
Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 1

http://www.cutter.com

 Start my print subscription to Cutter Business Technology Journal ($485/year; US $585 outside North America).

Name Title

Company Address

City State/Province ZIP/Postal Code

Email (Be sure to include for weekly Cutter Business Technology Advisor)

Fax to +1 781 648 8707, call +1 781 648 8700, or send email to service@cutter.com.
Mail to Cutter Consortium, 37 Broadway, Suite 1, Arlington, MA 02474-5552, USA.

Request Online License
Subscription Rates

For subscription rates for
online licenses, email or call:
sales@cutter.com or
+1 781 648 8700.

As business models for creating value continue to shift, new business strategies are
constantly emerging and digital innovation has become an ongoing imperative. Cutter
Business Technology Journal delivers a comprehensive treatment of these strategies to
help your organization address and capitalize on the opportunities of this digital age.

Cutter Business Technology Journal is unlike academic journals. Each monthly issue,
led by an expert Guest Editor, includes five to seven substantial articles, case studies,
research findings, and/or experience-based opinion pieces that provide innovative ideas
and solutions to the challenges business technology professionals face right now — and
prepares them for those they might face tomorrow. Cutter Business Technology Journal
doesn’t water down or delay its content with lengthy peer reviews. Written by internation-
ally known thought leaders, academics, and practitioners — you can be certain you’re
getting the uncensored perspectives of global experts.

You’ll benefit from strategic insight on how the latest movements in digital innovation
and transformation, artificial intelligence/machine learning, Internet of Things, block-
chain, analytics, and cloud, to name a few, are changing the business landscape for both
new and established organizations and how cutting-edge approaches in technology lead-
ership, enterprise agility, software engineering, and business architecture can help your
organization optimize its performance and transition to these new business models.

As a subscriber, you’ll also receive the Cutter Business Technology Advisor — a weekly
bulletin featuring industry updates delivered straight to your inbox. Armed with expert
insight, data, and advice, you’ll be able to leverage the latest business management
thinking to achieve your organization’s goals.

No other journal brings together so many thought leaders or lets them speak so
bluntly — bringing you frank, honest accounts of what works, what doesn’t, and why.
Subscribers have even referred to Cutter Business Technology Journal as a consultancy
in print and likened each month’s issue to the impassioned discussions they participate
in at the end of a day at a conference!

Get the best in thought leadership and keep pace with the technologies and business
models that will give you a competitive edge — subscribe to Cutter Business Technology
Journal today!

Founding Editor: Ed Yourdon
Publisher: Karen Fine Coburn
Group Publisher: Christine Generali
Managing Editor: Cindy Swain
Copy Editors: Jennifer Flaxman, Tara Meads
Production Editor: Linda Dias
Client Services: service@cutter.com

Cutter Business Technology Journal®
is published monthly by Cutter Information
LLC, 37 Broadway, Suite 1, Arlington, MA
02474-5552, USA ⚫ Tel: +1 781 648 8700 ⚫
Fax: +1 781 648 8707 ⚫ Email: cbtjeditorial@
cutter.com ⚫ Website: www.cutter.com ⚫
Twitter: @cuttertweets ⚫ Facebook:
Cutter Consortium. ISSN: 2475-3718
(print); 2475-3742 (online).

©2019 by Cutter Information LLC.
All rights reserved. Cutter Business
Technology Journal® is a trademark
of Cutter Information LLC. No material
in this publication may be reproduced,
eaten, or distributed without written
permission from the publisher.
Unauthorized reproduction in any form,
including photocopying, downloading
electronic copies, posting on the Internet,
image scanning, and faxing is against the
law. Reprints make an excellent training
tool. For information about reprints and/
or back issues of Cutter Consortium
publications, call +1 781 648 8700
or email service@cutter.com.

Subscription rates are US $485 a year
in North America, US $585 elsewhere,
payable to Cutter Information LLC.
Reprints, bulk purchases, past issues,
and multiple subscription and site
license rates are available on request.

NOT FOR DISTRIBUTION
For authorized use, contact
Cutter Consortium +1 781 648 8700
or service@cutter.com.

Opening Statement

by Greg Smith

3 Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL

In 2011, Marc Andreessen, developer of the Netscape
browser and cofounder of the Silicon Valley venture
capital firm Andreessen Horowitz, stated in an article
in the Wall Street Journal that “software is eating the
world.”1 I remember thinking at the time that this
was a memorable aphorism, but while it captured the
increasing importance of software, it seemed somewhat
cryptic or vague. Little did I realize that, over the next
10 or so years, it would come to articulate a profound
transformation of the world we live in and, especially,
the enterprises we lead and operate within.

Over the last 10 years we have seen a fundamental
shift, whereby organizations that have spent decades
developing and perfecting their business models and
core capabilities have been outcompeted by organiza-
tions that have used software to disrupt existing models
or establish wholly new models. Additionally, this
“softwarization” of products, services, and experiences
has, in many ways, only just started — especially if
we consider artificial intelligence (AI) and machine
learning to be a specialized class of software.

So what does this mean for your organization?

If the current capabilities, strategies, differentiation, and/
or competitive advantage that define your organization
are rooted in the physical world but can be replicated
within software, then the challenge is clear. If you are
creating value through mastery of the physical environ-
ment and your competitor can replicate this mastery
in a software environment, then the outcome will be
inevitable, although the timeline might be variable.

Take the hypothetical example of two pharmaceutical
companies in a race to develop a new blockbuster drug.
One organization has optimized its R&D processes
to have both the highest velocity and lowest cost in
developing new formulations in the lab and assess-
ing their potential efficacy. The second organization
has invested in state-of-the-art simulation software,
theoretically allowing it to formulate drugs and, just
as importantly, eliminate noneffective options within
the software environment. If the second organization

can simulate and eliminate 50% of options within the
software environment that previously would have had
to be developed in the lab, then probability suggests
there will be only one winner in the race, despite the
advantage the first organization holds in physical R&D.

I recently encountered an interesting example in the
industrial refrigeration market. The traditional goal of
R&D within this industry has been targeted on physical
engineering to optimize energy and product efficiency.
However, a disruptive competitor was looking to enter
the market with a way of driving efficiency based on
applying fluid dynamics and optimizing airflow. The
software necessary to achieve a reliable simulation of
airflow needs to handle high complexity, be compu-
tationally intensive, and requires an understanding of
mathematics far removed from typical engineering R&D.
However, these capabilities are well established and
available to aerodynamicists operating within motor
racing, where the potential disruptor learned and
perfected its capability. The inevitable outcome is that
there is likely to be one long-term winner when physical
engineering innovation is competing with complex
mathematical models that can optimize over a thousand
iterations in an automated software simulation.

Fortunately, though, there is a better answer than
physical engineering competing with sophisticated
software in a dialectic battle, and this is to combine
the two domains into one physical/digital innovation
capability. All organizations will need to become
equally skilled in both domains if they are to become
leaders in their industry, but this introduces a big
challenge.

The Fundamental Challenge
Facing Organizations
For the last 30 years, most large and well-established
organizations have followed industry “best practice”
in terms of their IT capability and platforms. They
have implemented standard packaged applications,

http://www.cutter.com

4 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

inevitably delivered through the agency of specialized
system integrators and overseen by internal IT func-
tions, whose role has been limited to strategy, pro-
curement, and delivery management. This has led to
a situation where large enterprises, with internal IT
functions comprising several hundred people, might
contain no specific roles focused on software creation
or might even not possess an understanding of how
software should be developed!

To put it simply: at the point where mastery of software
is becoming critical to the success and ongoing survival
of the enterprise, there is an absence of expertise and
insight within the organization’s decision-making
forums to represent the potential that software can
unleash and the inevitable disruption that will be
required to seize this potential.

In some ways this dichotomy is an updated manifes-
tation of the “Two Cultures” C.P. Snow identified in
British academia in the 1950s.2 Snow was perplexed at
how the scientific and arts and humanities communities
he encountered in leading universities could be so
ignorant of each other’s domains; an ignorance that
was especially confounding given that these were some
of the brightest minds, almost exclusively drawn from
the same backgrounds and demography. Two non-
overlapping cultures had emerged, where almost all
interactions and experiences served to reinforce the
division and mutual antipathy.

