation

Cutter Consortium
37 Broadway, Suite 1, Arlington, MA 02474-5552, USA
Tel: +1 781 648 8700; Fax: +1 781 648 8707; www.cutter.com; sales@cutter.com

account various qualitative and quantitative
factors that characterize your software devel-
opment process. These recommendations will
help you make the best decisions about your
ongoing strategy for this software develop-
ment effort.

Cutter’s Technical Debt Assessment and
Valuation is most effective as an on-premises
engagement. However, it can also be done
as a largely off-premises engagement based
on a snapshot of the code. For more details,
or to arrange your Technical Debt Assessment
and Valuation, contact your Cutter Account
Executive at +1 781 648 8700 or
sales@cutter.com.

Cutter Research & Opinion on Technical Debt

“The ability to make the debt

metaphor work for your advantage

depends upon you writing code

that is clean enough to be able to

refactor as you come to under-

stand your problem.”

— Ward Cunningham, Cutter

Fellow

Agile Assessment

Cutter’s Technical Debt Assessment and

Valuation is extremely synergetic with

our Agile Assessment, a quantitative

and qualitative analysis of an organiza-

tion’s use of Agile methods, its software

engineering practices, and its project

management skills and capabilities.

When the two are conducted jointly,

Cutter will present your team with a

composite plan for fixing software

quality deficits and software process

deficits in tandem.

“Avoiding System Bankruptcy: How to Pay
Off Your Technical Debt”
(https://www.cutter.com/article/avoiding-system-bank-

ruptcy-how-pay-your-technical-debt-424966)

“Self-Insuring Your Software”
(https://www.cutter.com/article/self-insuring-your-soft-

ware-425106)

“Technical Debt” from Cutter IT Journal
(www.cutter.com/itjournal/fulltext/2010/10/index.html)

“Delving into Technical Debt”
(www.cutter.com/project/fulltext/updates/

2011/apmu1120.html)

“Quantifying the Start Afresh Option”
(http://blog.cutter.com)

“Enterprise Architecture, Technical Debt,
and Technical Paralysis”
(www.cutter.com/content/architecture/fulltext/

advisor/2011/ea110817.html)

“To Release No More or To ‘Release’
Always: Part II — Toward a New
Business Design for Software”
(www.cutter.com/project/fulltext/updates/2008/

apmu0823.html)

“The Agile Triangle —
Quality Today and Tomorrow”
(www.cutter.com/project/fulltext/advisor/2010/

apm100401.html)

CONSULTING | AGILE PRODUCT MANAGEMENT & SOFTWARE ENGINEERING EXCELLENCE

https://www.cutter.com/practice-areas/agile-product-management-software-engineering-excellence/consulting
https://www.cutter.com/experts/ward-cunningham
https://www.cutter.com/article/avoiding-system-bankruptcy-how-pay-your-technical-debt-424966
https://www.cutter.com/article/self-insuring-your-software-425106
https://www.cutter.com/article/technical-debt-opening-statement-416191
https://www.cutter.com/article/delving-technical-debt-427161
http://blog.cutter.com/2010/03/22/quantifying-the-start-afresh-option/
https://www.cutter.com/article/enterprise-architecture-technical-debt-and-technical-paralysis-385941
https://www.cutter.com/article/release-no-more-or-release-always-part-ii-toward-new-business-design-software-426816
https://www.cutter.com/article/agile-triangle-quality-today-and-tomorrow-422666
https://www.cutter.com/consulting/agile-assessment
https://www.cutter.com

Cutter
IT Journal

About Cutter Consortium
Cutter Consortium is a truly unique IT advisory firm, comprising a group of more than

100 internationally recognized experts who have come together to offer content,

consulting, and training to our clients. These experts are committed to delivering top-

level, critical, and objective advice. They have done, and are doing, groundbreaking

work in organizations worldwide, helping companies deal with issues in the core areas

of software development and Agile project management, enterprise architecture, business

technology trends and strategies, enterprise risk management, metrics, and sourcing.

Cutter offers a different value proposition than other IT research firms: We give you

Access to the Experts. You get practitioners’ points of view, derived from hands-on

experience with the same critical issues you are facing, not the perspective of a desk-

bound analyst who can only make predictions and observations on what’s happening in

the marketplace. With Cutter Consortium, you get the best practices and lessons learned

from the world’s leading experts, experts who are implementing these techniques at

companies like yours right now.

Cutter’s clients are able to tap into its expertise in a variety of formats, including content

via online advisory services and journals, mentoring, workshops, training, and consulting.

And by customizing our information products and training/consulting services, you get

the solutions you need, while staying within your budget.

Cutter Consortium’s philosophy is that there is no single right solution for all enterprises,

or all departments within one enterprise, or even all projects within a department. Cutter

believes that the complexity of the business technology issues confronting corporations

today demands multiple detailed perspectives from which a company can view its

opportunities and risks in order to make the right strategic and tactical decisions. The

simplistic pronouncements other analyst firms make do not take into account the unique

situation of each organization. This is another reason to present the several sides to each

issue: to enable clients to determine the course of action that best fits their unique

situation.

For more information, contact Cutter Consortium at +1 781 648 8700 or

sales@cutter.com.

The Cutter Business

Technology Council
The Cutter Business Technology Council

was established by Cutter Consortium to

help spot emerging trends in IT, digital

technology, and the marketplace. Its

members are IT specialists whose ideas

have become important building blocks of

today’s wide-band, digitally connected,

global economy. This brain trust includes:

• Rob Austin
• Ron Blitstein
• Tom DeMarco
• Lynne Ellyn
• Vince Kellen
• Tim Lister
• Lou Mazzucchelli
• Ken Orr
• Robert D. Scott

