

 Start my print subscription to Cutter Business Technology Journal ($485/year; US $585 outside North America).

Name Title

Company Address

City State/Province ZIP/Postal Code

Email (Be sure to include for weekly Cutter Business Technology Advisor)

Fax to +1 781 648 8707, call +1 781 648 8700, or send email to service@cutter.com.
Mail to Cutter Consortium, 37 Broadway, Suite 1, Arlington, MA 02474-5552, USA.

Request Online License
Subscription Rates

For subscription rates for
online licenses, email or call:
sales@cutter.com or
+1 781 648 8700.

As business models for creating value continue to shift, new business strategies are
constantly emerging and digital innovation has become an ongoing imperative. The
monthly Cutter Business Technology Journal delivers a comprehensive treatment of these
strategies to help your organization address and capitalize on the opportunities of this
digital age.

Cutter Business Technology Journal is unlike academic journals. Each monthly issue,
led by an expert Guest Editor, includes five to seven substantial articles, case studies,
research findings, and/or experience-based opinion pieces that provide innovative ideas
and solutions to the challenges business technology professionals face right now — and
prepares them for those they might face tomorrow. Cutter Business Technology Journal
doesn’t water down or delay its content with lengthy peer reviews. Written by internation-
ally known thought leaders, academics, and practitioners — you can be certain you’re
getting the uncensored perspectives of global experts.

You’ll benefit from strategic insight on how the latest movements in digital innovation
and transformation, IoT, big data analytics and cloud, to name a few, are changing the
business landscape for both new and established organizations and how cutting-edge
approaches in technology leadership, enterprise agility, software engineering, and
business architecture can help your organization optimize its performance and
transition to these new business models.

As a subscriber, you’ll also receive the Cutter Business Technology Advisor — a weekly
bulletin featuring industry updates delivered straight to your inbox. Armed with expert
insight, data, and advice, you’ll be able to leverage the latest business management
thinking to achieve your organization’s goals.

No other journal brings together so many thought leaders or lets them speak so
bluntly — bringing you frank, honest accounts of what works, what doesn’t, and why.
Subscribers have even referred to Cutter Business Technology Journal as a consultancy
in print and likened each month’s issue to the impassioned discussions they participate
in at the end of a day at a conference!

Get the best in thought leadership and keep pace with the technologies and business
models that will give you a competitive edge — subscribe to Cutter Business Technology
Journal today!

Founding Editor: Ed Yourdon
Publisher: Karen Fine Coburn
Group Publisher: Christine Generali
Managing Editor: Cindy Swain
Copy Editors: Jennifer Flaxman, Tara Meads
Production Editor: Linda Dias
Client Services: service@cutter.com

Cutter Business Technology Journal®
is published 12 times a year by
Cutter Information LLC, 37 Broadway,
Suite 1, Arlington, MA 02474-5552, USA
(Tel: +1 781 648 8700; Fax: +1 781
648 8707; Email: cbtjeditorial@
cutter.com; Website: www.cutter.com;
Twitter: @cuttertweets; Facebook:
Cutter Consortium). ISSN: 2475-3718
(print); 2475-3742 (online).

©2018 by Cutter Information LLC.
All rights reserved. Cutter Business
Technology Journal® is a trademark
of Cutter Information LLC. No material
in this publication may be reproduced,
eaten, or distributed without written
permission from the publisher.
Unauthorized reproduction in any form,
including photocopying, downloading
electronic copies, posting on the Internet,
image scanning, and faxing is against the
law. Reprints make an excellent training
tool. For information about reprints and/
or back issues of Cutter Consortium
publications, call +1 781 648 8700
or email service@cutter.com.

Subscription rates are US $485 a year
in North America, US $585 elsewhere,
payable to Cutter Information LLC.
Reprints, bulk purchases, past issues,
and multiple subscription and site
license rates are available on request.

NOT FOR DISTRIBUTION
For authorized use, contact
Cutter Consortium +1 781 648 8700
or service@cutter.com.

Opening Statement

by Whynde Kuehn

3 Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL

According to the principle of yin and yang, all things
exist as inseparable and contradictory opposites. In
this issue of Cutter Business Technology Journal (CBTJ),
we explore the relationship between architecture
and organizational agility as a powerful paradox:
architecture is the way to agility.

Business agility — the ability of an organization to
continually anticipate and react to change in response
to major forces such as globalization and technology —
is moving from the realm of competitive advantage to a
necessity for survival. There have been great advances
in improving the agility of execution, and while many
organizations are pursuing such approaches, the bigger
question remains: how does an organization truly
transform to be agile at its core, including with end-
to-end strategy execution and employee mindset?
Organizations are also grappling with what the
introduction of agile execution approaches means to
longer-term, big-picture perspectives, such as strategy
formulation and architecture. Driven by the realization

that business agility is no longer optional for long-term
survival, many organizations are looking to understand
the depth of what agility really requires and the most
effective path for achieving it.

Organizations are living organisms, constantly evolving
to adapt to the environment. But today’s environment
is calling for a quicker sense of adaptation than ever
before. We are shifting far more toward agile mindsets
and ways of working. However, agility is not just for
execution. Simply speeding up execution does not
ensure we are doing the right things; in fact, we could
be doing more of the wrong things faster! Quite the
contrary, agility is a concept that ripples from strategy
through architecture and then to execution.

The way organizations strategize, architect, and execute
change needs to further evolve from linear and rela-
tively static to continuous and flexible (see Figure 1).
Can we reimagine strategy as an ongoing conversation
constantly reacting to the environment, one that truly

Figure 1 – Key shifts in strategy, architecture, and execution enable organizational agility.

http://www.cutter.com

4 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

focuses on strategic choices and big moves — versus an
annual process that focuses on planning and budgeting
for incremental changes, as is frequently practiced by
many organizations today? And what if the results of
those strategic conversations continually flowed into
an architecture-based approach that translated them
into a coordinated set of initiatives across organiza-
tional boundaries — instead of each organizational area
interpreting the strategy and creating its own projects
in silos, hoping that the results do not conflict and will
add up to achieve the overarching strategy in the end?
And could agile execution approaches be made more
successful if they were informed by an architectural
direction that defined an agreed-upon, rationalized set
of business terms, big-picture business outcomes, and
business priorities so that we could focus our precious
resources with precision on doing the right things in the
most effective way?

This issue of CBTJ demonstrates the seemingly con-
tradictory idea that architecture — something often
perceived as structural, static, constraining, governing
— is actually the enabler for an organization to become
more agile and fluid, from strategy through execution.
Architecture is not a box to be checked. On the contrary,
it is the mechanism for translating strategies into the
right set of coordinated initiatives for execution. It is
the bridge between strategy and execution, the bridge
that supports the cross-organizational coordination and
objective decision making that is so desperately needed
in many organizations today.

The traceability provided through the architecture —
from strategies and objectives down to the initiatives —
also accelerates replanning as business direction shifts
because it allows for the ready identification of impacts,
enabling organizations to make decisions about what
work to stop, pause, or continue. Target architectures

can paint a picture of the future and intended business
outcomes, helping to create context for people and
allowing them to work toward a common vision,
regardless of their role. At a foundational level,
architecture can also be used as an enterprise lens
with which to identify and simplify the business
and technology environment in the first place, so that
making changes can occur more quickly in the future.

Becoming an agile organization — and leveraging
architecture as an enabler for various aspects of it —
is a journey that requires deliberate actions and takes
time. These changes must be underpinned by strong
executive leadership and organizational change
management to help shift peoples’ mindsets to
embrace continuous change and innovation. Moreover,
it may require bold measures to support the change,
such as realigning compensation and motivational
mechanisms or adjusting investment processes to allow
for initiative funding across organizational or portfolio
boundaries. Indeed, organizations willing to invest
today in reinventing their mindsets and mechanisms
for continually anticipating and reacting to change will
be the ones ready for tomorrow.

In This Issue
In our first article, Cutter Consortium Fellow William
Ulrich and I focus on business architecture and discuss
how it can be leveraged as an enabler along the strategy
realization path to harmonize the execution of busi-
ness direction across organizational boundaries and
initiatives. We find that organizations struggle with
realizing strategies, particularly when those strategies
cross business unit, product, and external business
domain boundaries. Research shows that more often
than not, failure to realize business strategies is not
because a given strategy is ill-conceived, but more often
due to the scope and impact of those strategies being
vague or unknown, especially when they cross organi-
zational boundaries and require collaboration. Using
a case study, we highlight how business architecture
can be used in strategy formulation, impact analysis,
business design, program definition, and agile execu-
tion. Business architecture pinpoints the right things
to do in the right place at the right time. In fact, we
assert that “when business architecture is in place,
adopted and leveraged ubiquitously, the gateway
for an organization to transform itself into an agile
enterprise is in place.”

Next, Yesha Sivan and Raz Heiferman articulate con-
crete ways in which we can both shift our perspectives

Upcoming Topics

The Critical Need for Data Governance
Claude Baudoin

Building a Digital Business
Starts with a Data Warehouse
Barry Devlin

The Next Wave of Cloud Computing
Frank Khan Sullivan

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 5

and act to “agilify” our organizations. They describe
how agile organizations think, what they can do,
the abilities they must possess, and even the key
technologies they should adopt. They also touch on
the important interplay among leadership, culture,
business architecture, and digital architecture. As
Sivan and Heiferman wisely point out, “Gone are the
days that an organization could plan for sustainable
competitive advantage and build a five-year (or even
three-year) strategic plan. The business environment
has become chaotic, dynamic, and disruptive. Enter
agility, as the new capability to develop transient
competitive advantage with shorter planning and
execution cycles. Welcome to the age of ‘agilification.’ ”

Our remaining articles turn to the “Agile” (as in Agile
software development) side of agility. Barry O’Reilly
and Gar Mac Críosta begin by pointing out how the
worlds of Agile and architecture can’t quite fit together.
To resolve this, they introduce a new architectural
approach, asserting that by “architecting for antifragility,
businesses can gain real agility and deliver systems
with a higher level of quality.” They describe the
challenges of complex systems and then define an
Antifragile Systems Design process, which embraces
the complexity in building dynamic systems to guide
architects to optimize and balance volatility, uncertain-
ty, complexity, and ambiguity on any project. The result
of this approach is “a business with a better under-
standing of its own fragility and a software system
capable of bending and meeting the needs of the
changing business environment.”

Jan-Willem Sieben, Jan-Paul Fillié, and Cristina Popescu
explore Agile architecture and architectural agility and
how these two fundamentally different paradigms can
reinforce one another. They describe the pitfalls or
“anti-patterns” for both enterprise architecture and
Agile — and then make a case for how they can be
overcome by combining the practices. Based on real-
world case studies from several organizations, Sieben,
Fillié, and Popescu describe several specific ways in
which organizations have combined architecture
with Agile thinking and methods to break through
the anti-patterns and improve their results.

Next, Bob Galen lays out nine rules of Agile architecture
to inform us in how to think about architecture and help
us strike the right balance between architecture and
agility. He asserts that “software architecture requires
balance. Often, you can focus too much on it, creating
robust products that miss customer needs or over-
engineer solutions. Conversely, especially in Agile
contexts, you can under-engineer things and your

product efforts can succumb to relentless refactoring
rework. So there’s a balance to strike in architecture,
no matter what methodology you use to create your
software. In Agile contexts, that balance is often lost.”
As Galen asserts, this balance comes at the point where
you “define, refine, and implement just-enough and
just-in-time architecture.” The nine rules are indeed
good ones to embrace — practical, grounded in
experience, encompassing of the human aspects,
and even delivered with levity.

To conclude our issue, Miklós Jánoska provides a
perspective on how we can shift architecture from
a governor to more of an enabler. As he points out,
“Despite the multitude of architecture frameworks
and methods, experiencing a smoothly working,
pragmatic synergy between delivery teams and
the architecture discipline is rare.” He provides insight
into common difficulties in Agile projects and then
describes how organizations can establish a “non-
blocking” architecture governance practice for Agile
development teams. The approach leads to organically
integrating architecture into the process, into the
delivery pipeline, and into the teams’ everyday work.
As Jánoska reminds us, “Under the increasing pressure
of accelerating marketplaces and rapidly evolving
technologies, internal velocity and responsivity become
significant differentiating factors. Indeed, responsive,
flexible software ecosystems enable high-speed
businesses.”

No matter where you are on your journey toward
organizational agility, we hope that the articles in
this issue give you a new perspective on the art of the
possible and on how architecture can be the gateway
to a future of continuous adaptation, innovation, and
success for your organization.

Whynde Kuehn is a Senior Consultant with Cutter Consortium’s
Business & Enterprise Architecture practice and Principal of S2E
Consulting Inc. She is a long-time business architecture practitioner,
educator, and industry thought leader who takes a business-focused
and results-oriented approach to business architecture. Ms. Kuehn has
extensive experience in enterprise transformation and planning and
has a track record of creating successful teams that become embedded
into their organizations. Ms. Kuehn also provides business architec-
ture training. She has developed and taught comprehensive business
architecture training programs via in-person and online formats, both
for the public and inhouse for clients. She is a recognized thought
leader in business architecture, regularly speaking, writing, and
chairing/cochairing conferences and events that advance best practices
and facilitate community across the world. She is a cofounder and
board member of the Business Architecture Guild and serves as its
Editorial Board Chair. Ms. Kuehn also founded a New York Business
Architecture Community. She can be reached at wkuehn@cutter.com.

http://www.cutter.com

6 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Organizations struggle with realizing business strate-
gies, particularly when those strategies cross business
unit, product, and external business domain bounda-
ries. The question is: why? Research shows that more
often than not, failure to realize business strategies is
not because a given strategy is ill-conceived but more
often due to the scope and impact of those strategies
being vague or unknown. This issue becomes magnified
in scenarios where the impacts of a strategic directive
extend beyond a planning team’s line of sight and
require cross-business coordination and collaboration.
In other words, the inability to realize business strate-
gies is oftentimes the result of doing the wrong things
in the right places and the right things in the wrong
places, turning good ideas into failed projects, lost
opportunities, and wasted investments.

Consider an example from a US federal government
agency that highlights the need to hone in on strategic
objectives, programs, and related investments on
clearly defined aspects of the business from the start.
An intellectual property (IP) office sought to transform
cross-agency and public engagement by creating a
highly transparent business ecosystem across the
agency, along with its partners and constituents.
The program scaled up to over a dozen projects across
multiple business units, teams, and technologies, with
each team centered on a particular objective and scope
of impact. One team, in particular, worked toward
transforming the processing of international registra-
tions across the agency, including engagement with
a third-party global organization.

Program executives assigned the end-to-end transfor-
mation of the international registration value stream
to a team of business analysts and solution delivery
personnel. While program leadership designated the
scope of the effort to a specific value stream, enabling
capabilities, and stakeholders, the analysts ignored the
directive in favor of a “blank page” approach. Analysts
met with business subject matter experts and legacy
analysts, the latter of which directed the team to
concentrate on constituent petitions as a priority,

with the source of this diversionary thinking result-
ing from constraints of the current environment.
International registration transformation was, in
fact, supposed to eliminate the need for costly, time-
consuming constituent petitions, except where essential.

A routine review by program management discovered
that the project team had invested nearly three months
of time on petition processing, while ignoring its
primary focus on international registration transfor-
mation. Indeed, another project team had mobilized to
work on end-to-end petition processing transformation,
framed by an entirely different value stream. In short,
the blank-page approach taken by the analyst team
resulted in lost time, wasted investment, and, worst
of all, alienation of business stakeholders.

What does this story have to do with the use of business
architecture to establish an agile organization? Simply
put, the false start exemplified by the wayward project
team in this story repeats itself dozens or even hun-
dreds of times at medium-to-large enterprises annually,
resulting in an endless spiral of ineffective strategy
realization and lost opportunities. Business architecture
changes the game by enabling organizational agility
through effective, coordinated translation of business
directives into targeted results from strategy formula-
tion through strategy realization. It allows organiza-
tions to frame the scope of business strategies, pro-
grams and projects, and related investments from the
start in clear, unambiguous terms. Indeed, business
architecture lays the foundation for expediting strategy
formulation through strategy realization, ensuring that
business investments center on doing the right things in
the right place at the right time.

The Path to Successful
Strategy Realization
Business architecture helps organizations shift toward
becoming more agile from multiple perspectives. It
plays a vital role throughout the strategy realization

Business Architecture + Agile =
Doing the Right Things, Fast

ADDING IT ALL UP

by Whynde Kuehn and William Ulrich

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 7

path to increase the speed and effectiveness with which
strategies become translated into initiatives, and with
which initiatives introduce working changes to the
business environment. Figure 11 shows an enterprise
perspective on strategy realization for an organization,
which occurs continually as a business implements
strategies, transformations, and related business
directives. End-to-end strategy realization requires
many people to work together seamlessly across
five stages; this includes teams centered on strategy,
customer experience, architecture, product management
portfolio management, program and project planning,
business analysis, business process, organizational
design, and execution. Business architecture is a
relatively new addition to the ecosystem of strategy
realization, but has a valuable role in all five stages,
especially, but not solely, in Stages 2 and 3 (Assess
Business Impact and Architect Business Solution).

These two stages are often skipped when organizations
jump from establishing business strategy to executing
projects in order to “execute faster.” However, what may
appear to be a decision to expedite delivery timelines
actually requires an even larger investment of time, and
often budget, later, when extra effort is needed to get
the organization back on track after implementing a
misaligned solution, or when it takes additional time to
make a new change because redundant solutions add to
overall environmental complexity. The intangible impact
of these decisions can also include customer experience
issues, business stakeholder fatigue, and even regulatory
or reputational risks.

In the first stage, Establish Business Strategy, business
architecture can inform strategy formulation, identify-
ing new options for business model evolution. This
stage can also help identify potential impacts of
strategic options as they are being defined in order to
quickly narrow down to viable options, resulting in
significant time and mindshare saved in the long run.