The two cultures we experience in 2019 within our
enterprises can be categorized as those schooled in
the business school curriculum of case-study strategy,
financial management, and corporatism versus those
schooled in mathematics, software engineering, and
algorithms.

The Start of an Answer
The good news is there are various patterns
and approaches that can start to bridge the two

cultures and unlock the value-creating potential
of softwarization.

A great place to start is to fully embrace the principles
of Lean Startup, as set out by Eric Ries.3 The culture
of experimentation, rapid iteration, and a single
cross-functional team, working in an accelerated and
nonhierarchical way, is a great learning experience.
It quickly exposes the team to both the software proc-
ess and its potential and builds confidence through a
“show me, don’t tell me” approach.

A second way is to focus ruthlessly on those areas
where bespoke software can unlock a problem or drive
competitive advantage. I believe in the principle of
“build for competitive advantage but buy for competi-
tive parity.” It is important, if the senior leadership is
to start believing in the power of software, that that
power be applied to the opportunities that will unlock
substantial business value and where a real difference
can be manifested.

Third, it is imperative that those who understand soft-
ware find ways of communicating and evangelizing the
opportunity it presents within their organization and to
its leadership. This almost invariably involves patience
in overcoming frustration, constant reframing, humility,
and tenacity. How many of us tasked with creating
understanding and enthusiasm for software within
our organization can genuinely say they embrace these
virtues on a daily basis?

I am reminded of a saying that changed my personal
approach over a decade ago: “Nobody ever changed
their mind by being proven wrong!” If the opportunity
presented by software is to be fully realized in the
enterprise, then it is imperative that those who under-
stand software create the bridge to those who need to
understand.

In This Issue
In our first article, Cutter Consortium Fellow Steve
Andriole examines the extent of software’s rule in
the areas of process automation, privacy and security,
enterprise software, intelligent software engineering,
and converged convenience. For each area, he evaluates
in what ways software’s reign is good (rewarding us),
bad (punishing us), or ugly (threatening us). Andriole’s
belief is that software’s rule is inevitable and will
expand. It is our decision what to do about the
“kingdom of software.”

Upcoming Topics

AI: Third Time Is Not the Charm
Lou Mazzucchelli

Digital Architecture
Gar Mac Críosta

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 5

In the next article, Joost Visser begins with an accept-
ance of software’s having “eaten the world” and the
need, after your organization’s digital transformation,
to master the evolution of software. Software evolves
in the environment of the marketplace, where the forces
of innovation, cost reduction, growth, regulation, and
coevolution drive change. As with biological evolution,
only the fittest will survive. For sustainable evolution —
for organizations not to see their software eaten by the
world — refactoring and commoditization are essential.
After examining these internal changes, Visser discusses
the essential capabilities organizations must possess
in the areas of data, design, and decisions to master
software evolution. He concludes with the critical
questions organizations must answer to determine
whether they are ready for the long haul.

Next, Sunil Mithas, Kaushik Dutta, and Cutter
Consortium Senior Consultant San Murugesan
intriguingly compare software to the ouroboros,
the mythical serpent of the ancient world that eats its
own tail and is reborn from itself. Like the ouroboros,
software has cannibalized and transformed itself. In
recent years, software has evolved toward autonomy.
Autonomous software has the capability to change itself
(as with automatic updates) and even to write itself
(AI can write software code or even be the software).
Software evolution and changes in software devel-
opment imply that software will become ever more
pervasive and affordable, that firms must master
disciplined autonomy in order to follow dual strategies,
and that the role of IT professionals is being redefined.
The authors conclude with the steps that senior leaders
and managers need to take for their organizations to
transform and be reborn.

Paul Pagel next discusses the key importance of a
modern software labor strategy for organizations
hoping to remain competitive in today’s digital and
innovative world. The right team is key to crafting
software systems capable of supporting innovation.
Software delivery talent, however, is extremely difficult
to find for a multitude of reasons. The solution,
according to Pagel, is to structure software teams to
deal with fragility and to thrive on change.

In our final article, Michael Papadopoulos and Olivier
Pilot examine how a limited view of digital transfor-
mation impedes organizations from fully benefiting
from the new, Agile ways of working. Papadopoulos
and Pilot attribute this failure, fundamentally, to
reliance on traditional architectural stacks where
multiple teams and products rely on large, shared
layers, and a change in a layer to meet the needs

of one product may inadvertently break other products.
To support a feature team–based organization, each
team must have full end-to-end ownership of its stack,
which consists of smaller, decoupled parts — micro-
services — that are loosely bound together. The authors
advocate domain-driven design and the atomic design
principle4 as the basis for enabling reuse. A managed,
messy architecture is the key to an organization struc-
tured around feature teams, which enable digital
transformation.

Clearly, as this issue suggests, the rise of software
represents the biggest single hurdle and opportunity
to business. We hope the articles inspire you to conquer
the fundamental challenges facing your organization
today and help you unlock your full value-creating
potential.

References
1Andreessen, Marc. “Why Software Is Eating the World.”
The Wall Street Journal, 20 August 2011.

2Snow, C.P. The Rede Lecture. Cambridge University Press, 1959.

3Reis, Eric. The Lean Startup. Currency, 13 September 2011.

4Hacq, Audrey. “Atomic Design: How to Design Systems
of Components.” Medium, 28 June 2017.

Greg Smith is a Senior Consultant with Cutter Consortium’s
Business Technology & Digital Transformation Strategie
practice. He is also Partner of Arthur D. Little (ADL), cofound-
er and co-leader of ADL's Digital Problem Solving practice based
in London and New York, and leader within ADL’s global Technology
& Innovation Management practice. Mr. Smith's work specializes
in the application of disruptive information technologies to solve
intractable business problems in major enterprises, which one
recent client described as “bringing a slice of Silicon Valley into
the corporate.” Over the past three years, he has been focusing on
bringing patterns that are well known and accepted in FANG
(Facebook, Amazon, Netflix, and Google) companies into major
enterprises to positively disrupt their digital transformation
initiatives. This includes addressing the human/cultural side
of digital problem solving.

During the last decade, Mr. Smith has alternated between strategic
advisory and consultancy roles (ADL, Capgemini, and Atos
Consulting) and hands-on technology leadership as CIO of a major,
private equity–owned logistics company going through a merger
in record time. This latter role allowed him to discover the joys of
applying Agile principles to wholesale business transformation along
with the need to be able to explain the explicit value contribution of IT,
as technology funding was provided from the owners' private capital.
Mr. Smith holds a BSc in biological sciences and finds that after 30
years of dormancy within his professional life, the underlying concepts
of biology are becoming increasingly valuable at unlocking business
problems and articulating solutions — especially where reductive,
engineering-based approaches need to be replaced with whole-system,
evolutionary thinking. He can be reached at gsmith@cutter.com.

http://www.cutter.com
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.cambridge.org/core/books/two-cultures/rede-lecture-1959/165DA34783EB825E8975525672194EE7
https://www.amazon.com/Lean-Startup-Entrepreneurs-Continuous-Innovation/dp/0307887898
https://uxdesign.cc/atomic-design-how-to-design-systems-of-components-ab41f24f260e
https://uxdesign.cc/atomic-design-how-to-design-systems-of-components-ab41f24f260e

6 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Even if you have played no role in the design, develop-
ment, or support of the applications that manage your
personal and professional lives, you know that software
rules the world. Every aspect of your life is enabled
by a suite of fixed or mobile software applications that
more often than not live in the cloud. It’s safe to say
that if you were separated or divorced from your apps,
you would be unable to function. We can also define
the rule of software by the integration of our personal
and professional activities, which have strongly con-
verged over the past decade in ways that often make
it impossible to cleanly distinguish personal versus
professional agendas.

Let’s look at the extent of software’s rule today in five
areas and where we expect it to be in five to 10 years. A
“good/bad/ugly” lens will help us assess the trajectories
and determine the role that software should — and
should not — play in our lives.

The Five Themes
There are many ways to understand good, bad, and
ugly software and what the reign of software will
deliver in the next decade or so. This article covers
five themes:

1. Process automation

2. Privacy and security

3. Enterprise software

4. Intelligent software engineering

5. Converged convenience

Theme 1: Process Automation
Routine tasks — and even what appear to be the
complex, deductive, inferential tasks that we associate
with “knowledge” industries — will be automated by
software bots of one kind or another; robotic process
automation (RPA) will absolutely, positively eliminate
jobs, careers, and whole professional existences. Indeed,

it has been predicted that artificial intelligence (AI)
(broadly defined) will eliminate 77 million jobs over
the next 20 years: “By 2030, 75 million to 375 million
workers (3 to 14 percent of the global workforce) will
need to switch occupational categories.”1 Bloomberg
has even developed a tool to help you determine if
you’re likely to be automated. According to Bloomberg
(based in part on research conducted at the University
of Oxford), “Nearly half of all US jobs may be at risk
in the coming decades, with lower-paid occupations
among the most vulnerable.”2 Compensation and bene-
fits managers, auditors, accountants, credit analysts,
loan officers, sales reps, truck drivers, administrative
services managers, and even dental hygienists are at
high risk and will most likely lose their jobs to automa-
tion. The same research suggests that (most) physicians,
surgeons, (some) lawyers, financial managers, pharma-
cists, teachers, and computer and information systems
managers are among the professions least likely to be
automated.3 The timing for all this varies. Some analysts
believe significant professional displacement will easily
occur by 2030, while others believe it will take longer —
though not much longer.

Good, Bad, or Ugly?
If your job is in any of the at-risk categories noted
above, you’re likely doomed. The important question
is, “How long do you have?” This, of course, is the
nagging question about all disruptive technologies and
the impact they will have on the jobs market. A recent
VICE News/HBO special, The Future of Work, presented
demonstrations of disruptive technologies — such as
self-driving trucks, expert legal systems, financial
management tools, and surgical robotics — already
hard at work.4

While there will be some lag due to regulatory and
liability requirements (especially regarding autonomous
vehicles), disruptive technologies are marching quickly
toward deployment. Many industries consider all this
very good. Professionals in the most vulnerable fields
believe it’s bad. Some economists consider it all ugly
since it displaces millions of professionals with no plan
to relocate them into productive, well-paying careers. If

IT’S INEVITABLE, RIGHT?

Is Software Good, Bad, or Ugly? Depends on Where You Sit
by Steve Andriole

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 7

ever there was an outcome dependent upon where you
sit, process automation is it.

Theme 2: Privacy and Security
There is no privacy. Everyone is under surveillance.
Security is so weak that foreign governments are easily
able to penetrate US elections. Software enables —
and, to be fair, tries to combat — all these conditions.
However, the trends here are anything but good.

Let’s start with security. According to the US Depart-
ment of Homeland Security (DHS), threats are every-
where and growing. DHS believes that the US should
“reduce threats from cybercriminals. In partnership
with other law enforcement agencies, DHS must pre-
vent cybercrime and disrupt criminals and criminal
organizations who use cyberspace to carry out their
illicit activities and leverage identified threat activity
and trends to inform national risk management
efforts.”5 The problem is enormous and growing faster
than anyone can measure. Most computer scientists
believe that no system is completely safe. Breaches are
frequent — and frequently underreported.

How about privacy and surveillance? If you’re on the
grid, you’re under surveillance. If you tweet, blog, or
post, you’re under surveillance. If you shop with credit
cards, you’re under surveillance. If you rideshare,
you’re under surveillance.

CCTV, smart TVs, Internet searches, social media,
voice recognition/response systems, credit/debit cards,
loyalty programs, facial recognition, image understand-
ing, and even drones all enable surveillance. Within a
few years, it will be possible for companies to profile
nearly all of us from how we live our rich, full digital
lives. As analytics improve, fewer and fewer digital
indicators will be necessary to fully profile us. But
surveillance will also empower government offices
and agencies to profile individuals. Some of this will
be good, such as enabling the pursuit, capture, and
prosecution of criminals. But some of it will be ugly,
such as what might happen when social, economic, and
political enemies seek control, revenge, or worse. Make
no mistake: the surveillance infrastructure is already
in place and will only get wider, deeper, and stronger.

What’s next? Technologies such as AI, machine learning
(ML), 5G, blockchain, cryptocurrency, the Internet of
Things, and wearables will make surveillance easier,
faster, and complete. There’s no need to implant chips
into our bodies, though some are doing so, because
we’re immersed in digital trackers in our pockets, cars,

homes, phones, TVs, appliances, thermostats, security
systems, and, of course, our desktops, laptops, and
tablets. We also know that leaving the digital grid
is impossible. Surveillance is therefore inevitable.

Good, Bad, or Ugly?
This is an easy one — it’s not good, and, at times,
is very ugly. The lack of privacy due to the rise of
surveillance is bad and ugly. There are aspects that
make sense, such as criminal and terrorist digital
surveillance. But regardless of the percentage of good
versus bad (or ugly) and the convenience software
enables, software used to reduce privacy and increase
surveillance definitely nets ugly.

Trajectory? Much uglier: total grid dependency and
technologies such as facial recognition will finalize
surveillance. Cybersecurity also looks bad and ugly.
As more and more activities, processes, and assets
move to the cloud, it will become increasingly difficult
to secure transactions, especially since general aware-
ness of the breadth, depth, and severity of threats is
ill-defined and underappreciated, and because cyber-
security funding, especially at the federal level, is
incredibly inadequate. Both privacy and security are
bad and headed toward ugly.

Theme 3: Enterprise Software
Who would undertake a five-year corporate software
implementation project today? The failure rate for
big “enterprise” software projects is downright scary.
Depending on whose study you read, the enterprise
resource planning (ERP) failure rate, for example, is
anywhere between 50% and 75%. If even vaguely
informed, executive management knows the project
is likely to fail. Yet in the 1990s and early 21st century,
there were still companies willing to try their hand
with big software and prove they were not like the
others who failed so spectacularly — until they too
failed. Failure is the result of several trends and out-
comes. One is control.

When a company embarks on a multiyear journey with
an ERP or customer relationship management (CRM)
vendor, they cede significant, if not total, process
control to that vendor. ERP modules were originally
designed to eliminate process chaos. Remember when
“legacy” software was a barrier to scalability, not to
mention how expensive it was to maintain? Moreover,
a significant side effect of big software was the loss of
process governance to the vendors that defined supply

http://www.cutter.com

8 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

chain management, financial reporting, CRM, and other
business processes for the companies they serviced.

The cloud also killed big software. Years ago, compa-
nies would implement huge enterprise software sys-
tems in their own data centers. The early 21st century
gave us the cloud, so the pain of forever implementa-
tion was avoided. But there are also smaller, cloud-
based alternatives to big software that scale, integrate,
and share process control through customization tools
deliberately built into the modules. Small companies
can find lots of incredibly inexpensive alternatives
from vendors such as Zoho and Zendesk, among
others. Many of these companies will grow, as will
the incredibly inexpensive, cloud-based systems that
scale and integrate right along with them.

Good, Bad, or Ugly?
The movement of huge enterprise software suites to
the cloud is good. The adoption of smaller, cloud-
based, microservices-based applications is also good.
But “good” depends on where you sit: for obvious
reasons, software consultancies preferred the endless
on-premise implementation of huge enterprise software
applications. Big software vendors were happier before
the cloud offered alternatives that organizations could
adopt relatively quickly. Note that the growing capa-
bilities of business software applications are unques-
tionably good. Overall? Good. The consultancies and
software vendors will adapt and rearchitect their huge
software suites into smaller pieces. Watch how SAP,
Oracle, IBM, and Microsoft, among others, adapt to the
competition from smaller, “enterprise” vendors. In fact,
many of them already have, even it if means selling
smaller suites to their clients.

Theme 4: Intelligent Software Engineering
We tend to think about functionality (i.e., what apps
actually do) when we think about software. But where
does software come from? How is it built? Will software
help us develop software? Absolutely, and not just any
old software: software will be designed and developed
by intelligent — artificially intelligent — software. At
the most basic level, smart software will automate many
of the tedious steps in the software design and develop-
ment process (e.g., testing). But the most significant
impact will be felt in the auto-generation of code
through the shadowing of human programmers and
“learning” from their successes and failures — and
then even deeper learning–based “programming.”