In the next stage, Assess Business Impact, business
architecture offers an invaluable enterprise-level

business lens that allows strategy impacts to be com-
prehensively assessed for the entire organization,
across all business units and products, internally and
externally. Indeed, Stage 2 exposes the “butterfly effect”
of all value stream and capability changes necessary
to enable a given strategy, fanning out to highlight
the effects on other strategies, stakeholders, new or
existing products, policies, current or planned initia-
tives, processes, and, assuming there is alignment with
the IT architecture, technologies.

Having a high degree of transparency of the full scope
of the enterprise empowers teams to work together in
new ways across organizational boundaries, versus
each team translating the strategy in isolation and
implementing its own projects. This leads to the third
stage, Architect Business Solution. Here, business and
architecture teams work together (across organizational
boundaries, where necessary) to design changes to the
business and technology environment or to design new
business solutions for any affected components, such
as value streams, capabilities, products, and system
applications. This perspective represents a significant
shift in thinking. It is an important step forward for
creating an agile organization because it ensures that
the right solutions are built based directly on the
business strategy and built only once in an integrated
manner.

For example, the IP organization mentioned earlier
was able to bring various people together from across
the agency as well as its partners and constituents to
comprehensively design the international registration
value stream and enabling capabilities versus multiple
departments and stakeholders trying to solve the
problem in their own silos. In this scenario, capabilities
were automated once and reused over and over again
across various projects and solutions as required by
a given strategic directive. One last point regarding
Stage 3: this is the point where organizations can truly
engage in design thinking based on a well-defined
strategy and highly transparent impact points. The

Figure 1 — An enterprise perspective on strategy realization. (Source: Business Architecture Guild®.)

http://www.cutter.com

8 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

degree of transparency provided by business architec-
ture lays the fertile groundwork for exploring a wide
range of stories and what-if scenarios across the
business ecosystem.

Once a business solution has been designed, Stage 4,
Establish Initiative Plans, leverages business architec-
ture to determine how to best allocate the full scope of
work across initiatives, which often break down into
multiple programs and projects with clearly defined
scope and delivery sequence. When organizations skip
Stages 2 and 3, the resulting projects are often overlap-
ping, sometimes even contradicting each other, and
may not be sequenced effectively. Often, the scope of a
given program or project is too large or too small, but
implementation teams discover this too late in the cycle
to convince management to retrench. This situation can
even happen when people actively collaborate across
initiatives because they are limited by a fragmented,
opaque understanding of the bigger picture and
organizational constraints.

At the beginning of Stage 4, the scope of each initiative
is framed by concrete changes to the architecture, with a
clear articulation of what needs to change or be created
using the common architectural components (i.e., value
streams, capabilities, and applications). This activity
requires business, architecture, and planning teams to
work closely together, and again represents a significant
shift in thinking related to how and when initiatives
are defined. It ensures that initiatives are scoped in the
right way and delivered at the right time. Our IP case
study and the wayward project team that centered on
petitions instead of the defined architectural focal point
for the initiative provide an example of what can
happen when this top-down approach is not used
(or is disregarded): countless weeks, months, or years
of precious time and resources are wasted with zero
business value delivered.

Finally, in Stage 5, Deploy Solution, each initiative goes
through its usual cycle of execution. Regardless of

development method used, waterfall or Agile, the
business architecture ensures that project teams have
the right focus at the right time. Business architecture
also provides a reusable framework for defining,
tracking, and aligning business requirements, user
stories, and deployed software solutions. The next
section articulates in detail the value that business
architecture can bring to agile execution approaches.

The Value of Business Architecture
in Agile Execution Approaches
Expediting strategy definition through strategy
realization requires a clearly defined, end-to-end
business focus that articulates the specific investment
targets associated with a given business objective.
Figure 2 highlights this perspective. A series of objec-
tives shown to the left are handed over from business
executives. Planning teams associate the objective
with a given value proposition (in the IP example,
obtaining an international registration), which then
becomes the focal point of the overall planning effort
and investment.

Figure 2 depicts the value streams as the focal point of
the analysis. Value streams are associated with external
and internal stakeholders and enabling capabilities,
which in turn are associated with business units,
third parties, information used by enabling capabilities,
policies linked to capabilities, and the technologies
that automate the enabling capabilities. Through these
connections, the business ecosystem impacted by the
originating strategy comes into clear focus, which in
turn frames the investment targets and program scope.

In the IP investment example, the agency sought to
ensure total transparency of the international registra-
tion value proposition while expediting delivery of
the end-value proposition. In this example, that meant
reducing the need to file a petition unless absolutely
necessary. The business objective pointed to the value
proposition of an international registration, covering
every applicable international jurisdiction. The value
proposition pointed to the registration value stream,
which engaged a cross-section of external and internal
stakeholders, including the applicant; enabling capa-
bilities; business units, including partners; and related
information.

The resulting project was entirely framed around this
value stream and related business perspectives. A

Expediting strategy definition through
strategy realization requires a clearly defined,
end-to-end business focus that articulates
the specific investment targets associated
with a given business objective.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 9

second parallel project and team directed its energy and
efforts on the value stream to decide a petition, thereby
avoiding conflicts or overlap of the work being done
and results being achieved. The intentional points of
overlap involved shared enabling capabilities across
the value streams and projects, which highlights a
key advantage in applying the business architecture
approach: shared enabling capabilities point to oppor-
tunities to establish reusable software deployments.
Each project and project phase deployed or enhanced
capability-aligned software services that became
reusable in later project phases, allowing the program
to scale to concurrent projects while reducing delivery
timelines.

Business Architecture Provides
Common Vocabulary and Mental Model
In his 1833 book On War, Carl von Clausewitz states
that “the first task of any theory is to clarify terms and
concepts that are confused…. Only after agreement
has been reached regarding terms and concepts can
we hope to consider the issues easily and clearly,
and expect others to share the same viewpoint.”2
Expediting strategy definition to strategy realization
also requires a common vocabulary to be leveraged
across all business units or even external stakeholders
who may be involved in developing solutions and

helping the organization achieve its goals. This
vocabulary must include a rationalized view of
business terms like customer, product, and agreement
for most organizations as well as any industry- or
organizational-specific terms. For example, the IP
organization defined common terms such as, for
example, intellectual property, policy, research,
classification, proceeding, and petition, as part of
its business architecture.

Rationalizing and defining the business vocabulary
is one of the most introspective and challenging things
an organization can do. However, the shared vocab-
ulary and mental model of an organization, which
business architecture establishes through capability,
value stream, and information mapping at the core,
save immeasurable time that is otherwise lost in
conversations where people talk over each other or
solutions are developed that do not meet business
needs. Fortunately, business architecture reference
models have evolved to the point where the time
and effort it takes to establish a business architecture
baseline is dramatically streamlined. Moreover, a
rationalized view of an enterprise is the foundation for
any organization that plans to shift toward becoming a
cognitive enterprise, where the cognitive enterprise is a
learning organization with a centralized knowledgebase
that evolves and accrues business intelligence over time.

Figure 2 — Targeting business investments through business architecture.

http://www.cutter.com

10 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Business Architecture Fosters Strategy/
Initiative Alignment and Prioritization
Consider that a given organization will often have
many strategies it wishes to address. In the IP example,
the executive team had a long list of strategic objectives
that it had to prioritize across a five-year program and
dozens of projects and project teams. The two examples
discussed thus far involved one project designed to
enable expedited, effective international IP registration
with a second project centered on streamlining effective
petition resolution. To accommodate executive direc-
tives and priorities, the agency had to execute several
parallel projects under a single program, as illustrated
in Figure 3.

In the IP transformation scenario, the overall program
ensured that projects moved very quickly from stated
objective to the delivery of work, which applied Agile
project delivery principles leveraging two-week sprints,
Agile epics and user stories, daily standups, backlog
management, and Scrum-of-Scrums. With one excep-
tion of the case where the initial international registra-
tion project team went rogue and refused to leverage
the value-stream-and-capability-framed project per-
spective, work progressed efficiently and smoothly
from value stream stage to stage, across targeted
stakeholders, focused on automating or otherwise
improving enabling capabilities at each phase.

The example of the project team that went rogue
makes a strong case for using business architecture to
help frame business strategy realization. While project
teams leveraged business architecture–framed priorities
to expedite startup time, streamline business discus-
sions, and reduce exploratory scoping, the rogue team
wandered lost for three months, working on the entirely

wrong business focal point and costing the organization
time, money, and business credibility. In other words,
teams that leveraged the business architecture moved
with agile aplomb while the rogue team struggled to
get its footing, demonstrating how business architec-
ture makes a real difference between the expedited,
successful delivery of business value and a series of
failed investments and commitments.

Business Architecture Scopes Initiatives
and Provides Deployment Framework
In the IP example, the overall program framed a
collective set of strategies to be delivered in coordinated
fashion, where each project targeted a given value
stream or subset of a value stream, and work was
prioritized by stakeholder and capabilities for each
value stream stage. Consider the specific prioritization
and sequencing of work associated with the IP regi-
stration value stream. Projects decomposed into four
phases, each of which delivered quarterly. Each phase
decomposed into a series of two-week sprints. Each
sprint targeted delivery of certain capabilities for
a given stakeholder, in the context of the value stream
stage framing that piece of work. Figure 4 depicts the
program, project, phase, and sprint decomposition
concept.

In the IP case, the IP examiner was the initially priori-
tized targeted stakeholder within a value stream stage
of the registration value stream. Project teams delivered
capability-related enhancements and automations
for the IP examiner over a period of multiple project
phases, until there was a deployable solution for the
attorneys to perform their jobs. The project prioritized
additional stakeholders across business units, sprint

Figure 3 — Strategies delivered through clearly delineated, business architecture–framed projects.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 11

after sprint, phase after phase, until the solution
extended across all stakeholders for essential
capabilities across that value stream.

This overall framing of programs, projects, phases, and
sprints highlights the value business architecture brings
to an organization using Agile delivery approaches.
The IP program was employing Agile development
techniques in both the challenged project associated
with the rogue team and each successful project. When
the rogue team on the international registration project
was replaced with a new team that embraced and
leveraged the business architecture, that project quickly
regained its footing and began to deliver value across
the stakeholder ecosystem. The organization achieved
its overall strategic objective for the applicant as well
as the internal stakeholders via project evolution and
solution deployment. In other words, business archi-
tecture clearly made the difference between successful
deployment of this project versus a challenged attempt
at this project.

Business Architecture Connects the Dots
Across Strategies, Architectures, and Initiatives
Business architecture is not only valuable within the
context of one program; it also has the unique ability
to connect dots across programs, which can be challeng-
ing in its absence. The shared enterprise-level business
lens of business architecture, with a focus on value

streams and capabilities, becomes the common key
for cataloging changes being made as a result of any
strategy, target architecture, or initiative. This formal
framing of strategy realization makes it possible to
definitively identify when changes are being made
to the same area of the business, thereby uncovering
opportunities for new collaborations, shared solutions,
and coordinated decision making, such as when to pull
back when too much change is being introduced for a
given stakeholder.

The IP example highlights additional points in terms
of connecting the dots from a holistic perspective.
Having enterprise-wide visibility into all strategies and
potential changes centered on international registration
gave the IP program team a quick way to pinpoint
additional factors that should have been considered
up front, such as new treaties and regulations. Another
factor was that the international work was eased by
deploying a domestic IP registration solution first,
which established a reusable baseline for the inter-
national solution. The program also had end-to-end
visibility and impacts from a global software solution
perspective. In this case, a shared database and reusable
software services library emerged as a result of this
overall program, meaning that the agility gained dur-
ing the deployment stages of the program would be
formalized and institutionalized to enable this organi-
zation to become and remain an agile enterprise well
into the future.

Figure 4 — Program decomposed into projects, phases, and two-week sprints.

http://www.cutter.com

12 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Ubiquitous Business Architecture
One major differentiator of business architecture
is that it is not constrained to internal business per-
spectives. The international value stream in the IP
example highlights an external perspective. The original
perspective of the business on international registra-
tions essentially ended when the registration request
was sent to the third-party global organization, but the
value proposition was nowhere close to being achieved.
Extending the applicant value delivery perspective end
to end expanded and clarified the business objective.
Stakeholder transparency had been constrained to
internal views and lacked perspective on the third-party
global organization engagement. This represented a
design thinking phase of the program where no one
ever conceived of establishing 360-degree visibility into
work once it entered the partner domain. Yet the value
stream made this external perspective blindingly
apparent.

The fully expanded stakeholder perspective highlights
the concept of ubiquitous business architecture where
value streams are not constrained to a single organi-
zation but rather across a business ecosystem that
includes other business entities. By expanding the value
stream perspective through delivery of all international
registrations, the agency delivered major improvements
in applicant value delivery. In addition, by adding
capabilities to enable application engagement across
the value stream, the need to initiate related petitions
was reduced dramatically, which further reduced the
demands on an already overworked business unit.

In order for an organization to maximize the value
of business architecture, it should leverage a holistic
ecosystem perspective on business architecture. This
approach focuses on stakeholder value delivery from
an end-to-end perspective, which frames the value
streams targeted for investment. When engaged in this
approach, the basic foundation for an organization to
transform itself into an agile enterprise is in place.

Introducing Business Architecture
into Agile Approaches
How then do organizations begin introducing business
architecture into agile execution approaches to achieve
these benefits? Those organizations that already have a
business architecture in place have an advantage in that
they can immediately begin leveraging it to prioritize
and structure an agile execution. However, this requires
a relatively complete and well-structured business
architecture. For example, the minimum foundation
includes the definition of core value streams and
capabilities decomposed down three levels, as well
as value stream/capability cross-mapping for areas of
the business being targeted by a given set of strategies.
Another key aspect of business architecture that comes
into play early in the cycle is the information, which
formalizes the business vocabulary and relationships
across various information concepts.

The business architecture should be created from an
enterprise perspective and based on a rationalized view
of business terms. From here, the business architecture
may be cross-mapped to other business architecture
domains, such as strategies and products, as well as
to other disciplines, such as event modeling, processes,
and software applications. For those organizations that
do not yet have a business architecture, it can be built
over time once the value stream and capability founda-
tion is in place. Reference models expedite this effort.
From there, refinements, additions, and cross-mappings
to the business architecture are captured opportunisti-
cally as dictated by business priorities.

In addition, the use of business architecture must be
integrated into the way people work during an agile
execution. For example, product owners need to learn
how to work with business architects and use the
business architecture to inform prioritization, and
all project teams need to learn how to consume
architectural scope and input for their projects and
sprints. Business analysts must become fluent in
understanding and using the business architecture.
Adoption in practice can be more challenging than
creating the business architecture in the first place
because it requires the patience and desire to introduce
a new frame of reference into one’s mindset, albeit one
that provides significant business transparency.

The business architecture should be created
from an enterprise perspective and based on
a rationalized view of business terms.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 13

Making these types of changes is, of course, more
successful when supported by other overarching
measures to encourage and support people throughout
the organization to shift to an agile and enterprise-
focused mindset. This can include actions such as
executive messaging to describe how the organization
of the future will work and deliberate change manage-
ment activities to help people adjust. Further measures
may also be needed, such as adjusting funding mecha-
nisms to work across organizational boundaries or
adjusting employee compensation and motivational
structures.

Conclusion
Organizations should leverage business architecture
throughout the path to strategy realization to harmo-
nize the execution of business direction across organiza-
tional boundaries and initiatives. Business architecture
ensures that organizations do the right things that align
with business priorities and are scoped and integrated
effectively. Though business architecture is a relatively
new addition to the ecosystem of strategy realization
teams, it plays a valuable role in strategy formulation,
impact analysis, business design, program definition,
and agile execution. When business architecture is in
place, adopted and leveraged ubiquitously, the gateway
for an organization to transform itself into an agile
enterprise is in place.

Endnotes
1A Guide to the Business Architecture Body of Knowledge®
(BIZBOK® Guide), Part 1. Business Architecture Guild
(https://www.businessarchitectureguild.org/page/about).

2“On War.” Wikipedia (https://en.wikipedia.org/wiki/On_War).

Whynde Kuehn is a Senior Consultant with Cutter Consortium’s
Business & Enterprise Architecture practice and Principal of S2E
Consulting Inc. She is a long-time business architecture practitioner,
educator, and industry thought leader who takes a business-focused
and results-oriented approach to business architecture. Ms. Kuehn has
extensive experience in enterprise transformation and planning and
has a track record of creating successful teams that become embedded
into their organizations. Ms. Kuehn also provides business architec-
ture training. She has developed and taught comprehensive business
architecture training programs via in-person and online formats, both
for the public and inhouse for clients. She is a recognized thought
leader in business architecture, regularly speaking, writing, and
chairing/cochairing conferences and events that advance best practices
and facilitate community across the world. She is a cofounder and
board member of the Business Architecture Guild and serves as its
Editorial Board Chair. Ms. Kuehn also founded a New York Business
Architecture Community. She can be reached at wkuehn@cutter.com.

William M. Ulrich is a Fellow of Cutter Consortium’s Business
& Enterprise Architecture practice and President of TSG, Inc.
Specializing in business and IT planning and transformation
strategies, he has more than 35 years’ experience in the business-IT
management consulting field. Mr. Ulrich serves as strategic advisor
and mentor on business-IT transformation initiatives and also serves
as a workshop leader to businesses on a wide range of business-IT
transformation topics. He has the unique ability to cross business and
IT boundaries to facilitate and streamline business-IT transformation
strategies, and his workshops on business-IT architecture transfor-
mation have been widely attended by organizations worldwide. Mr.
Ulrich is the cofounder and President of the Business Architecture
Guild, Cochair of the OMG Architecture-Driven Modernization Task
Force, and cofounder and Partner at Business Architecture Associates,
Inc. Previously, he served in a senior management capacity at KPMG,
including as Director of Reengineering Strategies, prior to leaving
and forming his own company. Mr. Ulrich is a Certified Business
Architect® (CBA®) and continues to play a role in formalizing
industry standards around the practice. He has authored hundreds of
articles appearing in major publications and journals and is coauthor
of Business Architecture: The Art and Practice of Business
Transformation. He can be reached at wulrich@cutter.com.

http://www.cutter.com
https://www.businessarchitectureguild.org/page/about
https://en.wikipedia.org/wiki/On_War

14 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

The only sustainable advantage you can have over others
is agility; that’s it. Because nothing else is sustainable,

everything you create, somebody else will replicate.

— Jeff Bezos, Amazon founder

In this article, we share six recommendations for
those working in established organizations who have
received a call from the CEO or upper management
requesting something like, “Please make us agile.”

The title of this article hints at our initial assumptions:

• Agilifying. Agility is not a specific goal. Each organi-
zation will have its own flavor of agility, depending
on its history, legacy, “shareholder” goals, market
and ecosystems, changing conditions, culture, and
the like. Agility is a muscle that can be trained and
enhanced. Our focus in this article is on the actions
that will enhance overall organizational agility.

• Your. Any organizational endeavor needs an owner.
Becoming agile means initiating, leading, and
coordinating diverse efforts within the organization
as well as solving conflicts that stem from these
actions. The recommendations we include in this
article are directed at the leader.

• Digital. We use the generic term “digital” to denote
the unique place of information systems and other
digital technologies in enabling agile. Today’s orga-
nizations are structured around digital processes.
Digital is the nervous system that allows the organi-
zation to plan, implement, and evaluate its endeav-
ors, such as enhancing the customer experience and/
or promoting new, innovative business models.

• Organization. Being agile is for every organization:
small, medium, and large — whether you are a five-
person startup or a 50,000-person conglomerate; local
or global; private or public; for profit, nonprofit, or
government. You can even build agility into your
department, your team, and yourself. While the
language of this article talks about the organization,
the recommendations are relevant, mutatis mutandis,
to all levels.

Gone are the days that an organization could plan for
sustainable competitive advantage and build a five-
year (or even three-year) strategic plan. The business
environment has become ever-more chaotic, dynamic,
and disruptive. Enter agility, as the new capability to
develop transient competitive advantage with shorter
planning and execution cycles. Welcome to the age of
“agilification.”

Step 1: Appreciate the Mental Challenge
of Agility as “Building Flexible Buildings”
There is a giant universal mental challenge when it
comes to agilifying. Think about standard buildings and
the process of creating them. Thousands of years of
experiences, images, mental models, tools (digital and
otherwise), sample contracts, professional backgrounds,
past knowledge, and people’s expectations — all stem
from the assumption that you architect and build in a
linear way. You analyze the need, you make the plans,
you build the building, and even though you may add
just a few more things in the future, the building is
a fixed entity. Any attempt to design a building for
change — let alone many changes — will not be
appreciated, to say the least.

Yet the goal of the modern organization is to rebuild
itself all the time. To arrive at various and different
structures, processes, and business models. To match
the needs of the market. Let’s envision our organiza-
tional building à la photographer Victor Enrich, who
used Adobe Photoshop to demonstrate various future
possibilities, including those shown in Figure 1.

The common response to the idea of flexible buildings is
lukewarm, ranging from “you are crazy,” to “nice idea
but not practical,” or, at best, “nice idea, now let’s talk
about something else.” As an agilification leader, you
will receive similar responses inside established orga-
nizations. The responses may not be as blunt, but the
innate mental challenge is a formidable barrier. Years
and years of organizational culture are geared to fixed
systems, not agile ones.

READY, SET, GO!

Agilifying Your Digital Organization: 6 Steps to Get Started
by Yesha Sivan and Raz Heiferman

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 15

Step 2: Develop and Share Visions of
What to Expect from Agility
A good way to combat the innate mental objection to
agility is to start from what can and should be done
with agility, and how the organization will look and
feel when it is agile.

Agility can mean different things to different people,
and it should. Still, it is important to vividly understand
its various meanings and to allow the organization to be
aware of these meanings and then prioritize them. For
example, an agile organization will be able to do the
following:

• Release features faster (from once a year to once a
quarter, then every month, then every day).

• Digest new product lines faster (e.g., as a result of
M&As).

• Divest a product, department, or region (including all
relevant IT abilities).

• Integrate a new small-to-medium-sized firm (through
M&A), keeping the good DNA of both organizations.

• Divest a current small-to-medium-sized department.

• Change business processes fast and replicate them
quickly to the entire global organization.

• Introduce new and innovative business models.

• Make decisions based on data, including decisions
around experiments, insights, and corrective courses.

• Retire and replace old legacy systems (with minimal
effect on end clients).

• Replace key suppliers.

• Add languages and other localization measures to
products and services.

• Experiment for certain groups with new features,
services, pricing models, and so on.

• Capture and/or spin “giant” opportunities (e.g.,
Amazon’s entry into cloud computing or Slack’s
turning an internal tool into its product).

• Leverage human resources flexibly anytime, any-
where (e.g., hire people part time, have a work-
from-home policy, allow new fathers to work just
three days a week for two years).

Figure 1 – Think “flexible buildings,” not “fixed buildings.” (Source: “NHDK” series by Victor Enrich, Munich 2012.)

http://www.cutter.com

16 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Keeping such a visions list — updating it and remind-
ing ourselves of it — is a good cultural measure that the
agilification leaders should manage.

Step 3: Build Abilities That Allow
for Visions
The main value of being increasingly agile is to allow
the organization to realize its potential visions more
quickly, with less investment, and with greater chances
of success. To realize those visions, one must have
abilities — both non-digital and digital (see Figure 2).
Non-digital abilities (which are not the focus of this
article) include generic abilities like brand, financial
resources and stability, long-term planning, market
share, and industry-specific abilities like core technol-
ogies, expertise, processes, business models, partner
networks, and so on.

Digital abilities are information systems–enabling abil-
ities that allow for agility. Let’s define digital abilities
through a partial list of key abilities in the form of
technologies, attitudes, and approaches we should
adopt to become agile:

• Cloud-ness — key to both experimentation and
scaling. Beyond the many advantages of cloud
computing, cloud-ness has direct value for agility,
including the ability to experiment, to share your
applications globally, and to scale.

• Online-ness — moving to more online and event-
driven approaches and less “batch” work (e.g., a data
warehouse, or a system that stores data for analysis,
can be replaced with all data being online, all the
time).

• Data-ness — capturing, storing, harmonizing,
analyzing, and gaining business value from data.
Data is the new oil of the modern organization.

• DevOps-ness — merging development with
operations to allow faster changes.

• User-ness — knowing your employees, virtual
employees, suppliers, customers, future customers,
and others by name and ID to allow data to be
connected to them and to help data analysis resolve
their challenges.

• Experimentation-ness — allowing for A/B testing
of new features.

• Automatic testing–ness — seeking the ability to test
your systems quickly to allow for high quality with
rapid changes and deployments.

• Responsive-ness — developing once for multiple
interfaces (i.e., Web, phone, watch, TV, voice).

• Measure-ness — measuring how people use your
systems and remembering to balance measurement
with analysis and action (we often see a lot of
measurement but very little analysis, with the
business taking very little action as a result of
those measurements).

• Stack-ness — decoupling layers in your systems
(e.g., base systems, data buses, and client systems).

• Lifecycle-ness — designing the lifecycles of new
systems and planning for the end of life of new
systems (including obsolescence).

• Open-ness — looking for external technologies and
tools that can help accomplish tasks. Work that used
to cost thousands of dollars to accomplish can today
be done almost for free with advanced tools, plug-ins,
open software, cloud, and so forth. The use of open
source, microservices, containers, APIs/Web services, Figure 2 — The relationships among visions, abilities, and actions.

The main value of being increasingly agile is
to allow the organization to realize its poten-
tial visions more quickly, with less invest-
ment, and with greater chances of success.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 17

and an event-driven architecture allows faster
development, greater flexibility, and speedier
and reusable deployment.

Step 4: Initiate Actions That Build
Abilities That Allow for Visions
Digital abilities such as those presented in Step 3
(and Figure 2) should be groomed using specific
actions. Such actions — in the form of projects, initia-
tives, and directives — build systems, processes, and
skills as well as provide visibility into what you can
expect from the ability.

Actions are specific endeavors that both create business
value and build long-term abilities. Let’s consider a few
examples:

• Harmonize analytics of your websites. Ensure all
your websites have analytics (e.g., Google-based),
and you have a process to gain business value from
analytics. This is a great start to building data ability
and deriving insights into your customer experiences.

• Move systems X,Y,Z into the cloud. Select a few
internal systems and a few external client systems
to move to the cloud. This can start with a survey of
systems and looking for solutions that are software-
as-a-service (SaaS)-based. This is a good venture into
understanding the pros and cons of cloud computing.

• Train a few teams in Agile methods (e.g., Scrum,
continuous integration, continuous deployment).
This is a helpful path toward building the “people”
side of agile.

• Initiate one or two projects that connect business
and IT, both of which work on the project(s) in the
same physical/virtual space and experiment with
rapid prototyping and development sprints.

• Train a few teams in design thinking to create and
introduce innovative products and services.

• Review your systems (and their owners). This is a
great start to mapping the current architecture and
designing an updated one.

• Undertake globalization or localization of some
systems. This is a good way to create a standard
infrastructure.

Step 5: Master the Interplay Among
Leadership, Culture, Business
Architecture, and Digital Architecture
We have found that building agility calls for mastering
the interplay among four forces (see Figure 3):

1. Leadership. Agility must be driven from the top,
mainly because it will call for ongoing culture
adaptation and conflict resolution (mainly in the
form of who is in charge of what). The leader must
fully understand the agilification journey. The
leader’s decisions must demonstrate the right
balance between the organization’s current state
and the future to-be state, and between small and
large, slow and fast, and value and risk. As Step 1
suggests, the forces against agility will be strong,
and only clear and assertive leadership can build
the needed momentum.

2. Culture. Culture is the way in which the organiza-
tion acts, the principles that ultimately lie behind
the ability of individuals and teams to create value.
In a sense, agility is a facet of culture — as we want
every part, every individual, every effort to be agile.
It is up to the leader and his or her lieutenants to
set the culture — often called “enculturation” — by
explaining, demonstrating, giving direct feedback,
encouraging experimentation, promoting minimal
viable products (MVPs), and appreciating and
building enculturation opportunities.

Figure 3 – Master the interplay among leadership, culture,
business architecture, and digital architecture.

http://www.cutter.com

18 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

3. Business architecture. This force defines the
current, near-term, and long-term futures of the
business. It captures the short-term opportunities;
plans for next products, business models, or
markets; and ponders further long-term value.
Business architecture must coordinate efforts to
prioritize, plan, and push for implementation of
the needed visions (see Step 2).

4. Digital architecture. The counterpart to the busi-
ness architecture force is the digital architecture
force, which is entrusted with setting the appropri-
ate evolving technical architecture of the firm. This
evolution of the classic discipline of IT architecture
manages relations among all current systems, their
level of maturity and their place in the lifecycle,
and their future.

The key term is interplay. To enhance agility, you must
understand the nature of these forces. Harmonized
interplay will push the organization forward, while
harmful interplay will drag the organization down and
turn the agility efforts into a battleground. As the leader
of the agilification journey, you need to carefully

balance these four forces in accordance with your
organization’s level of maturity and style.

Step 6: Shift to Deadline-Driven
Smaller Projects
If there is one measure that can drive an organization
toward agility, it is the shift to deadline-driven smaller
projects (see Figure 4). Simply put, we recommend
defining smaller projects (that can relate to each other
to build a bigger project) and focusing on the deadline
— not just on the results. This is part of the skill of
project management with a drive to flexibility. The
key idea: it is better to have 90% ready this month, on
time, than 100% ready next month, which is too late.
Naturally, one must select the MVP and adhere to the
critical path (e.g., FDA regulations, critical features, or
connectivity).

Many organizations are already using quarterly and
yearly planning cycles. Being focused on deadlines
has known advantages. Deadlines can be yearly,
quarterly, monthly, weekly, or even daily. Setting

Figure 4 — From big projects that are often late to smaller projects that are mostly on time.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 19

deadlines encourages direct planning, risk analysis,
and resource allocation. In this approach, deadline-
driven means that:

• Large projects are broken down into smaller parts.
Short-term parts should be defined; longer-term
items can be defined later.

• You focus on deadlines, not just results (“prefer
partial results on time”).

• You make sure you have the needed resources.

• You define your goals in concrete terms.

• The task of planning, which takes resources, has
a deadline.

• Testing, feedback time, migrations, and so on,
can all have deadlines.

• You promise less and try to do more.

• You accept the possibility of missing the deadline,
and when you know you are not progressing to
schedule, announce the failed deadline early.

• You set review, test, and share meetings in advance
(e.g., for the entire quarter).

• You manage risks.

• You use a “cyber-by-design” approach (in which
security, privacy, and similar considerations are part
of the initial design) to be cyber compliant from the
beginning and not just at the end of the development
process.

• You start with the “difficult” things. For example, if
you are to develop an algorithm and a user interface,
begin with the algorithm (assuming there is a risk
that you may not have the right solution). Choose
to do first the tasks at which you may fail.

The value of deadlines, and especially of smaller chunks
of work (as seen in the “release often” philosophy of
MVPs), is shown in:

• Observable results

• Ability to adjust to obstacles and changes much more
quickly

• Clients/customers being able to see the value being
produced on an incremental basis, which allows them

to adjust their desires/expectations (if they like one
aspect, they can state it; if they feel that something is
really wrong, they can say so)

• Building the system for change (e.g., reuse of code,
component replacement, auto testing)

Deadline-driven does not mean the abandonment of
ambitious goals. When we are deadline-driven, we are
simply choosing to have 75% of the desired results
delivered on time, rather than 99% delivered late (there
is usually a small percentage that is not delivered).
Seventy-five percent of the results is usually 90% of
what is needed, and if the other 25% is really needed,
we set a new deadline.

In the long run, for smaller chunks of work, learning is
the best benefit of being deadline-driven. Such shorter cycles
allow for more wins, as well as more fails — encourag-
ing (if there’s enough time allocated) learning, which is
critical for building and evolving an agile culture.

Conclusion
Being agile is among the key core qualities of the
modern organization. If your organization is not yet
agile and you are in an industry adjacent to an already
agile industry, you have an even greater challenge: how
to become agile fast and not become disrupted. Frankly,
in some cases, this may be impossible (think Kodak in
the age of digital cameras).

The pressure to be agile stems both from the fear of
being disrupted and the great opportunities that the
digital world enables. Bear in mind that the pace of
M&A is likely to rise due to (1) the digital investments
that call for larger organizations and, conversely, (2)
the ability of tiny players to act big (and thus disrupt
established players) because of cloud computing.

The six steps presented in this article are designed to
help guide agilification leaders, especially as they take
their initial steps in the agilification process:

The pressure to be agile stems both from
the fear of being disrupted and the great
opportunities that the digital world enables.

http://www.cutter.com

20 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

1. Appreciate the mental challenge of agility as
“building flexible buildings.”

2. Develop and share visions of what to expect
from agility.

3. Build abilities that allow for visions.

4. Initiate actions that build abilities that allow
for visions.

5. Master the interplay among leadership, culture,
business architecture, and digital architecture.

6. Shift to deadline-driven smaller projects.

The imperative of the agile organization is directly
linked to the digital force. On the one hand, we must
be agile because of the external market and customer
expectations of digital transformation; on the other
hand, we can be agile because of internal digital
technologies. Finally, despite difficulties, we need to
remember that agilification has its benefits, too: it makes
work very interesting — and very different. Enjoy the
journey.

Yesha Sivan is the founder and CEO of i8 ventures, a business
platform focusing on "innovating innovating." He is also a visiting
professor of digital, innovation, and venture at the Chinese University
of Hong Kong Business School. Dr. Sivan's professional experience
includes developing and deploying innovative solutions for corporate,
hi-tech, government, and defense environments. He focuses on digi-
tal strategy (SVIT – Strategic Value of Innovation Technology),
innovation and venture (employment black holes), mindful leader-
ship (orange bike workshop), virtual worlds (3D3C platforms), and
knowledge age standards (nine keys). Dr. Sivan earned a doctorate
from Harvard University and has taught EMBA, MBA, engineering,
and design courses in his areas of expertise. He can be reached at
yesha@i8.ventures or via his blog (http://www.DrYesha.com).

Raz Heiferman is a Senior Digital Transformation Advisor at i8
ventures. Previously, he was Co-CEO and Senior Advisor at Be
Digital; Acting Government CIO and Manager of the Shared Services
Division at the Israel CIO Office; CIO at Direct Insurance, Bezeq, and
Optrotech; and has held other senior positions in two leading Israeli
software houses. Mr. Heiferman teaches graduate courses on business
strategy and digital transformation at several academic institutions
and has published five textbooks on data warehouses, SQL databases,
and file organization, along with many articles for Israeli professional
magazines. He is a Certified System Analyst and has served as
Presidium Member of Israeli Information Technology Chamber.
Mr. Heiferman holds a bachelor’s degree in economics and statistics
and an MBA (cum laude with operations research specialization),
both from Hebrew University, Jerusalem. He can be reached at
raz.heiferman@i8.ventures.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 21

The confusion surrounding the role of architecture
when aiming for agility isn’t simply a labored talking
point — it’s part of the reason Agile initiatives fail and
architecture teams are losing influence. As it stands, it
appears Agile and architecture are struggling to find a
fit. This article considers the possible effects of a third
way: agility through “antifragility.” Rather than aiming
to control, or to remove control, we should seek to build
systems, both technical and business, that aim to be
antifragile to change. This allows the production of
business and technical architectures that enable agility
through design rather than process or mindset. Taking
ideas from systems engineering, complexity science,
and recent survey data, we explore how the inherent
interconnectedness of architecture and agility can be
leveraged — via the Antifragile Systems Design process
— to make the management of complexity something
all organizations can do.

Enterprise Software and VUCA:
The Need for a New Approach
The modern business environment is a strange place, if
visited by the manuals and best practices of yesteryear.
The end of Taylorist management science1 is, according
to some, clearly in view.2 Indeed, the complexities of the
modern world refute the join-the-dots MBA business
playbook. The world of VUCA (volatility, uncertainty,
complexity, ambiguity)3 requires a new approach.
Disintermediation, globalization, market upheaval,
disruption, and technological advance all combine to
produce an effect that is difficult to mitigate, impossible
to predict, and arduous to detect. The software crisis,4
first defined in 1968, is entering a new phase, and the
consequences of continued shoulder shrugging are
becoming ever more serious.