So what happens to programmers when all of this
automation takes hold? The timing of intelligent
software design and development is difficult to
estimate, though it’s safe to say that within the decade
much of this will be ready. Major software companies
are investing heavily in intelligent software engineer-
ing, including SAP through its Leonardo Machine
Learning Foundation.6 IBM, Oracle, and Microsoft,
among others, are also spending heavily in the area.
Programmers will evolve to support personnel.
Application development lifecycles will be compressed.
Programmers will become incredibly productive.

Good, Bad, or Ugly?
The software industry continues to grow. Intelligent,
automated software design and development is good.
In fact, artificially intelligent–supported software
development will become one of the most promising
application domains of AI and ML. Programmers will
adapt over time and learn to exploit the support of
intelligent software design/development assistants
(which will eventually become leaders). One of the
red flags is the ethics of automated software design
and development — so-called ethical AI7 — and the
value systems that enable expert and other intelligent
systems to “decide” what to build. This is a larger issue
for intelligent software engineering that could turn
the assessment from good to bad, though probably
not ugly.

Theme 5: Converged Convenience
We love streaming music and using location-based
apps. We love tweeting and blogging. We love our
project management tools and Microsoft Office 365. We
love ridesharing. We also love Amazon and eBay. Love?
Let’s just say that these and so many other apps are
indispensable to our personal and professional lives.

Lest we wax too poetic about the accessibility and
functionality of these apps, remember that the greatest
Trojan horse of the 21st century is the convenience our
digital toys deliver: how easy it is to order anything we
want from Amazon, how much fun it is to download
music and books, and how effortlessly we can find a
car, a house, and a date online. But what’s the tradeoff?
Every time we avail ourselves of these conveniences, we
reveal a little more about who we are and what we do,
which is all stored and analyzed permanently for those
who want to buy some insight into what we like, what
we will buy, and how they should pitch to us. It all

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 9

seems innocent enough until we assess what’s really
happening.

That said, software enables the integration and manage-
ment of our personal and professional lives. Schedules,
shopping, meetings, and grocery delivery can all be
managed from single portals that manage multiple
applications. Smart city applications help us navigate
locations, and telecommuting applications help us
work from home. There are countless others that keep
our lives manageable and productive.

Good, Bad, or Ugly?
The problem with converged convenience software is
that it’s really good, sometimes bad, and occasionally
ugly. It’s also inevitable because convenience is
undeniable. Trajectories show more of the same:
our personal and professional lives will continue to
converge, and our need for software that makes these
lives easier will grow. Most users will sacrifice some —
perhaps a great deal of — privacy and even security if
you make their lives easier. Software is a huge and
growing part of this “transaction.” Which presents a
dilemma: Do we reduce convenience in exchange for
privacy and security? Or do we sacrifice privacy and
security for convenience? It’s likely that convenience
wins for so many personal and professional reasons.
The drivers are unstoppable as are the returns on
personal and professional software investments. By
2030, the personal/professional convergence will be
seamless and assumed.

Good, Bad, Ugly — or Something Else?
There can be no debate: software rules the world.
The five themes discussed in this article suggest how
software is rewarding, punishing, and threatening us —
all at the same time. There are clear winners and losers
in the reign of software. In process automation, com-
panies win by reducing costs and increasing profit, but
all while realigning and reducing whole professions.
In enterprise software, some consultancies and big
software vendors have reluctantly adjusted to micro-
service architectures and cloud delivery, and some
have exploited both these features of newer enterprise
software with inexpensive, scalable products and ser-
vices. Intelligent software engineering will generate
faster code as it changes the role of the traditional
software engineer. Privacy and security are the losers in
the reign of software. There’s too little awareness, focus,

and funding, and it’s already way too late in the game.
Security and privacy are bad, trending to ugly. Part of
the explanation is traceable to our love of convenience
and the software toys we refuse to divorce even though
they compromise our digital freedoms.

Above all else, we must acknowledge the inevitability
of a world where software will continue to rule, and
a world where the software kingdom will continue to
expand. Some of this expansion will be good, some bad,
and some ugly. Expansion also begins at earlier and
earlier ages, with two- and three-year-old kids embark-
ing into games and other digital toys on several mobile
platforms. RPA seeks to automate as many corporate
processes as possible. AI and ML will accelerate soft-
ware development. Enterprise software will continue
to shrink, spread, and scale. Privacy and security will
yield to convenience. All of this is inevitable. The open
question is, “What should we do about the kingdom of
software?” Embrace it? Challenge it? Anything?

References
1Vlastelica, Ryan. “Automation Could Impact 375 Million Jobs
by 2030, New Study Suggests.” Market Watch, 4 December
2017.

2Whitehouse, Mark, and Mira Rojanasakul. “Find Out If Your
Job Will Be Automated.” Bloomberg, 7 July 2017.

3Whitehouse and Rojanasakul (see 2).

4VICE Special Report: The Future of Work. HBO, 2019.

5“US Department of Homeland Security Cybersecurity
Strategy.” US Department of Homeland Security, 15 May 2018.

6“SAP Leonardo Machine Learning Foundation.” SAP, 2019.

7Bostrom, Nick, and Eliezer Yudkowsky. “The Ethics of
Artificial Intelligence.” Machine Intelligence Research Institute,
2011.

Stephen J. Andriole is a Fellow with Cutter Consortium’s Business
Technology & Digital Transformation Strategies and Data Analytics
& Digital Technologies practices and the Thomas G. Labrecque
Professor of Business Technology at Villanova University. Dr.
Andriole was the Director of the Cybernetics Technology Office of
the Defense Advanced Research Projects Agency (DARPA); the
CTO and Senior VP of Safeguard Scientifics, Inc.; and the CTO
and Senior VP for Technology Strategy at Cigna Corporation. His
most recent books include Ready Technology: Fast Tracking
New Business Technologies and The Innovator’s Imperative:
Emerging Technology for Digital Transformation. He
has published articles in MIT Sloan Management Review,
Communications of the ACM, IEEE IT Professional, and
European Business Review, among others. He can be reached
at sandriole@cutter.com.

http://www.cutter.com
https://www.marketwatch.com/story/automation-could-impact-375-million-jobs-by-2030-new-study-suggests-2017-11-29
https://www.marketwatch.com/story/automation-could-impact-375-million-jobs-by-2030-new-study-suggests-2017-11-29
https://www.bloomberg.com/graphics/2017-job-risk/
https://www.bloomberg.com/graphics/2017-job-risk/
https://www.bloomberg.com/graphics/2017-job-risk/
https://www.hbo.com/vice/special-reports/vice-special-report-the-future-of-work
https://www.dhs.gov/sites/default/files/publications/DHS-Cybersecurity-Strategy_1.pdf
https://www.dhs.gov/sites/default/files/publications/DHS-Cybersecurity-Strategy_1.pdf
https://www.sap.com/products/machine-learning-foundation.html
https://intelligence.org/files/EthicsofAI.pdf
https://intelligence.org/files/EthicsofAI.pdf

10 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Software has become the main differentiator by which
organizations compete in today’s economy. Through
software we achieve faster delivery, higher efficiency,
more accurate manufacturing, and higher customer
satisfaction. To become and remain competitive, it is
imperative that your business master software evolu-
tion. This does not only mean being able to create a
winning application once; it means always being able
to immediately adapt your applications to the unique
needs of your users and your market and to continu-
ously swap out those software components that no
longer provide you with a competitive edge. If your
business is not able to relentlessly keep evolving its
software portfolio, you will fall behind.

Software Has Eaten the World
It has come to pass: software has eaten the world.

In 2011, Marc Andreessen used this imagery to describe
his personal vision of what was then still to come: “My
own theory is that we are in the middle of a dramatic
and broad technological and economic shift in which
software companies are poised to take over large
swathes of the economy.”1 Today, this is accepted
lore and is not limited to Silicon Valley:

[T]he digital economy is worth US $11.5 trillion globally,

equivalent to 15.5 percent of global GDP and that has
grown two and a half times faster than global GDP over

the past 15 years.2

The world has woken up to the increasing importance
of software, and the question now for businesses
everywhere is not whether to embark on a digital
transformation of their business, but how to trans-
form successfully — and as soon as possible. For
new businesses, digital is not a question but a given.

Software Needs to Evolve
But digital transformation is not an end point; it is just
a beginning. By going digital, your organization is only
entering the game. To actually play and win, it is not
sufficient to build a great digital product or service just

once. Rather, it is imperative to continuously evolve
your digital solutions to keep meeting the needs of your
users and your market. After successful transformation,
you need to master software evolution.

Starting in 1974, Professor Manny Lehman and his col-
leagues famously sought to capture important insights
regarding software evolution by formulating a series
of Laws of Software Evolution.3 Though these laws
predate the dawn of our digital economy by several
decades, let’s review three of them for clues they hold
to help us evolve our digital assets:

• First law: law of continuing change. This law states
that any software system in an organizational context
“must be continually adapted, else it becomes pro-
gressively less satisfactory in use.” In other words,
software that is in actual use has the peculiar charac-
teristic of being indefinitely unfinished. Once a soft-
ware component has been created and first released,
it becomes the subject of a stream of subsequent
changes: bug fixes, updates, enhancements. Software
that does not evolve at the right speed and in the
right direction quickly falls out of use.

• Second law: law of increasing complexity. This
law states that “as a [software system] is changed its
complexity increases and becomes more difficult to
evolve unless work is done to maintain or reduce
the complexity.” Thus, with each evolutionary step,
the code tends to become messier and the architec-
ture more entangled, making it harder and harder
to apply further changes. Software that evolves
becomes difficult to evolve. An explicit effort is
needed to counteract this tendency.

• Fifth law: law of conservation of familiarity. This
law states that “the incremental growth (growth rate
trend) of [software] systems is constrained by the
need to maintain familiarity.” In other words, the
speed by which an organization can enhance and
grow its software systems is limited by its collective
intellectual capacity to understand the structure and
behavior of these systems. Knowledge dissipation
and software growth conspire to kill software
development productivity.

A SUSTAINABLE DIET

The World Is Eating Your Software
by Joost Visser

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 11

While these laws tell us that evolution is necessary
(first law), potentially self-defeating (second law),
and knowledge-bound (fifth law), they do not identify
the actual sources of evolutionary pressure. How is it,
exactly, that software “becomes progressively less
satisfactory in use” as time passes?

Evolutionary Pressure
As in biology, changes in the environment fuel evolu-
tion. For business software, the environment is the
marketplace. As Figure 1 illustrates, we can readily
identify five types of market forces:4

1. Innovation. Businesses compete by bringing new
or improved products and services to the market.
Software supports the production of products and
the delivery of services. Sometimes, software is an
integral part of the product. Other times, software
is the product. Business innovation drives software
change.

2. Cost reduction. Services and products that were
once innovative lose their differentiating power
when competitors start offering the same for less.
In markets where similar products or services
compete on price, the operational costs of the
software systems that support them become a
critical factor. Reduction of operational costs
drives software change.

3. Growth. A successful software business attracts
new users and retains existing ones. This leads
to a growth in interactions and in the volume of
data processed, stored, and served. Unless storage,
algorithms, and interfaces are optimized, the sys-
tem performance will degrade and hurt usability.
Growth drives software change.

4. Regulation. Governments are constantly at work
to change laws and regulations, be it for the
betterment of society or for propping up the
financial system. Such changes in the rules require
modifications not only to the governmental soft-
ware systems that enforce the rules, but also to
the software systems of banks, airlines, and other
businesses that must comply with these rules.
Laws and regulations drive software change.

5. Coevolution. Each software system is dependent
on others. For example, a Web store depends on a
payment system, a database system, an Internet
browser, several operating systems, and so on.
Apart from those execution-time dependencies,
software systems have development-time depend-
encies on libraries, frameworks, and development
tools. All those systems and components are like-
wise under evolutionary pressure. Changes in any
of these induce the need for updates in the system
that depends on them. Thus, changes in one system
drive changes in other systems by propagating
through the network of dependencies among them.

Figure 1 — The force field of software evolution.

http://www.cutter.com

12 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

While these environmental factors fuel software evo-
lution directly, they also have a significant indirect
effect. Each change inevitably introduces bugs. As a
result, the initial change indirectly leads to the need
for further changes (bug fixes) down the line.

These (direct and indirect) evolutionary pressures from
the marketplace explain Lehman’s first law of software
evolution (continuing change).5 But, according to laws
two (increasing complexity) and five (conservation of
familiarity), such evolution rapidly runs into problems
if the size and complexity of the system are allowed to
increase unchecked.

Survival of the Fittest
These problems are not imaginary. When seemingly
small feature requests take ages to complete, when
stability problems appear impossible to stamp out,
when developers are afraid to break the system when
making a change — these are the symptoms that your
digital asset has evolved into a liability.

Unable to relentlessly keep evolving your software
portfolio, your business will lose competitive power
and will fall behind. Your team will waste its time and
focus on software that does not make a competitive
difference. The experience of your users will become
unremarkable, and you’ll find yourself making excuses
rather than delivering on your promise.

Only the fittest survive in a world that is being eaten
by software. Those that do not evolve at the right pace
in the right direction will see their software eaten by
the world.

Making Evolution Sustainable
Sustainable evolution requires two more types of
change, not fueled by the marketplace, that must be
initiated internally (refer back to Figure 1):

1. Refactoring. The complexity of the program code
of a software system can be reduced through a
series of small changes that improve its structure

but preserve its behavior. Performing such incre-
mental code improvements is called “refactoring.”6
While refactoring takes effort, it does not provide
any direct value in terms of new functionality.
For this reason, developers may find it difficult to
justify their refactoring efforts to their colleagues
and managers. Nonetheless, timely and judicious
refactoring is generally considered a best practice to
keep code complexity in check and, hence, prevent
the second law of software evolution (increasing
complexity) from kicking in.

2. Commoditization. Modern software is not built in
a vacuum. Rather, a range of generally available
functionality from external software libraries,
frameworks, and services is used as a platform
on top of which new, innovative functionality
is created. However, the boundary between
“innovative” and “generally available” shifts over
time. Pieces of functionality that you developed
in-house several years or perhaps just a few months
ago may have given you a competitive edge then.
But others have taken notice and developed similar
components, perhaps in a more cost-effective,
smarter way.7 And recognizing the general utility of
this functionality, they may have made it available
as a reusable component. Your once-unique function-
ality has become a commodity, and the smart thing
to do is to exchange one for the other. Doing so
will relieve your team from continuing to evolve
that functionality, and you can instead focus on
functionality that makes you unique and competi-
tive. While swapping homebrew against commod-
ity may involve substantial effort, it can prevent
the fifth law of software evolution (conservation of
familiarity) from killing the productivity of your
developers.

Since refactoring and commoditization are not
sparked by external pressures, they are easily forgotten
or de-prioritized in favor of other types of change. They
are motivated by long-term sustainability and require
a degree of foresight that may feel antithetic to our
fast-paced digital age. The judicious application of
refactoring and commoditization is a critical success
factor, nonetheless.

Mastering Software Evolution
So what are the essential capabilities for any organiza-
tion to master software evolution, both on the engineer-
ing and on the leadership level?

Unable to relentlessly keep evolving your
software portfolio, your business will lose
competitive power and will fall behind.

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 13

Mastering software evolution means that leadership,
the business, and engineers need to work together to
balance the various evolutionary pressure factors in
such a way as to sustainably outpace the competition.
Sustainability means bringing new functionality to the
market while keeping your underlying software assets
healthy and nimble.

To achieve such balance is easier said than done. It
requires a form of data-driven design and decision
making that balances commercial and technical con-
siderations. Let’s review what is needed in terms of
data, design, and decisions.

Data
To feed your design and decision-making processes,
your organization needs to look for data in at least
three directions:

1. Look around. At any moment, your organization
needs to know what is available in terms of reusable
libraries, frameworks, services, tools, and technolo-
gies. And you need to have an informed opinion
on which of those may be useful to you. To get
this information, you can tap into external sources,
such as the ThoughtWorks Technology Radar.8
For a selected shortlist, you should consider a
more experiential approach, such as a hackathon.

2. Look inside. Your organization needs to have an
up-to-date inventory of its software assets. This
is not just a list of systems, but also their inter-
dependencies and their properties, including
volume, quality, rate of change, functional focus,
and technical health. To get this information, your
software development infrastructure needs to
include measurement instruments, such as code
scanners, architecture analysis tools, and metric
dashboards.