Witness the growth of the Agile industry, with its
ceremonies, high priests, and rituals. It has, quite
rightly, found the zeitgeist: the decline of management
science and the pseudo-scientific pretense of order in
the domain of complex human systems. This is what

causes Agile mysticism; we know that waterfall will not
work, so we reject it based on past experience but do
not replace it with anything demonstrably better. This
creates the gap for “snake oil.” The diagnosis of the
multiple failings of waterfall is completely correct; yet
the results of the Agile cure do not seem to bear the
weight of investigation.

A 2017 report of 300 UK-based CIOs demonstrates
the problem: 21% of Agile projects end in complete
failure (i.e., nothing delivered), and 68% of CIOs
want to see more architects involved in Agile projects.5
Moreover, the projected cost of Agile failure is 37 billion
British pounds (US $48 billion). Yet, a recent IASA
Global survey6 reveals that over 75% of 260 responding
organizations are implementing some form of Agile
practice, and 50% are implementing Agile-at-scale.
However, less than 50% of all respondents have
integrated architecture into their Agile process.

In an environment where both inflexible and unstable
software can lead to business failure, modern busi-
nesses need both the flexibility espoused by Agile
practitioners and the rigor of more structured systems
engineering methodologies. This contention is the
source of much debate and confusion between the
Agile and architecture camps and requires an alter-
native architectural approach. Thus, we propose that
by architecting for antifragility, businesses can gain real
agility and deliver systems with a higher level of
quality. NYU Distinguished Professor Nassim Nicholas
Taleb describes an antifragile system as one that gains
from disorder; a system that becomes stronger when
exposed to stressors (even unpredictable or unknown
stressors).7 An antifragile system is by definition agile
and resilient.

Accepting Complexity
Complex systems, under which most contemporary
business-critical systems would be classified, are not
merely complicated. They are systems that cannot be

No More Snake Oil: Architecting Agility in a
Complex Environment

THERE’S GOTTA BE A BETTER WAY

by Barry O’Reilly and Gar Mac Críosta

http://www.cutter.com

22 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

assumed to behave in a certain way and have nonlinear
responses to changes in input. Consider the concept of
the Platonic fold,8 which tells us that the act of model-
ing the world simplifies it to the point where any
decisions made based on that model are misinformed
due to details omitted for the sake of hiding complexity.
Thus, dynamic real-world problems twist and bend,
while the static solution cannot keep up, causing the
demise of quality. In software, this leads to a multitude
of problems, including shortened life span, patching,
and quality issues.

When humans build complex systems, they tend to fail,
often catastrophically, because of Platonic folding. The
solution to the Platonic fold requires accepting com-
plexity as something we can neither predict nor control,
along with accepting the limitations of modeling and
risk management. Instead of pursuing correctness in
these areas, we should aim to build systems that are
antifragile to fluctuations in the VUCA elements (i.e.,
the system becomes stronger as the business environ-
ment warps and changes with time).

Antifragility in Software
Due to extensive research being carried out on the
subject of computational antifragility, many solutions
to this kind of problem will emerge in the future.9 It
is important to realize that the degree of fragility of a
system is often a function of its internal structure. The
ability of a system to change under stress is governed
by the interconnectedness of its parts, how strongly
they are tied to each other, and how much change
ripples through the system. Therefore, there is a need
to ensure that we match the level of interconnectedness
of a system’s components with the effort required to
reorganize them in the face of change. This is something
that architects are well qualified to do.

For many years, the decomposition of software systems
has been held captive by the latest technological trends,

vendor interests, and a slow-shifting mindscape. Many
students of software engineering still hold fast to ideas
of elegance and reuse, often making software unneces-
sarily complex in the process. There has, however, been
a broad library of dissent against these methods, dating
back to 1972. Software engineering pioneer David
Parnas’s ideas on nonconventional decomposition10
tell us that we can build better systems by focusing
on what will change rather than what will happen
functionally, while software architect Juval Löwy’s
important distinction between functional- and
volatility-based decomposition via the IDesign
Method11 provides some ideas and techniques
that make this easier.

Each of these methods relies on focusing on the
elements that can change, rather than on concrete
requirements. By building a system where the primary
requirement is the ability to handle change, a very
different piece of software is constructed than would
happen otherwise. This need for change in design
philosophy — away from building to specific require-
ments and toward building systems that are antifragile
— has been expressed elsewhere, including at NASA.12
Kjell Jørgen Hole’s book Anti-Fragile ICT Systems
illustrates that systems demonstrating high levels
of antifragility have the following four properties:13

1. Modularity (consisting of separate, linked
components)

2. Weak links (a low level of interconnectedness
between components)

3. Redundancy (the presence of more than one
component to cope with failure)

4. Diversity (the ability to solve a problem in more
than one way with different components)

Antifragile Systems Design
The Antifragile Systems Design process guides the
architect to optimize and balance the four antifragile
properties mentioned above with the VUCA elements
present in a project. With a few days of analysis and
design work, we can shift any project in the direction of
antifragility, without incurring a great deal of overhead.
The Antifragile Systems Design process mixes ideas

Dynamic real-world problems twist and bend,
while the static solution cannot keep up,
causing the demise of quality.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 23

from complexity science and systems engineering to
create a method to guide the design effort.

This process embraces the complexity in building
dynamic systems. Following the advice of Taleb,
Parnas, Löwy, and others, we need to focus on what
we do not know before focusing on what we do know
— accepting our limitations and our inability to predict
the future. Indeed, the Antifragile Systems Design
process is not fixed but can grow and change with
every project. With this new architectural approach,
the intention is not to create yet another framework or
silver bullet, but to provide a starting point for a new
type of design process. This process follows several
simple steps and requires no more tooling than an
Excel spreadsheet.

Who Takes This On?
The steps outlined below require a mix of skills within
business, business architecture, and software engineer-
ing. However, this is not simply a business activity
or a software design activity and cannot be divided
into different tasks for different silos; each step in the
process creates feedback loops to ensure that answers
arrived at are coherent. Antifragile Systems Design
requires an organization to move as one toward solving
the problem of complexity, which means changing the
perspective from “us versus them” (IT versus business)
to simply “us” (business). Business leaders, business/
enterprise architects, and software architects all need
to engage with the process to make it work. This
requires a new approach from both architects and
business leaders.

Architects need to work with the business to describe
the VUCA environment, translate the impacts on the
software decomposition, and even assist in business-
level mitigations. Currently, few architects span this
range; therefore, a business architect and a software
architect often must work together to guide the process.
However, it is possible for a single architect (business/
architecture-focused or software-focused) who com-
bines business understanding and software engineering
knowledge to guide the process.

Business leadership plays an important role in enabling
the architects and the project to embrace this approach.
By employing Antifragile Systems Design at a high
level, business leaders can learn to ask the right

questions of their software teams and quickly assess the
stability of an initiative.

Step 1: VUCA Analysis
In the first step, we describe the VUCA environment
for this particular initiative, listing the VUCA elements
with regards to the business model, and begin to sketch
our architecture. We design the system to cope with
fluctuations based on the VUCA elements identified
in the business model, meeting each challenge with a
change in one or more of the four antifragile properties
of the system.

This exercise starts at the business level, with input
from business leaders. It identifies VUCA elements
in the business model and clarifies what business
mitigations, if any, are in place or need to be in place.
This step can actually help improve the business
processes or organizational structure behind the
initiative. This kind of work is usually carried out by
the business, but rarely shared in detail with architects.
VUCA analysis requires the following actions:

• Represent the initiative’s business model using the
Business Model Canvas14 and its standard building
blocks.

• Perform a VUCA analysis, noting everything con-
sidered volatile. For example, what can change? What
happens if a partner is acquired or ceases trading?
What happens if a cost escalates? This is a useful
exercise for the organization and can educate the
architect in how the wider market works.

• Run through everything that is uncertain. For
example, what do we not know? What is purely
guesswork? What impact can a lack of knowledge
have on the system?

• Run through all complexities (processes that have
nonlinear responses to input) and ambiguities.
Explore the impact of being wrong about something
and what would need to change to accommodate
the error.

• Record this in a spreadsheet, with a list of VUCA
elements and the corresponding mitigations.

• Choose the most appropriate mitigation for each
VUCA element, excluding those too expensive or
unrealistic.

http://www.cutter.com

24 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

• Continue the exercise until the mitigations start to
become repetitive.

Note that this exercise does not involve trying to predict
the future, but rather having an awareness of the types
of change that can happen to a system. We cannot
predict all change, but we can work with what we
know.

Step 2: System Decomposition — Flow First Design
The next step is to propose a system design. Here,
we use Black Tulip’s Flow First Design, a design process
for distributed systems, described briefly below:

• Describe the software as a series of data flows
enabling the functional requirements.

• Create a component decomposition for each flow that
is completely decoupled from all others and all data
sources; the flow is its own system. This creates a
system with very low levels of interconnectedness.

• Subject each data flow to the fluctuations described
in the VUCA analysis.

• Ensure that the mitigations listed in the VUCA
analysis are represented in the software.

• Consolidate different flows, reducing the level of
interconnectedness; aim for minimum disruption
when each VUCA element changes, as described by
Parnas.15

This allows the architect to refine system decomposition
by measuring the system’s ability to meet changes likely
to happen based on the VUCA analysis. The system
decomposition now relates to both functionality and
system behavior. This step establishes the right level
of modularity and weak links, the first two properties
of systems demonstrating high levels of antifragility,
and connects them to the VUCA elements identified
previously.

This step requires knowledge of software engineering
patterns and the management of coupling; however,
it does not require a detailed knowledge of software
development. It is enough to be able to ascertain that a
VUCA fluctuation will have a minimal level of impact
on the system.

Step 3: Design Testing
In this step, we present the architecture to various
stakeholder groups through an exercise such as the

Architecture Trade-Off Analysis Method (ATAM).16
This ensures that all concerns have been addressed and
that the VUCA analysis was accurate and promotes
confidence in the role the architect has played by
providing a sense of rigor and demonstrating a
potentially robust and resilient system.

Step 4: Modified FMEA
Failure Mode Effects Analysis (FMEA)17 is a Six Sigma
technique that helps manage quality in a system by
investigating how the system will cope with failure.
Using FMEA, we can investigate system behavior and
adjust the architecture to be resilient to failure during
operations. However, in this step, we do not attempt
to prioritize or predict risks or criticality, as this pro-
vides little benefit when dealing with complex systems.
FMEA includes the following actions:

• Create a FMEA spreadsheet listing the different ways
each component can fail.

• Record how failure is detected and mitigated and
the impact of component failure.

• Aim for a high level of automation.

• Change the system design to accommodate
mitigation of these failures.

• Repeat the process for any number of failure
modes until the mitigations become repetitive.

This step in the process tunes the system to have the
right balance of redundancy and diversity (the last
two properties of systems demonstrating high levels of
antifragility), pushing the system toward antifragility.
This step also protects against the risk that too many
mitigations can produce an overcomplicated system. In
such a case, FMEA will struggle to mitigate all known
errors at a reasonable cost and will send the architect
back to the VUCA analysis for a more realistic take on
what can change or to the decomposition step to redraw
the system scope.

Why This Process Works
To make this process work, we can leverage the idea of
exaptation,18 where an element of a system developed for
one purpose can have serendipitous effects for another
purpose. Building a wall in your house, for example,
allows spreading the load of the roof, but also provides
the basis for rooms, stops noise traveling between
rooms, and gives privacy. A wall also stops fire from

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 25

spreading, provides somewhere to hang paintings, and
a place to bang your head against when dealing with
Agile coaches. When we combine two separate mitiga-
tions, say the wall and the fact that we added a space
in the wall for insulation, we suddenly create the
conditions for dealing with something we did not
see coming — hiding electrical wires in the wall!

In working through the list of VUCA elements, tweak-
ing the design, and adding mitigations, with each
mitigation the system becomes antifragile to that
particular VUCA element. The first 10 are usually
tricky, but after 50 mitigations, a pattern emerges:
many of the VUCA elements in the list are resolved by
previous mitigations and the effect of mitigations can
be said to be nonlinear. By following this process, the
system trends toward antifragility, which is the only
possible good result in a complex environment that
we do not control. When this process repeats as part
of the FMEA step, the likelihood of future exaptation
increases. The VUCA analysis also builds confidence
among stakeholders that the system will be “robust,”
but, as architects, we know that we are doing much
more than that: we are providing the bedrock for
antifragility! We call this pattern nonlinear system
responsiveness.

Once a system is in place, the Antifragile Systems
Design process becomes iterative. Every failure is
considered feedback and the system should be strength-
ened by the team by rerunning the process. The best
example of this kind of system is Microsoft’s Azure or
Amazon’s AWS cloud platforms — outages are used to
strengthen the platform, with these two platforms
becoming some of the most resilient in the world.

While the idea of nonlinear system responsiveness
seems intuitive, it has as of yet no proven mathematical
basis and is not guaranteed to occur. However, by
aiming to induce it, we at least make the system less
fragile and provide the basis for a positive, nonlinear
response. The actual degree of exaptation can never
be predicted and will never be complete (all systems
will die someday), but this process actively encourages
exaptation as the premier focus of the design effort.

Concrete Actions for Business Leaders
Going forward, business leaders should consider the
following actions:

• Understand that complexity is the key cause of
software failure.

• Don’t waste time and take unnecessary risks by
trying to predict and control the unpredictable and
uncontrollable.

• See software execution as a business task with
varying results that requires constant monitoring
beyond status reports.

• Use VUCA analysis to understand the stability of
IT delivery. “What happens if?” questions tell you
all you need to know about a software project’s
quality. Bring the architect into the core business
team and make VUCA analysis a natural part of
your execution.

• Enable your architects to embrace antifragility as
the key to real agility.

• Understand that current industry trends around
Agile cannot deliver in the face of complexity. Use
the VUCA analysis process to have a voice and
influence in the direction of software projects and
ensure quality is there from the start.

• Demand traceability in architectural decision making.

• Ensure that technical decisions are grounded in a
shared understanding of the VUCA environment
and are FMEA-tested.

Concrete Actions for Architects
Going forward, architects should consider the following
actions:

• Practice VUCA analysis on the initiative’s business
model. A thorough grounding in business basics is
required, which can be a challenge for technically
focused solution architects. This is a necessary
evolution of the role of the architect and cannot
be avoided.

• Become an expert in software decomposition.

• Learn different methods for software decomposition,
the difference between service-oriented architecture
and microservices, the IDesign Method, and Flow
First Design. Learn how modern cloud applications
are composed and the major components involved.

• Learn to use modified FMEA to improve system
designs.

http://www.cutter.com

26 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Conclusion
The result of this work is a business with a better
understanding of its own fragility and a software
system capable of bending and meeting the needs
of the changing business environment. This kind of
process calls for a new type of architect and a new type
of architecture. It requires a solid understanding of
the business environment, the effects of change on the
business architecture, and a thorough understanding of
how software can be decomposed, rather than written.
This cross-set of skills can allow architecture to contrib-
ute by designing antifragile systems that enable agility
and answers the business question of how to become
resilient to the VUCA world.

There is no guaranteed result from this process, so the
Taylorist approach of measurement, prediction, and
comparison will not provide any benefit here. Over
time, this approach will succeed for some and fail for
others, and this lack of certainty may cause many to
resist the approach. The alternative — to do nothing
and wait for machine learning and complexity science
to solve problems — is not a viable option for today’s
enterprises.

Acknowledgments
Many thanks to Dr. Riccardo Bennett-Lovsey and
Tanya O’Reilly for their valuable comments and
suggestions on the drafts of this article.

Endnotes
1”Taylorism.” Encyclopaedia Britannica (https://
www.britannica.com/science/Taylorism).

2Stacey, Ralph D. Complexity and Organizational Reality:
Uncertainty and the Need to Rethink Management After the
Collapse of Investment Capitalism. 2nd edition. Routledge, 2010.

3Bennett, Nathan, and G. James Lemoine. “What VUCA Really
Means for You.” Harvard Business Review, January-February,
2014 (https://hbr.org/2014/01/what-vuca-really-means-for-you).

4”Software crisis.” Wikipedia (https://en.wikipedia.org/wiki/
Software_crisis).

5Porter, Chris. “An Agile Agenda: How CIOs Can Navigate
The Post-Agile Era.” 6point6, April 2017 (https://
cdn2.hubspot.net/hubfs/2915542/White%20Papers/
6point6-AnAgileAgenda-DXWP.2017.pdf).

6Mac Críosta, Gar. ”IASA State of Architect Engagement 2018.”
LinkedIn, 20 August 2018 (https://www.slideshare.net/
Garmaccriosta/iasa-state-of-architect-engagement-2018-prelim).

7Taleb, Nassim Nicholas. Antifragile: How to Live in a World
We Don't Understand. Allen Lane, 2012.

8Taleb, Nassim Nicholas. The Black Swan: The Impact of the Highly
Improbable. 2nd edition. Random House, 2010.

9De Florio, Vincenzo. “Antifragility = Elasticity + Resilience +
Machine Learning Models and Algorithms for Open System
Fidelity.” Procedia Computer Science, Vol. 32, 2014 (https://
www.sciencedirect.com/science/article/pii/S1877050914006991).

10Parnas, David L. “On the Criteria to be Used in Decomposing
Systems into Modules.” Communications of the ACM, Vol. 15,
No. 12, 1972 (https://dl.acm.org/citation.cfm?id=361623).

11Löwy, Juval. “Volatility-Based Decomposition.” IDesignIncTV,
22 November 2013 (https://www.youtube.com/watch?
v=VIC7QW62-Tw).

12Jones, Kennie H. “Engineering Antifragile Systems: A Change
in Design Philosophy.” Procedia Computer Science, Vol. 32,
2014 (https://www.sciencedirect.com/science/article/pii/
S1877050914007042).

13Hole, Kjell Jørgen. Anti-Fragile ICT Systems. Springer, 2016.

14”The Business Model Canvas.” Strategyzer, 2018 (https://
strategyzer.com/canvas/business-model-canvas).

15Parnas (see 10).