3. Look ahead. Your organization needs to know
which market needs you will likely need to satisfy
in six to 12 months. To get this information, you
need to have product owners on board that curate
a high-level backlog of product ideas that can be
detailed out into feature descriptions. To collect
these product ideas, your product owners need to
interact intensively with users, business represen-
tatives, thought leaders, and (whenever possible)
competitors.

These three data streams provide the basis for design
and decision making regarding software evolution.

Design
Your organization’s software design process must go
beyond the new functionalities you want to add. Design
must also deal with restructuring and eliminating
existing software components:

• Refactor. The purpose of refactoring is to improve
the design of the system to counteract complexity
increases (as described above), as well as to prepare
for upcoming additions and deletions. Your software
teams must master the art of refactoring and must
have the mandate to invest the necessary effort.

• Enhance. An optimally designed enhancement not
only takes into account what should be added in
terms of functionality, but also how and where in the
software the changes are to be implemented, given
what is known about the current state of software
components, their interdependencies, and their
likely commoditization trajectory. (For example, if
your next feature gives you a unique competitive
advantage, its implementation should not be mixed
in with low-level generic functionality; it should be
designed to remain confined to higher-level, product-
specific components.) Your product owners, archi-
tects, and developers must optimize enhancement
designs together.

• Eliminate. The design activity should include
determining what functionality to remove (or
replace by commodity components), when, and
how. Functionality that is no longer desired may
have been inextricably woven into the code, such
that significant refactoring is needed before it can
be replaced. Good software design takes future
replaceability of functionality into account.

Decisions
Only a small part of software development is about
editing code, while a very large part is about fast,
effective, and coherent decision making at all levels of
the organization. The sheer number of decisions to be
taken implies that not all decisions can be made at the
top. A large degree of decentralization is needed, while
coherence across the organization is safeguarded by
shared goals that are set centrally:

http://www.cutter.com

14 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

• At the engineering level, teams and individuals are
empowered to make fast, informed decisions about
as much as possible. These decisions are constrained
by shared goals.

• At the leadership level, constraints for decentralized
decision making are set in terms of goals (what and
when, not how). These goals must be continuously
reviewed and any changes in these goals must
be communicated clearly and broadly within the
organization.

Litmus Test
So what are the critical questions you should ask if you
want to determine whether your software evolution
capability is ready for what lies ahead? After transfor-
mation comes evolution. Is your organization ready
for the long haul? Here are some critical questions to
ask yourself:

• Does everybody know and agree on which of
our software components give us competitive
advantage? Are the teams assigned to these compo-
nents aware of what new functionalities likely need
to be added in the next six months? Are required
changes to these components made diligently and
without compromising their structural quality?

• How about the components that do not give us
competitive advantage? Are they few and well
isolated? Do we have a clear plan and timeline for
removing them or replacing them with commodity
components? Is that timeline shorter than three
months?

• Do our engineers enjoy and master the art of
continuous removal of the nonessential elements
of the portfolio? Are we refactoring the codebase
continuously, and in small increments, to prepare for
removal of noncore components? Are we removing
code at the same pace as adding code? Do we
celebrate decommissioning components even when
we (recently) invested blood, sweat, and tears to
create them?

If your answers are affirmative, you are able to keep
your software healthy, nimble, and focused on what
you need to compete. If not, you will gradually lose
the ability to adapt quickly to new market needs, regu-
lations, and technological opportunities. The world
moves on while your software falls behind.

Conclusion
In this article, we discussed the inevitability of software
evolution, pressured by market factors, such as the
need to innovate, reduce costs, grow, comply with
new regulations, and coevolve with other systems.
Under these pressures, software evolution risks being
self-defeating, leading to increasing complexity and
diminishing competitive power.

To evolve software sustainably, organizations must
balance these external pressures with an internal drive
to continuously improve the software’s internal struc-
ture (refactoring) and regularly swap out functionality
developed in-house for commodity components
supplied by others. To achieve this balance requires
decentralized design and decision-making capabilities
that feed off a steady stream of data about upcoming
functional needs, external technology developments,
and the current condition of your internal digital assets.

In our digital economy, the capability to evolve
software, fast and continuously, is key. Either your
software eats the world, or the world eats your
software.

References
1Andreessen, Mark. “Why Software Is Eating the World.”
The Wall Street Journal, 20 August 2011.

2Xu, William, and Adrian Cooper. “Digital Spillover  — 
Measuring the True Impact of the Digital Economy.”
Huawei and Oxford Economics, 5 September 2017.

3Lehman, Meir M. “Laws of Software Evolution Revisited.”
Proceedings of the 5th European Workshop on Software Technology,
Springer, 1996.

4Visser, Joost. “Change is the Constant.” ERCIM News,
2 January 2012.

5Lehman (see 3).

6Fowler, Martin. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

7Boulding, William, and Markus Christen. “First-Mover
Disadvantage.” Harvard Business Review, October 2001.

8ThoughtWorks Technology Radar
(https://www.thoughtworks.com/radar).

Joost Visser has held various leadership roles for the past 12 years at
the Software Improvement Group, a technology-based consultancy
firm that helps organizations get and remain in control of the software
their businesses rely on. He has written numerous publications on
measuring and managing software quality and economics and is
the author of Building Maintainable Software and Building
Software Teams. Dr. Visser is Professor of Software Science with
a focus on large-scale software systems at Radboud University,
the Netherlands. He can be reached at j.visser@cs.ru.nl.

https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.huawei.com/minisite/gci/en/digital-spillover/
https://www.huawei.com/minisite/gci/en/digital-spillover/
https://link.springer.com/chapter/10.1007%2FBFb0017737
https://ercim-news.ercim.eu/en88/keynote/change-is-the-constant
https://link.springer.com/chapter/10.1007%2FBFb0017737
https://www.amazon.com/gp/product/0201485672
https://www.amazon.com/gp/product/0201485672
https://hbr.org/2001/10/first-mover-disadvantage
https://hbr.org/2001/10/first-mover-disadvantage
https://www.thoughtworks.com/radar

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 15

Without a doubt, software has become pervasive and
indispensable. It is now everywhere and has impacted
almost every aspect of our day-to-day activities and
nearly every industry. Supported by such technologies
as cloud computing, the Internet of Things (IoT), and
artificial intelligence (AI), software has revolutionized
the world. It continues to transform business, educa-
tion, healthcare, banking, and many other key sectors,
including government and politics. Indeed, the World
Economic Forum’s Global Agenda Council on the
Future of Software & Society identified 21 examples
of software-enabled changes that will strongly affect
“human health, the environment, global commerce
and international relations.”1 As the council’s report
highlights, “We are entering a time of momentous
societal shifts brought on by advancements in soft-
ware.... These changes will impact people around
the world.”

While the rise of software and its valuable influence is
now common knowledge for most, what many people
— even IT professionals and business executives —
don’t recognize is that software, particularly in the
last two decades, has also transformed the software
industry. In other words, software has “eaten” or auto-
cannibalized2 software, much like the ouroboros, the
mythical emblematic serpent of ancient Egypt, India,
and Greece, eating its own tail and being reborn from
itself (see Figure 1).3 The expectations end users have
of software today are significantly different than
those they had just a few years ago. Previously, users
expected software to perform predefined and prepro-
grammed functions, such as automating business
processes. Today, however, users expect software to
be both smart and adaptive, changing itself (like the
ouroboros). The purpose of this article is to articulate
the nature of these rising expectations and examine
what managers should focus on in developing newer
software.

The impact of the ongoing transformation of software
and the software industry is — and will continue to be
— significant and widespread. Those that fail to pay

attention to the next frontiers in software are putting
themselves at risk. Thus, organizations and software
developers alike should ready themselves for this new
world of software. Understanding and adapting to
the new software landscape, collaborating with major
global partners as well as startups and “crowds,”
and being continuously innovative have become ever
more important. Being prepared to navigate the new
software landscape requires awareness of its ongoing
changes and an understanding of their implications.