16Kazman, Rick, Mark H. Klein, and Paul C. Clements.
“ATAM: Method for Architecture Evaluation.” Technical
Report, Software Engineering Institute/Carnegie Mellon
University, August 2002 (https://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=5177).

17”FMEA — Failure Mode and Effect Analysis.” Six-Sigma.se,
2007 (http://www.six-sigma.se/FMEA.html).

18”Exaptations.” Understanding Evolution, 2018 (https://
evolution.berkeley.edu/evolibrary/article/exaptations_01).

Barry O’Reilly is the founder of Black Tulip Technology and creator
of Antifragile System Design. Previously, he held positions as Chief
Architect for Microsoft's Western Europe practice and IDesign, IOT
TAP Lead for Microsoft’s Western Europe practice, Worldwide Lead
for Microsoft’s Solution Architecture Community, and startup CTO.
He can be reached at barry@blacktulip.se.

Gar Mac Críosta is the founder of Business Model Adventures
and leads IASA Global’s Next Architecture Practice Group. He
has facilitated the development of change programs with C-level
executives, senior managers, technology leaders, and executives in
the areas of business model innovation, digital strategy, architecture,
and organizational effectiveness (Lean/Agile) across various indus-
tries. Mr. Mac Críosta is a Certified Architect Professional (IASA
CITAP), a Fellow of the Irish Computer Society, and a LEGO
Serious Play Practitioner (LSP). He can be reached at
gar@businessmodeladventures.com.

https://www.britannica.com/science/Taylorism
https://www.britannica.com/science/Taylorism
https://hbr.org/2014/01/what-vuca-really-means-for-you
https://en.wikipedia.org/wiki/Software_crisis
https://en.wikipedia.org/wiki/Software_crisis
https://cdn2.hubspot.net/hubfs/2915542/White%20Papers/6point6-AnAgileAgenda-DXWP.2017.pdf
https://cdn2.hubspot.net/hubfs/2915542/White%20Papers/6point6-AnAgileAgenda-DXWP.2017.pdf
https://cdn2.hubspot.net/hubfs/2915542/White%20Papers/6point6-AnAgileAgenda-DXWP.2017.pdf
https://www.slideshare.net/Garmaccriosta/iasa-state-of-architect-engagement-2018-prelim
https://www.slideshare.net/Garmaccriosta/iasa-state-of-architect-engagement-2018-prelim
https://www.sciencedirect.com/science/article/pii/S1877050914006991
https://www.sciencedirect.com/science/article/pii/S1877050914006991
https://dl.acm.org/citation.cfm?id=361623
https://www.youtube.com/watch?v=VIC7QW62-Tw
https://www.youtube.com/watch?v=VIC7QW62-Tw
https://www.sciencedirect.com/science/article/pii/S1877050914007042
https://www.sciencedirect.com/science/article/pii/S1877050914007042
https://strategyzer.com/canvas/business-model-canvas
https://strategyzer.com/canvas/business-model-canvas
https://dl.acm.org/citation.cfm?id=361623
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
http://www.six-sigma.se/FMEA.html
https://evolution.berkeley.edu/evolibrary/article/exaptations_01
https://evolution.berkeley.edu/evolibrary/article/exaptations_01

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 27

Nowadays, there is a huge popular demand for Agile
as a means to enable change and accelerate value.
Popularity, however, is something other than reality;
for most companies, the introduction of Agile requires
a significant mindset shift. This almost always meets
resistance from several directions in the organization. In
addition, Agile adoption is often accompanied by some
element of inefficiency and chaos if left unguided.

In contrast, enterprise architecture (EA) suffers from a
decreasing reputation in technology innovation. This
reputation can be the result of certain poor practices: in
most organizations we encounter, architecture mainly
focuses on its function as a design authority or regulat-
ing body. In this sense, it is often seen as an inhibitor
of change instead of an accelerator — the infamous
“architecture police.”

This article describes in more detail these and other
common pitfalls and bad practices and tries to identify
the pros and cons of both Agile and EA to find ways
that the strengths of one can help prevent the weak-
nesses of the other. We begin by highlighting some
bad practices or common mistakes when introducing
and operating Agile and EA. These bad practices tend
to appear and reappear and are difficult to root out; we
therefore use the term “anti-pattern,” as introduced by
Andrew Koening,1 to label the bad practices. Wikipedia
defines an anti-pattern as “a common response to a
recurring problem that is usually ineffective and risks
being highly counterproductive.”2 Next, using real-
life examples from client work, we show the advantages
available to organizations that successfully combine
Agile and EA.

Challenges in Enterprise Architecture
The past 30 years have seen the rise and maturation of
enterprise architecture. Beginning in 1987 with John A.
Zachman’s Information Systems Architecture model,3
the EA discipline has since seen many advocates,
research, and frameworks worldwide. Its foremost

promised value: improving the efficiency of IT assets
and the return on IT investments by designing,
improving, and managing the complex landscapes
of information systems.

Nevertheless, over the last 10 years, several published
studies and opinions indicate that the value of EA
may be overrated, and that EA might not deliver on
its promise or might even be considered “dead,” as
Australian columnist Jon McLeod has stated.4 Further
extensive research, such as from the Erasmus University
Rotterdam, also leads to a somber conclusion that two-
thirds of EA projects fail.5 Even though this is probably
“at par” with all other IT-related endeavors, it is an
aspect we need to improve.

As we take a closer look at the reasons why EA has
fallen short of expectations, it is valuable to highlight
two anti-patterns that we have encountered repeatedly
with clients.

EA Anti-Pattern 1: Process over Value
The first EA anti-pattern is apparent when enterprise
architects are more concerned with correct adherence
to the architectural process, often defined by their
own derivative of an EA framework (e.g., TOGAF).
Of course, this process was designed to ensure the
maximum effectiveness and value of architectural work,
but the focus should always be on the value part of the
equation. The tendency to simply follow the process,
designed in the past and often inherited by generations
of enterprise architects, is too strong.

In practice, the enterprise architects are then more
concerned with the correct “paper trail” of architectural
documents, design and solution architectures, and,
the most dangerous TOGAF template of all, the
“Architecture Requirements Specification.”6 This limits
the effectiveness and responsiveness of the EA team
and, most importantly, erodes the perceived business
value of EA in general.

Agile Architecture or Architectural Agility?
2 Fundamentally Different Paradigms Come Together

CONQUERING THE HILLS

by Jan-Willem Sieben, Jan-Paul Fillié, and Cristina Popescu

http://www.cutter.com

28 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

EA Anti-Pattern 2: The Disconnect of the
Ivory Tower Architects
The second anti-pattern occurs often in large organi-
zations where the EA function has been recognized as
important but resides as a staff organization — typically
part of the office of the CIO. Because of its “staff” label,
the enterprise architects’ impact and mandate are
limited; managers can avoid or ignore architects to a
great extent. Especially when the informal culture is
strong and decision making is, in effect, local and lies
with project managers, the enterprise architects become
increasingly detached from the day-to-day practice
of projects, programs, investment boards, and even
strategic discussions on the mid- and long-term future
of IT. They do not contribute visibly to successes and
failures and hence cannot be held accountable. When
this endures, the enterprise architects will be practically
disconnected from the (informal) IT powerhouse,
will be unable to deliver solid and trusted advice,
and will have no mandate over strategic IT discussions
(see sidebar “The Ruins of the Ivory Tower”).

Challenges in Introducing
Agile Practices
Agile is a mindset. The overall concept of Agile is about
continuously getting better at whatever it is we are
doing. The practices and ways of working related to an

Agile mindset have been well proven as more effective
and efficient than the traditional waterfall methods —
across IT and other business functions alike. Not only
do they help create more value, but they also cultivate
more candid and authentic workplaces. Looking for
benefits such as faster time to market, better-quality
products, and more engaged employees, organizations
of every size are now adopting and maturing an Agile
mindset.

However, as companies adopt Agile as their standard
for software development, they usually encounter
resistance from several directions — from other parts
of IT as well as from the business. This resistance is a
result of aversion to change, with existing structures
and leadership holding on to practices that worked in
the past. Indeed, it is quite challenging to expand the
first successful pilot projects to an enterprise-scale
Agile capability. We often see organizations struggling
with cultural change, insufficient business involvement,
and other aspects of scaling. In design thinking terms,
these challenges are called “hills.” The hills model
of Agile transformation (see Figure 17) shows the most
common challenges that organizations face when
applying Agile-at-scale; note: the order in which these
hills are encountered is different for each organization:

• Hill 1: Changing the organizational culture.
Changing the organizational mindset is key for a
successful Agile implementation on an enterprise
scale.

• Hill 2: Getting the business involved. The role of
product owners, but also the support of the overall
business, is the driving force behind Agile success.

• Hill 3: Coping with different speeds of change.
Not all parts of the business and not all teams
providing support for technology can work and
accelerate at the same pace.

• Hill 4: Extending Agile to the full lifecycle with
activities and automation. Operations can only
embrace Agile if nonfunctional requirements are
met. This can be done through end-to-end enable-
ment and automation.

• Hill 5: Scaling Agile. Collaborating on an enterprise
scale requires finding alignment between different
teams to cope with dependencies, to share best
practices, and to distribute the work effectively.

• Hill 6: Distributing Agile. Distribution allows for
access to talent and resources across the globe,

The Ruins of the Ivory Tower
A midsized European bank used to develop and maintain
all its client-facing applications from a single distribution
department. All architecture was created by a single group
of architects that was responsible for the enterprise vision
and technology direction. The bank’s adoption of Agile prac-
tices triggered several organizational changes, including a
new organizational structure for IT where different product
groups were formed to channel Agile development. While
the Agile teams in each product group were working from
their own backlog and created their own solution architec-
ture, the central enterprise architects were still developing
end-to-end architectures for the enterprise on the whole.
However, they did not have any mandate or influence on
budgets and no product group took notice of their output.
This situation continued for two years before the architec-
ture group was disbanded and the architects assigned to
different departments.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 29

potential cost reduction, and opportunities for
improved innovation.

To overcome these hills, some organizations use ways
that worked for them in the past, but in an Agile context
this results in counterproductive outcomes.8 As we saw
earlier with EA, these anti-patterns are hard to root out
and tend to reappear. Below, we highlight two of the
most common Agile anti-patterns.

Agile Anti-Pattern 1: Self-Driven Teams
Running Wild
For any organization starting with Agile, it makes sense
to begin with one or more pilot projects to demonstrate
the added value of working in this new way. Practices
like retrospectives capture lessons learned and ways to
improve. From this first initiative, the organization can
then start expanding. Several organizations have found
that dispersed initiatives do not necessarily bring added
value to the overall business. If each department has its
own Agile teams defining their own way of working
and making technology decisions without consulting
each other and without a common vision, then Agile
can soon become a very expensive exercise with only
local benefits for the business. After some time, this
can result in unwanted internal competition, multiple
standards, different ways of working, and an increas-
ingly complex technology landscape.

Agile Anti-Pattern 2: Lack of Enterprise
Alignment
This second Agile anti-pattern usually happens in larger
organizations where architectural considerations are
entirely left to the development teams themselves.
Without proper alignment through technical and
business architecture, making the best technical and

architectural decisions at the product level can result
in unintended negative consequences for the larger
organizational ecosystem. This becomes especially
important in enterprises with large application port-
folios, and even more important when a mix of legacy
and modern technology needs to be integrated. While
the design and execution of each product on its own
is very important, ignoring the context of the larger
ecosystem where these products will be used is highly
risky.9 Similarly, business processes will be difficult to
align and overall cost will increase.

This anti-pattern is a result of pushing decision making
down to small self-organizing teams without properly
enabling them with the knowledge and support they
need to get the job done and a clear business direction
to guide them. Architectural spikes and refactoring are
not enough because the team does not have sufficient
understanding of the dependencies within their organi-
zations.10 The consequences range from resources spent
on overlapping and redundant functionality to signifi-
cant amounts of rework needed to course-correct when
issues surface.

Learning from Each Other:
Bridging the Gap
The anti-patterns described above show a clear need for
better practical approaches to both EA and Agile. Based
on our client experience, a significant opportunity to
improve the business value of both lies in combining
their practices. Several frameworks could help in this
sense, and with the right vision in mind, companies can
increase their ROI for both EA and Agile. For example,
the use of frameworks like the Scaled Agile Framework
(SAFe), that are built around the idea of striking the
right balance between Agile and EA, is growing
significantly — although with various degrees of

Figure 1 — The hills of Agile transformation. (Source: Fillié and Boer.)

http://www.cutter.com

30 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

success, to be frank. The balance of “emerging design”
and “intentional architecture”11 is key here, as well as
the way the IT organization is structured in terms of
roles, responsibilities, and level of cooperation.

In practice, we have seen several ways in which
organizations combine EA with Agile thinking and
methods to break through the anti-patterns and
improve results. The next section highlights four
useful examples.

SAFe: Providing the Long-Term View to
Agile Teams
The first example is from a Netherlands central gov-
ernment client and comes down to the adoption of
Agile architectural approaches described in SAFe 4.5.12
This organization has adopted SAFe as the standard
process and methodology framework for its journey
toward more business agility and more efficient use
of IT assets. Up until 2017, the organization’s IT had
increasingly become a liability due to outages, aging
software and subsequent support issues, and rising
costs. The enterprise architects were dealing with both
anti-patterns discussed earlier: they were part of the
CIO office, with limited mandate, and were mostly
concerned with compliance — both in terms of archi-
tecture as well as of the business as a whole — around
issues such as security and public safety.

A huge modernization program was launched in 2017
with the general idea of using a greenfield approach
to modernize the corporate IT landscape. New appli-
cations were going to be deployed, cloud-native, onto
a new hybrid cloud: the innovation domain. The client’s
own adoption of SAFe 4.5 was to govern the develop-
ment and management of the growing portfolio of these
applications. Existing applications were analyzed and,
if deemed appropriate, migrated to this new hybrid
cloud in a separate environment that supported
multiple operating systems, middleware, and data-
bases: the migration domain. The remaining applications
that needed some sort of lifecycle extension due to
business requirements were managed using traditional
IT methods in the legacy domain. The rest (around
15%-20% of applications) would be terminated.

Over a period of five years, this ecosystem was then
going to be simplified and, in effect, the legacy and
migration domains would be phased out. Table 1

illustrates the domains over time, with their appropriate
solution development and governance framework.

The role for architects in these domains (and over time)
varies. In the innovation domain, the architects act in
three SAFe abstraction layers: on the large solution,
program, and team levels. They actively participate
in the role of solution architects and solution engi-
neers. They are responsible for the SAFe practices
of writing enabler epics and participating in value
stream coordination sessions to establish backlogs and
architectural runways.13 They also oversee the non-
functional requirements, the reuse of solution elements,
and the establishment of an architectural repository,
where solution elements and patterns are managed.
Thus, the architects focus on value instead of process.

However, the top level of SAFe, the portfolio level, is
not implemented. At this strategic level, the enterprise
architects still must deal with the long-term IT strategy
and their current political reality of negotiation, delays,
and alliance formation that typifies government policy
and decision making. They will keep relying on their
current EA approach, largely based on TOGAF. There
is a reason for this choice: it is proving quite useful,
since during transition (2017–2022), there is a bimodal
character of the IT landscape to be managed and the
choice has been made to be pragmatic and use the
existing way of working to allow the top level of the
organization to get used to the cultural aspects of
adopting Agile.

Growing their impact in this IT transition period, as
illustrated here, will help the enterprise architects add
value by identifying cross-team solutions, promoting
the reuse of those solutions and patterns (standard-
ization), building the architectural runways, and
advising on prioritizing the backlogs on various levels.
Moreover, the Agile way of working has facilitated
more direct involvement of the enterprise architects
with the teams. The architects are more engaged in
day-to-day discussions and, because of the increased
heartbeat of the IT organization, they have more
touchpoints where they can advise and guide IT
decisions. Their former stronghold was in effect
destroyed for the innovation domain: there was less
need for all the blueprints, project start architectures,
and other documents and designs up front that they
were concerned with before. This meant a shift in
thinking and a shift in pace that has proved beneficial
so far (the program is still in its turbulent midterm
phase).

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 31

Architecture: Tool to Prevent and Resolve
Technical Debt
Another example in combining Agile and EA comes
from a company in the consumer sector. This organiza-
tion had a group of enterprise architects that published
guidelines, contributed to the IT strategy, and partici-
pated in board reviews. When the company started its
first Agile/DevOps program for the rollout of a modern
e-commerce platform, the early architectural decisions
were left entirely with the technical leads in the devel-
opment teams. This worked well for the first year,
but as the program grew in scope and complexity, the
company decided to assign an architect directly to the
teams — one architect covering multiple teams — and
to create an architecture competence center specifically
focused on this program. Across the board, there was
more attention to architecture and a standardized,
reusable solution.

From a cultural perspective, this proved challenging
because the architect’s role was unclear. The teams
perceived it as a control function, since they now had
to justify in detail their decisions and participate in

biweekly architecture boards. While the cultural impact
still needed to be improved upon, the architect contrib-
uted to more communication within the teams, more
informed decisions, and a longer-term perspective,
asking questions from different angles and bringing
into the discussion aspects of which the teams were not
previously aware. By working more closely with the
development teams, the architect also benefited from
the opportunity to observe and get direct feedback on
how the architectural guidance and design impacted
the execution.

Moreover, with a wider view of the enterprise land-
scape and direction, the architect was able to identify
an architecture backlog and collaborate with the
product owner to add and prioritize the relevant items
from this architecture backlog into the product backlog.
A positive outcome has been better management of
technical debt. For example, the e-commerce platform
originally had been set up in a data center. While the
development team had recognized the need to move
to the cloud and identified this as technical debt, the
product owner did not give it significant consideration.
After the architect joined the team, his input helped the

Table 1 — Overview of changing EA and management frameworks over time.

http://www.cutter.com

32 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

product owner prioritize this technical debt item and
the platform was moved to the cloud.

Streamlining Agile-at-Scale
One of the more successful adopters of Agile, Spotify,
has created an organization where teams are allowed
to define their own backlogs, select their own priorities,
and, in some cases, develop overlapping or concurrent
functionalities. A Benelux bank used the Spotify
example as best practice in 2015. Using the Spotify
model, the bank adopted Scrum as a standard across
the organization and became an example for several
other non-IT companies on how to implement Agile.