We begin with a brief outline of how software has
evolved and what has changed in the software arena,
particularly in the last few decades. Next, we examine
how, over the years, software has transformed itself and
its own development. We also discuss the implications
of software evolution and offer recommendations on
how business leaders can embrace and adapt to a new
era in software.

Software: What Has Changed?
Many aspects of software have changed in the last
few decades, particularly since the advent of personal
computers in the 1980s, the World Wide Web in the

Software as the Ouroboros:
Implications for Software Developers and Business Leaders

INFINITE LOOP

by Sunil Mithas, Kaushik Dutta, and San Murugesan

Figure 1 — The ouroboros.

http://www.cutter.com

16 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

1990s, and the widespread use of mobile and cloud
computing in the last decade or so. Other key changes
have been the massive trend toward outsourcing and
offshoring in the 2000s and the widespread use of social
media beginning in the 2010s. In turn, social media,
along with mobile and cloud computing, created
a trend toward the consumerization of IT that has
challenged the software industry and IT departments.

Software companies and IT departments responded
to some of these technologies and trends by making
dramatic changes in software development methodolo-
gies and initiating Agile methods and design thinking
approaches that create closer collaboration among
software developers and customers to develop and
improve software. In some cases, the need to address
constant customer feedback and facilitate closer
collaboration has brought software development
back in-house (as part of a backsourcing initiative)
and has promoted a hybrid model of computing that
includes both on-premise and cloud computing.

We have also seen a parallel trend emerging toward
the use of AI for software development in two primary
roles: (1) AI as a tool to program software, and (2) AI as
the software itself (aka Software 2.04). In the first role,
AI directly writes program code or indirectly helps
human programmers to write program code; in the
second role, AI is the software, and the software gets
trained, eliminating the need for coding. Both roles
exemplify how software is rapidly changing itself.

A key trend today is autonomous software, where
software has the ability to change itself. The crudest
such example is the automatic software update, where
software (such as the Windows operating system or

mobile device application) downloads periodic updates
and replaces itself with the newer version of the soft-
ware. A more futuristic scenario already underway is to
use AI and the cloud to identify any potential bugs or
issues and to fix those automatically without human
intervention.

On the whole, software development has undergone
major transformations over time. Newer developments
in software often feed on themselves, rendering pre-
vious developments and approaches obsolete, just as
the ouroboros metaphor suggests.

Software Evolution in Recent Decades
To understand the evolution toward autonomous
software, we must realize that the most significant
change in the last decade has been the availability of
increased bandwidth to connect hardware across
distant geographical regions, keeping in mind that
hardware supports software. In 2018 alone, the average
Internet speed in the US grew by 40%.5 From 2007 to
2018, average Internet speed grew from 3.5 Mbps in
2007 to 18.5 Mbps at the end of 2017.6 Such massive
growth in Internet speed has enabled the growth of the
cloud, which allows accessing of remote applications
from anywhere in the world. This improved connec-
tivity has also been a catalyst to allow applications to
run in a distributed fashion. Both of these advances
have enabled organizations to use the cloud and mass-
ively parallel distributed systems such as Hadoop and
Spark to store and analyze large volumes of data at very
low cost. Figure 2 depicts the evolution of software over
the past decade, powered by technical infrastructure
(network bandwidth leading to cloud).

Figure 2 — Evolution of software in the last decade.

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 17

The ability of organizations to run massively parallel
distributed systems in a very cost-effective way in
the cloud has, in turn, given birth to the ubiquitous
application of AI. Interestingly, the fundamentals of
AI were developed back in the 1960s,7 but hardware
limitations restricted its growth and use. Easy and fast
hardware connectivity together with a distributed
software platform on top has made the application of
AI a reality in today’s world. Even small and medium-
sized organizations, as well as startups, are applying AI
to solve new problems.

Although Moore’s law as we knew it no longer holds,
that has not held up the growth of software due to the
shift from a centralized system to a globally distributed
system and the distributed nature of today’s applica-
tions.8 Today’s managers need to think of software that can
run anywhere, can be accessed from anywhere, and can be
scaled limitlessly.

Increased bandwidth has played a major role in
opening access to computing devices to the masses.
Though mass access to computing devices is commonly
credited to mobile devices such as smartphones, iPads,
and tablets, one needs to remember that netbooks9 and
Palm devices10 were around in the late 1990s. It is the
improved bandwidth and the cloud, however, that have
made smartphones and other mobile devices vastly
attractive to the masses. These devices provide virtually
everyone with unfettered access to information and
computational power, in contrast to an earlier period
when consumers needed a bulky and costly computing
device to access applications and information that were
otherwise out of reach. Mobile device–based apps,
along with cloud-based computation, have given most
consumers access to AI and other complex applications.
Managers need to think about how these capabilities can be
used to reach the mass of consumers.

Consider the current popularity of the IoT. Easy con-
nectivity allows IoT-based software applications to
reach consumers in ways that were only science fiction
in the 1960s. Amazon’s Alexa can order groceries for
you because it knows what is in the refrigerator. The
software in a Tesla car can report problems and fix the
relevant software per instructions downloaded from
the cloud. Software is now embedded in every device
consumers use. This software not only enables device
connectivity but also monitors the health of the device
and autocorrects itself. The software in these devices
can now even predict failure before the failure occurs.
Think about a scenario where your air-conditioning unit
tells you to find a service technician to address a few
issues before it fails.

AI and the cloud are playing an important role in mak-
ing possible self-maintained, auto-corrected software
that can identify defects and take action. Such software
requires massive data collection, data processing, and
application of AI. Ubiquitous access to the cloud and
enormous bandwidth availability from edge devices in
the IoT make this scenario possible. Examples include
Tesla cars and smart home devices, such as washing
machines, refrigerators, and air-conditioning units.

New generations of self-managed software have created
new expectations on the part of consumers. Consumers
are no longer willing to wait for a service technician
or to take a product (such as a car) to a service center.
Consumers want problems with products and services
to be taken care of without disruption and as efficiently
as possible. One vivid example is Tesla’s recent brake
problem, which traditionally would have required the
car to be taken to a service center; instead, Tesla fixed
the problem through a remote software update.11

In today’s world, managers shouldn’t just develop
software. Managers need to integrate software with
other devices and platforms, such as IoT devices and
smart devices, and make that software self-manageable
(i.e., autonomous). Without adopting self-manageable,
self-evolving, self-maintaining, autonomous software,
enterprises cannot thrive in today’s new world.

Implications of Changes in
Software Development
The implications of the changes discussed above are
enormous. In this section, we discuss three of those
implications: (1) more pervasive and affordable
software; (2) dual strategies; and (3) the redefined
role of IT professionals.

1. More Pervasive and Affordable Software
First, software has become more pervasive and afford-
able. Moreover, software development and deployment
— and the software business in general — have become
more democratic, as evidenced by the ability of indi-
vidual software developers to create apps, fix bugs, or
make improvements (e.g., the open source movement).

Today’s managers need to think of software
that can run anywhere, can be accessed from
anywhere, and can be scaled limitlessly.

http://www.cutter.com

18 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Software no longer means the dominance of big soft-
ware companies that have the infrastructure to distrib-
ute their software. Furthermore, software development
tools have evolved to be more AI- and cloud-based.
Examples include GitLab, Ansible, Packer, Nagios,
Puppet, and ELK. Further still, the evolution of intel-
ligent software has made software development easy
and possible even for small software companies with
fewer resources. Such small companies and startups
can now develop and distribute software at a scale that
no one could imagine 10 years back.

2. Dual Strategies
Second, firms are having to innovate with high quality
and high velocity at the same time, as illustrated by
Apple, Google, and Amazon, to meet or create customer
demand. These firms often follow “dual strategies,” in
contrast to conventional “either-or” strategies, such as
either efficiency or innovation, or either exploitation
of current resources or exploring and embracing new
opportunities. However, executing dual strategies is not
easy, and successful execution requires a new approach
called “disciplined autonomy.”12 Disciplined autonomy
is defined as the extent to which an organization adopts
work templates or standards while providing sufficient
autonomy to employees and developers.

One way of thinking about disciplined autonomy in IT
projects is to realize that the traditional focus of IT project
management has been on discipline, evident in waterfall-
like approaches and process maturity frameworks such
as CMMI. In contrast, newer approaches, like Agile and
Scrum, allow individuals and teams greater autonomy to
respond to the volatility of business environments and
changing customer needs. Such disciplined autonomy
techniques are particularly valuable in uncertain envi-
ronments. The value of software-based strategies lies in
enabling managers to pursue disciplined autonomy.