The starting point was the department that developed
client-facing applications. The department’s personal
banking app, developed by the first Agile team, was
one of the first and is still one of the most successful
applications of its kind. Other departments soon
introduced Agile as well, and Agile became the
de facto standard across the organization.

There was a downside, though. The adoption of the
Spotify model left technology decisions, automation
tool choices, use of frameworks, and even sprint
durations to each individual team to decide. This
resulted in more than two years of effort to rationalize
the software catalog by tens of millions of euros and
to drive programs and internal promotion campaigns
to standardize on a common way of working and an
enterprise framework for Agile.

Using this organization as an example, a competing
European bank decided to do its Agile implementation
slightly different. To roll out Agile across the business
units, the bank defined an Agile program supported
by architects. Within this program, the bank brought
together expertise from different IT partners. Enterprise
architecture developed an Agile vision for the organi-
zation. The bank involved a consultancy agency to
provide Agile coaches who trained internal Agile
coaches to take over in the future.

One by one, entire development teams were trained in a
common and always improving way of working, based
on industry standards. Each team was supported by a
solution architect and could reuse all building blocks
from a growing architecture repository. The bank
regularly captured and analyzed retrospective results
and maturity measurements from a growing set of

Agile teams and incorporated these in standards and
supporting materials. Similarly, it selected and piloted
development and testing tools, and distributed those
to the Agile teams as well. All these measures greatly
increased the adoption rate of Agile.

Architecture as a Servant Leadership Function
Our last example comes from our experience at a US
technology company. This organization had a very
strong EA function that acted as a checker and gate-
keeper. When the company started adopting Agile
ways of working, this EA layer got completely dis-
banded, and architectural decisions were pushed
down to the small cross-functional teams to facilitate
bottom-up thinking. This proved challenging because
it was impossible for any team of eight to 10 people
to maintain a comprehensive view of this complex
organization. Teams started overlapping in certain
areas of responsibility and did not fully understand
where they fit in the wider ecosystem. The risks of
building functionality that already existed or impacting
strategic decisions that the teams were not aware of
was too high.

Consequently, this company started rebuilding an
architectural function that was very different than the
one they previously had. The architecture layer was
now primarily solution architects with an enterprise
view. T-shaped skills were a must for this new EA
group, allowing the architects to be nimble and work
closely with business executives, product owners, and
development teams alike. Instead of the old architecture
review boards, these architects with broad enterprise
knowledge and deep technical skills in different areas
were now organized informally in a guild.

While decisions continued to be taken by the lowest
level visibly impacted, the new architecture function
became a trusted advisor, ensuring the decision makers
had the knowledge to make informed choices. In this
case, the architects did not build an architectural
backlog as in our consumer sector example. Instead,
they worked very closely with the product owners and
the teams to help them prioritize, make decisions, and
choose the right funnels to allocate work. Thus, the
architects became servant leaders in this organization,
playing a central role in creating value by driving
integration, enabling the Agile teams, facilitating
commitment and consensus, and removing blocks.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 33

Conclusions and Call for Action
Organizations suffering from either or both architecture
anti-patterns can benefit from Agile adoption, thereby
introducing a faster pace and facilitating more direct
communication between the enterprise architects and
the Agile teams. The architects must be willing to dive
in at the team level, but, in that process, they will
become more relevant and valuable to the organization.

On the other hand, organizations “running wild”
with Agile and suffering from too much decentralized
technical decision making can benefit from architectural
thinking, such as business architecture and business
prioritization, standardized technical building blocks,
nonfunctional cross-team solutions, and backlog
prioritization and planning. With solution patterns,
standards, and best practices, architects can guide the
teams and build a longer-term perspective.

Of course, knowing all this, the goal is to be aware of
the value and possibilities that both disciplines have to
offer and to implement them simultaneously to prevent
pitfalls. It’s up to the CIO and the CIO staff to design
an IT operating model that combines Agile and EA,
considering the maturity level of both Agile and EA in
the organization.

Finally, to answer the question in our title: it’s neither
agile architecture nor architectural agility — it’s both!

Endnotes
1Koenig, Andrew. “Patterns and Anti-Patterns.” In The Patterns
Handbook: Techniques, Strategies, and Applications, edited by
Linda Rising. SIGS Books, 1998.

2”Anti-pattern.” Wikipedia (https://en.wikipedia.org/wiki/Anti-
pattern).

3Zachman, John A. “A Framework for Information
Systems Architecture.” IBM Systems Journal, Vol. 26,
No. 3, 1987 (https://pdfs.semanticscholar.org/bda6/
aa67d0aaf6ec07d0946244b1563bedc5f861.pdf).

4McLeod, Jon. “Enterprise Architecture Is Dead.” Medium,
27 June 2017 (https://medium.com/@JonMcLeodEA/enterprise-
architecture-is-dead-33dd0e63cbbf).

5Roeleven, Sven. “Why Two Thirds of Enterprise Architecture
Projects Fail.” White paper, Software AG, December 2010
(https://www.cio.com.au/whitepaper/370709/why-two-
thirds-of-enterprise-architecture-projects-fail/).

6“Part IV: Architecture Content — Architecture Deliverables.”
TOGAF 9.1, The Open Group, 1999-2011 (http://pubs.
opengroup.org/architecture/togaf9-doc/m/chap32.html).

7Fillié, Jan-Paul, and Hans Boer. “Climb Every Mountain:
Overcoming the Barriers to Enterprise Agility.” Cutter Business
Technology Journal, Vol. 30, No. 8, 2017 (https://www.cutter.com/
article/climb-every-mountain-overcoming-barriers-enterprise-
agility-497036).

8Little, Todd. “7 Sins of Scrum and Other Agile Anti-Patterns.”
AgileEurope 2016, Gdańsk, Poland, 30 May–2 June 2016 (https://
www.agilealliance.org/resources/sessions/7-sins-of-scrum-and-
other-agile-anti-patterns/).

9Hughson, Gene. “Accidental Architecture.” Form Follows
Function, 18 July 2014 (https://genehughson.wordpress.com/
2014/07/18/accidental-architecture/).

10Grundy, John. “Foreword: Architecture vs. Agile: Competition
or Co-Operation?” In Agile Software Architecture: Aligning Agile
Processes and Software Architectures, edited by Muhammad Ali
Babar, Alan W. Brown, and Ivan Mistrik. Elsevier, 2013.

11“Agile Architecture.” Scaled Agile Framework (SAFe)
(https://www.scaledagileframework.com/agile-architecture/).

12Scaled Agile Framework (https://www.scaledagileframework.com).

13“Architectural Runway.” Scaled Agile Framework (SAFe)
(https://www.scaledagileframework.com/architectural-
runway/).

Jan-Willem Sieben is an IT Strategy Consultant at IBM, with a focus
on enterprise architecture and the alignment between business and IT
strategy. He has been engaged as a consultant, program manager, and
enterprise architect in large transformations and innovation programs
at central government organizations and a variety of commercial
companies, mainly retail. Mr. Sieben has lectured on enterprise
architecture for Erasmus University Rotterdam, the Netherlands;
University of Amsterdam, the Netherlands; and for the Dutch
Association of Enterprise Architects. He can be reached at
JWSieben@nl.ibm.com.

Jan-Paul Fillié is a Technology Strategy Consultant, Agile Champion,
and TOGAF-Certified Architect at IBM. His focus is on analytics,
business intelligence, and data governance, including GDPR (General
Data Protection Regulation). Mr. Fillié has worked on IT transfor-
mation programs in the financial sector as a consultant, architect,
and project manager. As an IBM Agile Champion, he assists teams,
programs, and client organizations in Agile/DevOps transformation
and implementation. Currently, Mr. Fillié is involved in a global
implementation of an enterprise cloud platform as the data functional
lead. He can be reached at Jan-Paul.Fillie@nl.ibm.com.

Cristina Popescu is a Business Transformation Consultant at IBM,
based in Amsterdam, the Netherlands. She has experience in IT
consulting across transportation and logistics, consumer products,
industrial, and pharma sectors, as well as in Agile IT operations.
Ms. Popescu currently focuses on Agile enablement and business
strategy in the consumer products industry. She earned an MSc in
accountancy and control from the University of Amsterdam, the
Netherlands. She can be reached at cristina.popescu@ibm.com.

http://www.cutter.com
https://en.wikipedia.org/wiki/Anti-pattern
https://en.wikipedia.org/wiki/Anti-pattern
https://pdfs.semanticscholar.org/bda6/aa67d0aaf6ec07d0946244b1563bedc5f861.pdf
https://pdfs.semanticscholar.org/bda6/aa67d0aaf6ec07d0946244b1563bedc5f861.pdf
https://medium.com/@JonMcLeodEA/enterprise-architecture-is-dead-33dd0e63cbbf
https://medium.com/@JonMcLeodEA/enterprise-architecture-is-dead-33dd0e63cbbf
https://www.cio.com.au/whitepaper/370709/why-two-thirds-of-enterprise-architecture-projects-fail/
https://www.cio.com.au/whitepaper/370709/why-two-thirds-of-enterprise-architecture-projects-fail/
http://pubs.opengroup.org/architecture/togaf9-doc/m/chap32.html
http://pubs.opengroup.org/architecture/togaf9-doc/m/chap32.html
https://www.cutter.com/article/climb-every-mountain-overcoming-barriers-enterprise-agility-497036
https://www.cutter.com/article/climb-every-mountain-overcoming-barriers-enterprise-agility-497036
https://www.cutter.com/article/climb-every-mountain-overcoming-barriers-enterprise-agility-497036
https://www.agilealliance.org/resources/sessions/7-sins-of-scrum-and-other-agile-anti-patterns/
https://www.agilealliance.org/resources/sessions/7-sins-of-scrum-and-other-agile-anti-patterns/
https://www.agilealliance.org/resources/sessions/7-sins-of-scrum-and-other-agile-anti-patterns/
https://genehughson.wordpress.com/2014/07/18/accidental-architecture/
https://genehughson.wordpress.com/2014/07/18/accidental-architecture/
https://www.scaledagileframework.com/agile-architecture/
https://www.scaledagileframework.com
https://www.scaledagileframework.com/architectural-runway/
https://www.scaledagileframework.com/architectural-runway/

34 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Software architecture requires balance. Often, you can
focus too much on it, creating robust products that miss
customer needs or over-engineer solutions. Conversely,
especially in Agile contexts, you can under-engineer
things and your product efforts can succumb to relent-
less refactoring rework. So there’s a balance to strike in
architecture, no matter what methodology you use to
create your software. In Agile contexts, that balance is
often lost. And it usually leans to less over more.

During the 20 years I’ve been leading technology
organizations to build products, mostly via Agile, I’ve
learned some rules that have helped me — and my
teams — successfully strike the right balance. These
aren’t technically focused rules; they’re more generic,
so they apply to monolithic, layered, service-oriented,
and microservice architectures equally well. Let’s dive
into the rules and see if you find some value within.

Rule #1: Allow the Architecture
to Emerge
At some fundamental level, Agile thinking is experiment-
driven. That implies that we want to create prototypes
and mock-ups and hack sufficient code to allow us to
experiment with different approaches to building our
architectures.

We don’t want to design in one large lump — ever!
Instead, we want to create a layer or certain amount
of architecture (services, plumbing, back-end function-
ality, etc.) and then build something on top of it. That
something should be valuable to our client or customer,
but not cost too much to build. It should be something
easily demonstrated and validated. Something easily
changed.

This is what I mean by allowing the architecture to
emerge. Instead of being presumptuous and building
all the plumbing before we layer anything on top of it,
we build in slices or increments. There is a term the
Scaled Agile Framework (SAFe) community uses called
“architectural runway” (sometimes I simply call it
“architectural look-ahead”). It is measured by how far
your teams are looking ahead to consider architectural

implications before building on top of it (or integrating
it). Traditional waterfall teams look ahead over the
entire project. Agile teams look ahead a few sprints
to no more than a release or two.

You should use caution here around the balance
between architectural look-ahead and rework. On
one hand, if you don’t do any look-ahead, then you’ll
constantly be reworking everything, which will slow
you down (or stop you entirely). On the other hand, if
you look ahead completely, without experimenting and
implementing your ideas, then it will take you a long
time to integrate and make it work — again, slowing
down or even stopping your progress.

So there is a trick to balancing between looking ahead
over the entire project and looking ahead a few sprints
(usually relative to the technical and business context
you’re in). If you’re effectively focusing on the journey,
then you’ll find the right look-ahead balance for your
context and your teams.

Rule #2: Treat Your Architecture
Like a Product
I’ve always appreciated it when an organization
develops a backlog of architecture stories that it wishes
to integrate into its products. The stories are usually
different from functional or feature-driven work, in that
they might be below the surface or infrastructurally
based. But they are important to articulate so they
gain visibility. By putting them in a backlog, you start
to do things that product owners typically do:

• You groom or refine these stories with the
development team(s).

• You define acceptance criteria that capture the
essence of what “done” is for each story.

• You discuss the level of effort (points) associated
with each story, including testing effort.

• You slice the stories (decomposing them) along
execution boundaries.

FINDING BALANCE

9 Rules of Agile Architecture
by Bob Galen

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 35

• You discuss the strategy of how individual stories
are implemented to meet an overarching release or
architectural goal.

• And, you have value-based discussions, talking about
the business value of each story, including the why
behind each and the customer impact.

An important aspect is the experimentation or explora-
tion part. For example, if you have a feature idea that
you think a user would value, you might define a
minimum viable product (MVP) for it and whip up a
quick/cheap prototype before making a final implemen-
tation decision. If the feedback isn’t positive, then you’d
quickly pivot in another direction.

The point is that I want the same level of thoughtful
planning to occur for architecture as for features. In this
way, as with features, everyone becomes a stakeholder
in the architecture. That means stakeholders understand
the motivation, agree with the business case/investment,
and understand the customer impact/value of the shared
architecture.

Rule #3: A Picture Is Worth …
It may be my narrow experience, but most Agile teams
I encounter develop few to no diagrams or high-level
views of the architecture they’re implementing. Instead,
they allude to “being Agile,” where architectural docu-
mentation is unnecessary, which implies that you
simply collaborate around the code and magic
(emergent architecture) occurs.

One factor influencing this approach is a fundamental
misunderstanding of this Agile Manifesto point: work-
ing software over comprehensive documentation.
Another factor is that these teams have historically
written large-scale documents that have not served
them well. Thus, they’re scarred by lengthy, but mostly
wasted, efforts.

Now, I am an old-school developer who doesn’t feel
that documentation is inherently bad; particularly
high-level, big-picture elements that show teams
where they’re going from an architectural perspective.
A technical roadmap, if you will. Aspects of this
architectural roadmap include mapping out a big
picture of your business and technical architectural
intentions on a whiteboard (virtual, if you can). It is
important to align the business view (value streams,
strategic roadmaps, high-level personas, story maps,
release plans, etc.) with the architectural view (designs,

interactions, flows, critical constraints, technical
layering, etc.) so that you and your teams have a
more balanced view of the goals. This might sound
like a lot, but keep in mind that it’s a high-level view.

Another aspect of the roadmap is keeping design
snippets on a wiki or within your user story definitions.
With whatever you document, keep it simple, up to
date, and relevant to your teams. The final arbiters of
the completeness of your documentation (i.e., whether
you’ve defined enough) are the teams themselves.

Finally, the key to architecture is the same as with the
user story: communicating, collaborating, and interact-
ing around the documentation. The conversations are
the most important thing. And that means continuous
conversations between your business stakeholders,
architects, and your teams as well.

Rule #4: Everyone Is an Architect and
Everyone Owns the Architecture
There must be a fundamental shift when moving
to developing architecture in Agile contexts: from a
singular view, where there is an architect that delivers
it to the teams for execution, to one where, although
there might be experienced architects, everyone on
the team is responsible for and thinking about sound
architecture investments. Instead of it being an individ-
ual responsibility, it’s an organizational or cross-team
responsibility. I often call it the “No Glass House” rule,
where we avoid a functional silo (team, group, individ-
ual, etc.) solely looking after architecture. Instead,
I want everyone thinking of solid design, testability,
performance, security, user experience (UX) design,
simplicity, and maintainability.

In addition to the technical aspects, I also want everyone
to be thinking of the business rationale behind the
architecture. Why are we doing it? What problems are
we trying to solve? What’s the business case and value
proposition? And how does it fit into the flow of the
business from a value stream perspective? Some will
certainly have more experience in these areas than
others, but everyone can put on the hat of the organi-
zation, business, and architecture, and consider the
implications throughout his or her work.

Another part of this is holding the team (each other)
accountable for building wonderfully architected
products. The goal should be products that will stand
the test of time and wow the users with their intuitive-
ness, robustness, and reliability.

http://www.cutter.com

36 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

At iContact, where I was once VP of engineering, we
would canvas our customers after moving to Agile to
determine what stood out in their minds. Since we were
doing quarterly releases (i.e., release train model) and
had more than tripled our feature productivity, you
would have thought that our speed and increased
features would have been top of their minds. It was, but
the number one thing that stood out to them was the
overall quality improvement of our products and how
we were better connecting to their UX needs.

In other words, architecture (quality, robustness,
simplicity, etc.) mattered to our customers the most.
Those improvements were what grabbed their attention
as we continued to evolve and deploy our products.

Rule #5: Keep It Simple and
Connect to the Business
This rule is quite near and dear to my heart because
I really like complexity. I like engineering complex
solutions to simple business and customer problems.
And it’s also quite comfortable for me to fall into that
over-engineering, gold-plating, doing-more-than-is-
required mindset.

Why? Because I can. Because I’m an engineer, and the
more complex and elegant the solution, the better I feel
about my capabilities. It makes me smile.

I think a lot of engineers are like me, but it’s the wrong
approach; even though it’s often easier than thinking
deeply about the problem or challenge and then find-
ing the simplest possible thing that could satisfy your
stakeholders.

One way to combat this tendency is to focus on MVP-
like language. Words like ”minimum” and “viable”
can more narrowly focus our efforts. Another important
activity is sitting down with your business partners
to understand the why behind their requests. People
often describe this as a challenge because, as business
stakeholders, they are too busy to explain their needs.
I’d argue that if they’re not too busy to spend corporate
funds on solutions, then they shouldn’t be too busy to
ensure that those solutions meet their needs. Whether
they’re internal customers, external customers, or both,
busyness is often more excuse than it is reality.

If appropriate, including UX activity is an important
part of the discovery and design process. Far too often,
groups do either too little or too much UX. Either they
skip it and dive into solutioning far too soon, or they go

into an analysis paralysis state and do UX for months
without truly engaging the teams and customers
directly.

An important part of business connection is ensuring
that stakeholders get into the demos and verify/sign off
on the solutions the teams are providing. This notion
of demonstration, feedback, discovery, and ultimate
acceptance is crucial for closing the delivery loop. It is
also vital that stakeholders stick to their word when it
comes to those signoffs.

Rule #6: Build in Testability
and Resilience
As I defined my rules, I wanted to recognize the quality
and testing folks who would be reading them. One of
the keys to a solid architecture is considering how your
organization will test it. This is true not only from an
end-to-end perspective, but also when considering
areas like usability, performance, security, reliability,
and resilience. You must make these investments in
quality and testing transparent to your stakeholders
and help them realize their value proposition.

A famous example is Netflix’s Chaos Monkey appli-
cation, which would randomly remove servers and
services in its production and testing environments. It
simulated various forms of failures, which encouraged
teams to improve the resilience and test for it in product
development efforts.

In Agile contexts, the focus on test-driven development,
behavior-driven development, and acceptance test-
driven development also encourages testing, which can
be extended to architectural elements. In fact, architec-
ture stories — yes, there can be such things in a backlog
— can and should have testability requirements called
out in their acceptance criteria.

I consistently try to remind the Agile teams I coach
to consider quality and testing in their user story
estimates and not to focus solely on implementing
the functionality. There’s so much more involved in
creating robust, testable, and resilient applications. It
takes design thinking and, often, support from the
underlying architecture.

Don’t be afraid to invest in testing automation or infra-
structure that eases the burden of and lessens the time
for testing. Clearly, Netflix saw the development of
Chaos Monkey and similar investments as enabling it

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 37

to move more quickly, while also maintaining product
resiliency.

Rule #7: Admit That You Don’t Know
One of the first things I’d like everyone to acknowledge
in software architecture is that we most often haven’t
done before what we’re being asked to do now. That is:

• We’re clueless about what the design approach
should look like.

• We’re clueless about the tools/techniques we’ll use.

• We’re clueless about the environmental
considerations.

• We’re clueless about the UX implications and
what the customer truly needs.

• We’re clueless about the performance implications.

• We’re clueless about how to test our solutions.

• And we’re clueless about how long it will take
to complete our work.

I think the most important acknowledgement or
statement that we should all agree to early on in any
architectural discussion is that we don’t know. Out of
this level of openness and honesty comes the need for
prototyping, discovery, and learning. It’s hard to do
that if we don’t look each other in the eyes and say,
“We don’t know, let’s find out.”

Once we do that, the focus needs to turn to learning,
which is something we can all do. Here are a few
techniques for approaching this learning:

1. Working code is the great leveler. So, as much as
possible, pull together prototype code to learn. The
prototypes should be cheap and fast. They’re not
production code; instead, they’re learning code or
experimentation code. This includes paper proto-
types and similar tools from a UX perspective.

2. User story spikes are the best way to capture
these activities. Write a spike for each and every
major learning activity. Take the time to clarify the
acceptance criteria for each. In other words, what
key things will we deliver or complete to more fully
understand this aspect of the architecture?

3. As mentioned earlier, SAFe has the notion of
architectural runway or architectural look-ahead.

So, not only do we need to capture spikes and write
code, we need to forecast enough in advance that
we’re “ahead” of our product development needs.

Consider working code the ultimate clarifying view of
your architectural understanding. Aspire to code over
study, documentation, and talking about the architec-
ture. Instead, build prototypes as soon as possible,
get to working code, and ultimately improve your
knowing.

Rule #8: Demo Your Architecture
An extension of the working code points discussed
above is demoing your architecture. It is incredible how
much pushback I receive on this idea in my coaching. It
seems Agile teams are comfortable demoing end-user
functionality, but incredibly uncomfortable when you
ask them to demo architectural elements. You’ll usually
hear excuses about there being no UI, or it takes too
much extra effort to expose the architecture, or it would
be too hard to measure attributes of the architecture
in clear business terms. You may also hear that most
stakeholders (executives, customers, managers/leaders,
etc.) don’t really care about their architectural, infra-
structural, automation, and other “plumbing-oriented”
types of work. They only care about customer-facing
features (MVPs) and things they can see, understand,
and charge for.

Stakeholders view demonstrations of this sort to be too
technical and hard to understand, self-serving exercises
that only benefit the teams, or boring and a waste of
time. But I like to confront this perception and try to
influence stakeholders to endeavor to understand and
engage with more technical demonstrations.

Why? Because they should care. They are certainly
paying for the architecture and they should try and
understand the complexity and infrastructural demands
within their products. They do not have to understand
the architecture the way the teams do, but from the
business, value and impact, competitiveness, and
investment perspectives, the team’s business partners
do need to care. Demoing architecture is a wonderful
way to provide stakeholders guidance toward this
improved understanding. Over time, they’ll start to
get a feeling for:

• Architectural investment percentages

• Costs associated with their demands/decisions

http://www.cutter.com

38 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

• Tradeoff decisions

• Risks associated with architecture (implementation
and delaying updates)

• The drivers behind refactoring

• The investment “mix” of features versus architecture
inherent to each of their products

All these elements lead to improved understanding,
empathy, and respect for all aspects of their products.
I’ve found that stakeholders who embrace their archi-
tectural investments are far better decision makers.

Rule #9: Chaos Is Constant,
So Continuously Refactor
Let me use an analogy to begin to explain this rule:
I am a home owner in the US state of North Carolina.
Our climate causes specific types of degradation in my
home, and there is simple aging to contend with as
well. As a result, I find myself investing annually in the
upkeep of my home and its systems. I view it as a “pay
me now” versus “pay me later” decision, and I like to
keep my home nice, so I lean toward pay me now.

Some of my neighbors have the reverse philosophy.
An example can be found in house painting. I’ve been
painting on a regular schedule, every five years. Some
of my neighbors paint only when things are obviously
falling apart, as evidenced by exposed wood, wood rot,
and severely peeling paint.

My strategy is more of a preventive approach and the
costs are frequent but low. My neighbors, on the other
hand, have less frequent payments when it comes to the
exterior of their homes, but when they do pay, it’s more
costly. For example, they might need to replace all their
siding because they haven’t painted it in 10-plus years.

I tend to update to new technologies as well. For
example, a few years ago, I updated my HVAC sys-
tems to much more efficient units. Not only are they
more reliable, but I’m saving a lot of money with their
increased efficiency.

Switching back to software and architecture, I always
recommend the same strategies for software develop-
ment products and applications. We must acknowledge

that software ages and our approaches and tools evolve,
so we want to continuously invest in the care and
feeding of our products. That investment needs to be
part of our business case and factored into the ROI.

This isn’t just at a feature level. I would argue that
it’s even more important to keep the plumbing
(infrastructure, tooling, automation, architecture,
design, integrity, performance, maintenance, etc.) up
to date as well. Your stakeholders may not always see
this investment, but they will experience whether you
are, or are not, making it.

Finally, I am a proponent of asking my teams about
technology evolution and trends and determining
how we want to invest along evolutionary curves.
This includes new technology, new tools, and new
approaches. It’s important to listen to your team and
trust your team in these recommendations. They’ll
know far better than you what the relevant trends are
and the value that updating can bring to your business
and customers.

To return to my analogy, don’t wait until your house
crumbles and you must rebuild from the ground up.

Wrapping Up
That’s it. Consider these the nine Rings of Man1 from
The Lord of the Rings. Now if I were asked to share the
one ring to rule them all, it would be balance: getting
to the point where you define, refine, and implement
just-enough and just-in-time architecture. May you
eventually find that one ring to rule them all.

Endnote
1”Rings of Power.” Wikipedia (https://en.wikipedia.org/wiki/
Rings_of_Power).

Bob Galen is an Agile methodologist, practitioner, and coach based in
Cary, North Carolina. He helps guide companies and teams in their
pragmatic adoption and organizational shift toward Scrum and other
Agile methods. Mr. Galen is currently Director of Agile Practices at
Zenergy Technologies and President of RGCG, LLC. He regularly
speaks at international conferences and professional groups on a broad
range of topics related to Agile software development. Mr. Galen is
the author of Agile Reflections, Scrum Product Ownership, and
Three Pillars of Agile Quality and Testing. He can be reached at
bob@rgalen.com.

https://en.wikipedia.org/wiki/Rings_of_Power
https://en.wikipedia.org/wiki/Rings_of_Power

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 39

Remember the “I see dead people” meme from the
movie The Sixth Sense? As an architect practitioner, I
see dependencies everywhere — sometimes they are
empowering, but more often, they are implicit and
constraining. Now, I don’t mean dependencies visible
on the surface (i.e., visible in workflows, impact maps,
package dependencies, and intricate UML diagrams).
Rather, I am referring to dependencies found in the
underlying (and subtle) living fabric of the business
technology ecosystem (i.e., the implicit architecture,
the network of interactions and delivery constraints,
and the pulse of the runtime infrastructure); in short,
the emergent dependencies.

Over the years, I have found dependency-oriented
thinking a powerful tool and dependency awareness an
easy common denominator among the different players
in the architecture lifecycle. So why can’t we build a
dependency-based model that is flexible, deep, and
broad, and, at the same time, enable architects to
answer their most common questions? Thus, I propose
a dependency-based, lightweight, pragmatic approach
to build architectural insight into the Agile delivery
process and continuously reflect the changes inherent
in the Agile process.

Despite the multitude of architectural frameworks and
methods, experiencing a smoothly working, pragmatic
synergy between delivery teams and the architecture
discipline is rare. Root-cause analysis brings our focus
to semantic gaps (i.e., gaps arising from the continuous
erosion of contextual understanding in the development
process). While common architecture practices address
these via process and control, often such practices
produce yet another layer of confusion in the organi-
zation. Under the increasing pressure of accelerating
marketplaces and rapidly evolving technologies,
internal velocity and responsivity become significant
differentiating factors. Indeed, responsive, flexible
software ecosystems enable high-speed businesses.

This article describes one way of establishing a non-
blocking architecture governance practice for Agile
development teams. The approach consists of a few
independent ideas that lead to organically integrating

architecture into the process, the delivery pipeline, and
team routines. This article also provides insights into
common difficulties in Agile projects — the difficulties
of capturing the right level of abstraction, of keeping
a pragmatic balance between documentation and the
rapidly changing deliverables, and, lastly, of integrating
architectural practice into everyday teamwork. In Agile
principles, communication and contextual understand-
ing are key, but when it comes to architecture, being
aware of tradeoffs and consequences has at least the
same level of importance. The emergent approach
proposed in this article is easy to introduce (even
partially), easy to follow, and easy to adapt to varying
team cultures.

A Glimpse into the Agile Architect’s Day
Given an established enterprise with its decades-old
IT department, processes, and practices versus the
accelerating marketplace — when missing out on
modern IT practices and being too rigid to react to
market trends, with even innovation on half-yearly
cycles — then1 we see the hiring of a talented Agile
architect to bridge the gap and lead the recently
established digital pillar of the company.2

Let’s explore the common challenges The Architect
faces via the story of a day.

At the start of the day, The Architect’s mind is still full
of the escalation emails that arrived last night. Most of
them asked about viability and for accurate estimates of
important future roadmap items. The rest ranged from
a gentle reminder of the yearly roadmap planning cycle
through blocker escalations to the postmortem details
of a new technology that failed in production. The
Architect is determined to prioritize the most pressing
blockers first to enable as many teams as possible. A
few quick decisions are made — hesitantly — under
time pressure and not having enough information. They
are guided mostly by gut feeling and instinct. A few
responses to escalation emails get sent, asking for more
business context in hopes of avoiding the invisible
landmines of corporate politics.

THE LIVING FABRIC

A Light-Touch Architecture Governance Approach
by Miklós Jánoska

http://www.cutter.com

40 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Feeling more comfortable, The Architect joins in on
early team discussions only to learn that there is no
mutual understanding between the implementers
and consumers of an API and that another team has no
idea of the revenue impact of the long-awaited feature
it committed to deliver. Without the right governance,
this feels like herding cats, but an over-regulated
process would slowly strangle the teams’ progress. So
The Architect quickly advises the teams to talk, share
knowledge, and remember to document it, trying to
keep in mind that the architecture metamodel — the
tool mandated by the corporate enterprise architecture
group — needs to be updated, too. In The Architect’s
rush to the governance board meeting, reports based on
“accurate” figures are quickly put together and some
draft slides are produced from memory, not having the
real-time insight or tools to produce them on the fly.

At the architecture governance board meeting, there
are fewer people than usual, and The Architect quickly
scans those present to sense the changes in power
around the table. The Architect knows that important
decisions need to be made. But these decisions often
reflect the typical uninformed conversation where
everything has to be “just right” immediately and are
often based on “the single objective truth” that people
so blindly believe in. The Architect then quickly sinks
into familiar thoughts: how the digital department of
the company should design “good enough” flexible
solutions instead of producing report after report; and
how quality, context, and meaning can be so detached
from the measures demanded. Becoming somewhat
frustrated, The Architect focuses on the meeting again
to quickly note a few important changes in direction,
the roadblocks arising from corporate policy changes,
and the awkward technology solution that a previously
unheard of unit has just forced into production.

It’s now time for coffee with the team leads and
fellow architects and to convey the most important
relevant changes. This is also the appropriate time to
gently shape the practice and understanding of the

architecture. After a quick argument with the most
knowledgeable old-timer — a strong analytical thinker
who questions anything not accurate to the most
minute detail and who has been reassigned from
a monolith company to spread domain knowledge —
it becomes apparent that a balance between design and
engineering thinking is still far away. More hands-on
architecture practice is needed, and a pragmatic
evaluation of the next emerging technology stack
might be a good candidate.

The Architect’s closing thought of the day is the need
to catch up with the teams as early as possible the next
day, as there is no time for activities such as capturing,
rethinking, or redesigning the architecture or solutions.
There is only enough time to quickly align the delivery
teams in-flight to avoid wasted effort.3

Architects spend their days trying to synthesize the
old and the new; the static and the dynamic; organic
solutions and problems; and, ultimately, dealing with
people, process, and architecture equally. Without the
necessary contextual insight, usually from more than
one context, striking the right balance is extremely
difficult, leading to fragile tradeoffs.

It’s Not the Trees
“Architecture,” for the purposes of this article, is
the interconnected structure of relevant people, roles,
and visions within a certain context. Defined in this
generic way, architecture always exists and is implicitly
defined. Consequently, architecture expands through
space and time (space being the context for the usual
structural representations; time being the context
for architecture dynamics). As such, our definition
of architecture is far from static diagrams and docu-
mentation; rather, it is the living fabric in the business
technology ecosystem.

When approaching an architecture representation, a
key point is its decomposition into elements, usually
leading to a containment-based representation struc-
ture. We might then navigate the architecture along the
“containing” relations,4 or using predefined viewpoints.
“Navigating along the containing relations” is the
ability and constraint that navigation is only possible
along hierarchies in the usual drill-down order. By
principle, this then constrains what can be seen and
in what context.

Architects spend their days trying to synthe-
size the old and the new; the static and the
dynamic; organic solutions and problems;
and, ultimately, dealing with people, process,
and architecture equally.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 41

My proposal is free navigation across layers, taxono-
mies, and granularity levels. Viewpoints by their very
nature define a single context; thus, views might miss
an indirect relationship completely. Viewing an organic
system only via tree-based representations is akin to the
“blind men and the elephant”5 parable. The multitude
of different aspects without a holistic view can be
misleading.

To fill the gap, the proposed model should represent
transitive relationships and their projections to groups
of elements. The model should be navigable in a
spherical manner, not limiting the insight to specific
taxonomies. Any subset of the architecture should be
decoupled from the way it is projected onto views.
Forcing the emerging relationships into predefined
taxonomies should be avoided.6

To reach the ideal balance in governing architecture,
the challenge is to harmonize the intentional and the
emergent architectures. The former is driven top-down,
along tree structures, while the latter relies on loosely
structured, bottom-up information flows. Thus, to
incorporate both, the core representation model needs
to expand accordingly. Moreover, to represent architec-
turally relevant information, the model should center
around structural properties and patterns tagged
with additional information about relationships and
elements. Cohesion and coupling, the most common
structural properties describing component autonomy,
need to be explicit. Information about specific elements
is naturally reflected in the context defined by their
relationships to their neighborhood. In summary,
the simplest model is an unconstrained dependency
network tagged with metadata on its elements and
relationships — the Architecture Knowledge Graph.

Time Is as Important as Space
Similar to the semantics of user stories, which always
express change, it is beneficial to describe architecture
as a series of changes — structural changes through
time. The smaller the gap between the architecture
representation of the architecture and its realization,
both in expressiveness and timing, the more relevant
the architectural changes.

Focusing on Agile organizations, we can consider
what might be the natural expression of architectural
change through time. With Agile, changes are described
through backlog items; therefore, it is a natural exten-
sion to define architectural deliverables in terms of

epics, stories, and tasks.7 There are two specific concerns
here: (1) the architecture items should use a specific
language to support translation to the Architecture
Knowledge Graph; and (2) architecture deliverables
should precede their respective backlog counterparts.

The idea is to capture architecture epics, stories, and
tasks one abstraction level earlier than backlog counter-
parts. Architecture epics are defined during roadmap
planning. Architecture stories align with the iteration
preplanning timeline (e.g., some iterations ahead), and
architecture tasks are those activities performed on the
smallest iteration scale. These descriptions feed into
the Architecture Knowledge Graph, expressing either
architecture definition or change reflected in the living
fabric. While there are many architecture and project
management tools based on the same idea, their base
model is usually relational.8

Ideally, the architecture descriptions follow a simple
unified language that can serve as a baseline to feed the
architecture dependency model. Of all the architecture
description languages, perhaps the simplest one would
be a flavor of Gherkin.9 Custom statements can support
the selection of a subgraph (given), the intended future
context of a subgraph (when), and the expected architec-
ture transformation (then) on the graph.10

DevOps to the Rescue!
While the higher abstraction-level definitions can now
be fed into it, the Architecture Knowledge Graph is
still missing the bottom-up, emergent information
about dependencies. This information becomes context-
ual in the network of the already-defined, higher-level
context from the backlog and architecture design.
Looking at the maturity of DevOps practices, plenty
of data sources are available. We can easily imagine
services, for example, running in a cloud platform
surrounded by continuous monitoring, log analysis,
and operational insight tools. A few examples include:

• Hypervisor and resource scheduler insights

• Cloud infrastructure metrics via the administrative
APIs

• Networking insights available from common
monitoring tools

• Application event logs and machine logs on
individual instances

http://www.cutter.com

42 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

On top of the operational insight data, a continuous
integration (CI) pipeline provides invaluable
information about the static structure of the solutions
as well as their behavior under test. This information
includes:

• Existing components and their external/internal
dependencies

• Existing architecture structure

• Environment configurations

• Static code analysis results

• External assets

We might find it challenging to feed this vast amount
of information into the graph. Keeping the original
purpose in mind, the continuous stream of low-level
metrics is secondary to metric aggregates revealing
potential dependencies. That said, nothing prevents the
integration of an operational insight tool with the graph
while the actual log aggregation and stream analytics
workloads are managed separately.

With the intentional and emergent information in place,
let’s see what questions we can answer with insights
provided by the Architecture Knowledge Graph.

Actionable Insight into the Living Fabric
This approach invents no new concepts; it is a natural
consequence of considering architecture within its
broader context, from the running infrastructure to the
roadmap vision. Compared to the broadly available
architecture tools, let’s review a few differentiators in
the Architecture Knowledge Graph:

• Its definition emerged from the jobs to be done,
which architecture should fulfill.

• Its design principles follow those of viable,
organically evolving systems.

• It doesn’t represent architecture as a set of static
structures but rather as a continuously evolving
system.

• It supports on-demand contextual queries (using a
graph query language) without restricting predefined
views or aggregates.

• It avoids using the concept of time and instead relies
on ordering.

• It explicitly differentiates global- and local-scope
computations; it does not try to use a single model
for all.

In practice, architecture is better observed as it evolves,
as opposed to freezing it and being left with a static
structure. Dependencies are not limited to the explicit
package or solution dependencies. Dependencies can be
enablers and constraints at the same time. For instance,
resource availability and networking are constraining
dependencies but are also enablers of computation and
communication in a running system.

Assuming the dependencies imposed by the IT strategy
and the relevant subset of the existing architecture are
captured, we can use the repository during roadmap
creation to understand all possible directions and
which ones are of high impact. Decisions can be easily
communicated to the teams via the epics and stories
and by interacting with the repository, pulling the
relevant aspects. As the team progresses, unintentional
dependencies emerge and the ones to be satisfied are
checked. When coming to a decision point, the what-if
scenarios can be checked based on the existing fabric.
Finally, timely reports can be extracted on demand to
demonstrate alignment and progress in the delivery of
the architecture targets. People in different roles can
easily and continuously extract their respective insights.
With the ability to identify structural and temporal
patterns, best practices can be fine-tuned.

Lightweight Architecture Repository
To summarize, in order to support the high-level
scenarios, the core software solution needs to:

• Keep track of architecture definitions (i.e., epics,
stories, tasks)

Assuming the dependencies imposed by
the IT strategy and the relevant subset of
the existing architecture are captured, we can
use the repository during roadmap creation to
understand all possible directions and which
ones are of high impact.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 43

• Keep track of dependencies

• Make definitions and their dependencies searchable

• Make it possible to define cross-layer aggregate views

Thinking about the simplest possible solution, a graph
database comes to mind. The global metadata and
element search is better served by a specific, freestyle
search component leading to the following components
(see Figure 1):

• Dependency database — graph database (i.e., graph
storage)

• Metadata database — search engine (i.e., searchable
metadata storage)

• Dependency ingestion API — multiple APIs,
layered by throughput and granularity (i.e.,
CLI API — verification, feed data, etc.)

• Definition API — DSL11 and import logic (i.e.,
CLI API — monitoring streaming data, CLI
administrator, etc.)

• Visualization — integration with any diagramming
tool already at hand12 (i.e., Web API)

Some Implementation Traps
Global aggregates are notoriously difficult to compute
on graphs; they should instead be precomputed in a
reactive way. As the time dimension translates to
ordering relationships in the repository, capturing
staged architecture transitions requires extra attention
in order to preserve the previous, current, and forth-
coming versions of the changing elements. The DSL,
used to describe the dependency graph changes, can
be easily over-engineered while trying to explicitly
represent all low-level detail. Querying graphs might
lead to a longer learning curve.

Organizational Adoption
Teams can continuously work on the repository and use
it to capture insights; at the same time, the solution is
well suited to an internal open source approach. In this
way, the architecture team can effectively shape the
solution to the given technology stack and existing
practices. Thus, the graph organically grows with
every piece of discovery and analysis and with every
architecture backlog item.

Figure 1 — Schematic architecture.

http://www.cutter.com

44 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Emergent Maturity
Without being overly prescriptive about evolving
dependency awareness and architecture maturity, there
are clear markers of adoption. With increasing context-
ual insight, teams are empowered to understand the
architecture tradeoffs and clearly see the architecture
constraints. Controlling the fabric of cross-contextual
dependencies, architects can make good-enough, just-
in-time decisions. Greater transparency results in higher
efficiency in harmonizing the emergent and intentional
architectures. The following four aspects help in
understanding emergent maturity:

1. Introspection — describes how broadly depend-
ency data points are captured and how easy it is
to capture them

2. Emergent architecture — describes how much
emergent information can be accommodated

3. Dependency awareness and usage — describes the
extent of widespread dependency awareness and
how much the repository information covers the
overall software development lifecycle

4. Lightweight governance — describes how the
practice of just-enough intervention, driven by
contextual insight, is appreciated

We will now break down each aspect in more detail.

Introspection
• Ad hoc introspection is typically triggered by bugs/

issues.

• We can capture CI and minimal operational insight,
test results, package dependencies, and basic runtime
metrics.

• We can perform static and runtime code analysis
from local to production environments in CI, identify
trends via comparisons to historical data, and use

dependencies to drive testing on the infrastructure
level (e.g., inaccessible service scenario).

• We can collect dependency data points in all environ-
ments through the CI and deployment processes; we
can partially introduce control points.

• We can capture dependency markers through CI,
deployments, and infrastructure; introduce depend-
ency control points in all environments; use depend-
ency management libraries during development; and
correlate insights across the graph.

Emergent Architecture
• There is no concept of architecture, or it is considered

isolated from the software delivery process.

• Architecture is a set of documents and processes
manually updated and loosely aligned with the
delivery milestones.

• Architecture repository, centralized view, manual or
batch updates, and automated interactions are not
fully supported.

• Architecture repository usage is partially automated;
repository is navigable across different levels
and supports on-demand contextual queries (i.e.,
freestyle graph queries on the dependency-oriented
core model).

• The Architecture Knowledge Graph, updates, and
queries are automated and integrated into the
lifecycle; on-demand contextual information is
available; architecture descriptions and precomputed
aggregates are supported.

Dependency Awareness and Usage
• There is no appreciation of the generic concept of

dependencies.

• Only particular types of dependencies are observed
and handled in isolation (e.g., solution and package
dependencies and individual deployments with their
resource demand).

• Classes of dependencies are identified and handled
partially; the concept of delivery, logical, and
infrastructure dependencies emerges.

• Dependencies are classified in alignment with the
layers and structure of the architecture; this expands
to the delivery and runtime infrastructure areas.

Unlocking new information sources and
continuously capturing relevant architecture
details and just-in-time interactions with the
Architecture Knowledge Graph lead to deeper
insight and a contextual understanding.

Get The Cutter Edge free www.cutter.com Vol. 31, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 45

• Dependencies are proactively and intentionally
managed and monitored; all architecture layers, the
delivery process, and physical realization rely on the
dependency graph.

Lightweight Governance
• There’s isolated or no architecture governance.

• Governance is based on team collaboration without
the support of insights.

• A streamlined governance process is established
utilizing a stand-alone central repository; team
involvement is based on preliminary orientation
meetings.

• A central repository is somewhat integrated, partial
insight is available (e.g., batch refresh), and govern-
ance controls are manifested in the processes and
team best practices.

• A complete feedback cycle through the layers
of architecture,13 delivery, and production sys-
tems emerges. Architecture is controlled by the
Architecture Knowledge Graph, its integration
to the development lifecycle is automated, and
dependency insights are continuously fed back.

In conclusion, in an Agile setup, we might just merely
follow the flow to integrate delivery with architecture.
But unlocking new information sources and continu-
ously capturing relevant architecture details and just-
in-time interactions with the Architecture Knowledge
Graph lead to deeper insight and a contextual under-
standing. Contrary to common practice, introducing an
architecture repository doesn’t have to be big bang; it
can be incrementally put together with an enabling base
model and some attention to dependencies. Following
the improved insight, we can organically establish
lightweight governance. Indeed, architecture is alive
and continuously changing through space and time;
static governance structures freeze it to fragility.

Outlook and Recommendations
While this article does not reference any of the
following pointers specifically, they deeply relate
to the dynamics and potential future of a balanced
architecture governance practice:

• Barry O’Reilly’s concept of “architecting for anti-
fragility” helps practitioners systematically address
fragility in the process and solutions of architecture
(see his article, coauthored with Gar Mac Críosta,
earlier in this issue of CBTJ).

• David Snowden’s Cynefin framework gives signifi-
cant insight into the observability and predictability
of simple, complicated, complex, and chaotic
systems.14

• When considering the impact of observability on
architecture, Cutter Consortium Senior Consultant
Roger Evernden’s reflection about the learning cycle
comes to mind.15

• Category theory, a branch of mathematics, lays
the foundations to grasp the expressive power and
beauty of manipulating only nodes and relations.16

• For the more demanding, analytical reader, Allen
Woods’s portal, “The Performance Organisers,”
provides a journey to structured coherent design,
demonstrating linked information-based architecture
modeling.17

• Nicolas Figay’s pragmatic journey into using
ArchiMate extended with graph capabilities
(aka “enterprise cartography”) reveals many
opportunities.18

• Tom Graves is an infinite source of architecture
wisdom, tools, and advice. More specifically, he gives
advice on navigating the layers of architecture.19

• Randy Shoup’s “Minimum Viable Architecture”
concept is a real-life buoy when seeking the right
balance.20

• When thinking about sustainable systems, we
cannot ignore Stafford Beer’s viable system model.21

• Simon Brown’s C4 model (context, container,
component, code)22 is a pragmatic method that
supports emerging contextual architectures with
a rapid learning curve.

• Finally, both Disciplined Agile Delivery23 from Cutter
Senior Consultant Scott Ambler and the Scaled Agile
Framework (SAFe)24 detail Agile architecture in the
delivery context.

http://www.cutter.com

46 ©2018 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Endnotes
1The “given-when-then” structure refers to Gherkin, the common
description language of behavior-driven development (BDD);
see “Introducing BDD” (https://dannorth.net/introducing-bdd).

2This scenario was chosen over another common story: rushing
an Agile startup without any established architectural baseline
or feedback cycle. In practice, both scenarios reveal similar
difficulties.

3One might rightly think that time management is the real issue.
However, from another perspective, software projects are
rarely protected from change and even under careful time
management, unforeseen circumstances emerge.

4For example, whenever a link is labeled as “part of” or
“implements,” it is a “containing relation” by nature.

5”Blind men and [the] elephant.” Wikipedia (https://
en.wikipedia.org/wiki/Blind_men_and_an_elephant).

6More precisely, tree structures typically imply complete
coverage of all elements; there can be no uncategorized ones
(this requirement is often addressed by introducing a specific
undefined taxonomy item). Our core model relaxes the
equivalence class-based model.

7This is nothing new; see: “Architectural Runway.” Scaled Agile
Framework (SAFe) (https://www.scaledagileframework.com/
architectural-runway/).

8As relational models imply tree structures, they too may be
subject to the elephant parable, often leading to the misinter-
pretation of the contextual information and performance
problems.

9As mentioned earlier, Gherkin is a scenario description
language widely used in the practice of BDD that follows
the “given-when-then” structure.

10The headache that comes with a common architecture
description language is that it is defined from a structure
definition angle; for our purposes, an architecture manipulation
language based on expressing change would be a better fit.

11Domain-specific language (might be a customized flavor of
Gherkin).

12Beyond diagramming, we might enrich the existing archi-
tecture tool (e.g., Archi) with the contextual data.

13More precisely, this is the “inversion of control” principle
applied to the architecture layering and dynamics.

14Snowden, David J., and Mary E. Boone. “A Leader’s
Framework for Decision Making.” Harvard Business Review,
November 2007 (https://hbr.org/2007/11/a-leaders-framework-
for-decision-making).

15Evernden, Roger. “Sensing — Learning — Exploring —
Breaking (SLEB) — A New Model?” Enterprise
Transformation Through Enterprise Architecture,
6 April 2018 (http://www.evernden.net/sensing-learning-
exploring-breaking-sleb-a-new-model).

16”Category Theory.” Stanford Encyclopedia of Philosophy
(https://plato.stanford.edu/entries/category-theory).

17Woods, Allen. ”The Performance Organisers Product
Architecture Overview.” The Performance Organisors
Ltd., 7 June 2018 (http://www.jitsoftware.co.uk/downloads/
prodcat.pdf).

18Figay, Nicolas. “Switching from Drawing to Enterprise
Navigation Systems with ArchiMate.” LinkedIn, 21 July 2017
(https://www.linkedin.com/pulse/switching-from-drawing-
enterprise-navigation-systems-archimate-figay).

19Graves, Tom. “Linking Enterprise-Architecture with
Solution-Architecture.” LinkedIn, 10 June 2018 (https://
www.linkedin.com/pulse/linking-enterprise-architecture-
solution-architecture-tom-graves).

20Shoup, Randy. “Evolutionary Architecture: Good Enough is
Good Enough” (http://www.randyshoup.com/evolutionary-
architecture).

21”Viable system model.” Wikipedia (https://en.wikipedia.org/
wiki/Viable_system_model).

22”The C4 Model for Software Architecture: Context, Containers,
Components and Code” (https://c4model.com).

23“The Disciplined Agile (DA) Framework” (http://
www.disciplinedagiledelivery.com/agile-enterprise-
architecture).

24“Agile Architecture.” Scaled Agile Framework (SAFe)
(https://www.scaledagileframework.com/agile-architecture).

Miklós Jánoska is Director of Technology Solutions at EPAM Systems,
based in Hungary. Building on a programmer mathematician past, his
main interest is to find novel solutions to complex problems forging
deep, hands-on experience with two decades of broad IT expertise. Mr.
Jánoska helps companies reach synergies and resolve tension between
the rapidly changing modern industry and the traditionally structured
approaches, let it be delivery, architecture, or management. He can be
reached at miklos.janoska@mjanoska.com.

https://dannorth.net/introducing-bdd
https://en.wikipedia.org/wiki/Blind_men_and_an_elephant
https://en.wikipedia.org/wiki/Blind_men_and_an_elephant
https://www.scaledagileframework.com/architectural-runway/
https://www.scaledagileframework.com/architectural-runway/
https://hbr.org/2007/11/a-leaders-framework-for-decision-making
https://hbr.org/2007/11/a-leaders-framework-for-decision-making
http://www.evernden.net/sensing-learning-exploring-breaking-sleb-a-new-model
http://www.evernden.net/sensing-learning-exploring-breaking-sleb-a-new-model
https://plato.stanford.edu/entries/category-theory
http://www.jitsoftware.co.uk/downloads/prodcat.pdf
http://www.jitsoftware.co.uk/downloads/prodcat.pdf
https://www.linkedin.com/pulse/switching-from-drawing-enterprise-navigation-systems-archimate-figay
https://www.linkedin.com/pulse/switching-from-drawing-enterprise-navigation-systems-archimate-figay
:/www.linkedin.com/pulse/linking-enterprise-architecture-solution-architecture-tom-graves
:/www.linkedin.com/pulse/linking-enterprise-architecture-solution-architecture-tom-graves
:/www.linkedin.com/pulse/linking-enterprise-architecture-solution-architecture-tom-graves
http://www.randyshoup.com/evolutionary-architecture
http://www.randyshoup.com/evolutionary-architecture
https://en.wikipedia.org/wiki/Viable_system_model
https://en.wikipedia.org/wiki/Viable_system_model
https://c4model.com
http://www.disciplinedagiledelivery.com/agile-enterprise-architecture
http://www.disciplinedagiledelivery.com/agile-enterprise-architecture
http://www.disciplinedagiledelivery.com/agile-enterprise-architecture
https://www.scaledagileframework.com/agile-architecture/

Cutter Consortium is a unique, global business technology advisory firm dedicated

to helping organizations leverage emerging technologies and the latest business

management thinking to achieve competitive advantage and mission success. Through

its research, training, executive education, and consulting, Cutter Consortium enables

digital transformation.

Cutter Consortium helps clients address the spectrum of challenges technology change

brings — from disruption of business models and the sustainable innovation, change

management, and leadership a new order demands, to the creation, implementation,

and optimization of software and systems that power newly holistic enterprise and

business unit strategies.

Cutter Consortium pushes the thinking in the field by fostering debate and collaboration

among its global community of thought leaders. Coupled with its famously objective

“no ties to vendors” policy, Cutter Consortium’s Access to the Experts approach delivers

cutting-edge, objective information and innovative solutions to its clients worldwide.

For more information, visit www.cutter.com or call us at +1 781 648 8700.