At the level of platforms, Alphabet, Amazon, Facebook,
and Apple appear to demonstrate disciplined autonomy
in their platform strategy when they allow third-party
developers to provide complementary solutions. In
such cases, platforms leverage outside innovation by

granting considerable autonomy to third parties while
encouraging desirable behaviors through governance
and APIs. This notion of disciplined autonomy also
applies to conglomerates with loosely connected firms
or business units. For example, Google was reorganized
as a subsidiary of Alphabet to provide it autonomy
within the overall organizing logic that Alphabet
provides. Conglomerates like GE and the Tata Group
have followed a similar approach to grant business
units sufficient autonomy in their respective businesses
while leveraging potential synergies. Other approaches
to create disciplined autonomy include Humana’s “Palo
Alto culture” in Kentucky;13 use of autonomous squads
arranged in circles or subcircles at Zappos;14 and
squads, chapters, tribes, and guilds at Spotify.15

3. Redefined Role of IT Professionals
The third implication of changes in software develop-
ment approaches is the redefined role of and demand
for IT professionals.16 Increasingly, the use of AI for
software development raises fears about job losses
for programmers, a fear that is not totally unfounded.
Software developers need to be prepared for a world
in which AI will increasingly perform lower-level
programming tasks. That does not mean that all
software jobs will disappear, as Nobel Laureate and
father of AI Herbert Simon feared back in the 1960s.17
Indeed, AI can create new jobs or change the nature
of activities that a software developer performs.18 For
example, AI assistance can help human programmers
avoid coding errors by acting as a pair-programming
partner. Even if AI were to completely replace the
software code in relatively stable tasks or situations,
we would likely still need conventional programming
in more dynamic or creative environments to delight
customers or serve their latent needs. In such situations,
software developers will design and develop the
architecture that brings together AI modules to solve
a problem. They will also focus on data governance
and activities requiring judgment and creativity and
will address ethical questions relating to bias and
discrimination. Moving ahead, developers will write
software with the assistance of AI and the cloud and,
increasingly, the software they are writing will be
designed to be autonomous.

Role of Senior Leaders and Managers
So what do changes and developments in the software
industry mean for senior leaders and managers? In this

Software developers need to be prepared for
a world in which AI will increasingly perform
lower-level programming tasks.

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 19

section, we discuss several steps they need to take to
avoid the curse of ignoring the need for transformation
that afflicted incumbents like Borders and Blockbuster.

First, all managers must develop a vision that embraces
software-driven strategies, recognizing that, increasingly,
it is software that powers their business processes and
provides competitive advantage. Following on from that,
managers need to articulate their software strategy
as part of their business strategy by questioning and
abandoning conventional strategy concepts based
on the logic of “tradeoffs” in favor of newer ways of
thinking based on the logic of “tradeons,” because
software can allow firms to pursue seemingly para-
doxical objectives such as revenue growth and cost
reduction at the same time.19

Second, managers should continuously transform their
organizations by scanning for and intelligently deploying
new technologies. They should avoid handicapping
themselves by making imprudent use of outsourcing
when what is being outsourced involves skills critical
for the organization’s future. Moreover, they should
use configurational logic,20 which supports multidimen-
sionality in thinking about strategies and governance
processes, because it is not just one lever that provides
competitive advantage, it is simultaneously pulling
multiple levers that allows organizations to occupy
profitable and sustainable niches.21

Third, managers should pay attention to governance proc-
esses to ensure successful deployment of their strategies and
should become involved in the careful consideration of IT
decision rights (i.e., who decides what), the structure and role
of the IT department, how much to spend on IT, and how to
deliver IT services internally and externally. Furthermore,
they should think of their governance system as a
platform for integrating strategic initiatives, similar
to an operating system, which allows a variety of
applications to be built on a common platform.22

Fourth, managers must become involved in executing IT
projects, which requires (1) being aware of technology
evolution; (2) making informed decisions regarding
technology upgrades; and (3) helping to adopt, diffuse,
and exploit IT systems.

Fifth, managers need to adopt, where needed, software that
can run anywhere, can be accessed from anywhere, and can
be scaled limitlessly. Managers need to use newer tech-
nologies, such as AI and the cloud, to achieve these
requirements.

Sixth, managers need to determine how to reach the mass
of end users with AI and cloud-based software leveraging
mobile devices. Managers must integrate that software
with other devices (e.g., smart devices and IoT devices)
by means of AI, the cloud, and a high-bandwidth
network and make the software self-manageable
(i.e., autonomous) so that it can adapt itself to a given
context and repair itself.

Finally, managers must realize that no one technology
or software by itself provides a competitive advantage.
Managers must empower their organization to ask
critical questions related to newer technologies and
their business relevance amid changing customer tastes
that leads to creating a data-driven, decision-making
culture that will foster organizational survival.

Conclusion
Ongoing changes in software development approaches
and continuing advances in AI will bring significant
transformation to the IT profession and the work of
software developers. To avoid becoming obsolete,
software developers must stay abreast of new technol-
ogy developments to keep their skill sets current and
relevant. Senior leaders need to be aware of software
trends and their implications and be innovative in
effectively embracing both human intelligence and
AI to solve business and societal problems and to
leverage the new opportunities that software
advances bring.

References
1Global Agenda Council on the Future of Software & Society.
“Deep Shift: 21 Ways Software Will Transform Global Society.”
World Economic Forum, November 2015.

2Mehra, Rohan. “Autocannibalism Is When You Eat Bits of Your
Own Body.” BBC, 13 December 2016.

3Bekhrad, Joobin. “The Ancient Symbol That Spanned
Millennia.” BBC, 4 December 2017.

Managers should continuously transform
their organizations by scanning for and
intelligently deploying new technologies.

http://www.cutter.com
http://www3.weforum.org/docs/WEF_GAC15_Deep_Shift_Software_Transform_Society.pdf
http://www.bbc.com/earth/story/20161213-autocannibalism-is-when-you-eat-bits-of-your-own-body
http://www.bbc.com/earth/story/20161213-autocannibalism-is-when-you-eat-bits-of-your-own-body
http://www.bbc.com/culture/story/20171204-the-ancient-symbol-that-spanned-millennia
http://www.bbc.com/culture/story/20171204-the-ancient-symbol-that-spanned-millennia

20 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

4Karpathy, Andrej. “Software 2.0.” Medium, 11 November 2017.

5Molla, Rani. “US Internet Speeds Rose Nearly 40 Percent This
Year.” Vox, 12 December 2018.

6Holst, Arne. “Average Internet Connection Speed in the United
States from 2007 to 2017 (in Mbps), by Quarter.” Statista,
13 August 2018.

7Solomonoff, R.J. “Some Recent Work in Artificial Intelligence.”
Proceedings of the IEEE, Vol. 54, No. 12, 1966.

8Simonite, Tom. “Moore’s Law Is Dead. Now What?”
MIT Technology Review, 13 May 2016.

9Finnegan, Matthew. “Slide 7: Laptops, Tablets, and Smart-
watches: The Evolution of Mobile Computing.” Computerworld,
16 February 2015.

10Finnegan, Matthew. “Slide 8: Laptops, Tablets, and Smart-
watches: The Evolution of Mobile Computing.” Computerworld,
16 February 2015.

11Marshall, Aarian. “Tesla’s Quick Fix for Its Braking System
Came from the Ether.” Wired, 30 May 2018.

12Mithas, Sunil, Thomas Kude, and Sorel Reisman. “Digitization
and Disciplined Autonomy.” IT Professional, Vol. 19,
September/October 2017.

13Loftus, Tom. “Can You Put a Little Palo Alto Into an Insurer in
Louisville?” The Wall Street Journal, 28 April 2015.

14Berman, Dennis. “Tony Hsieh Tells How Zappos Runs
Without Bosses.” The Wall Street Journal, 26 October 2015.

15Rigby, Darrell K., Jeff Sutherland, and Hirotaka Takeuchi.
“Embracing Agile.” Harvard Business Review, May 2016.

16Mithas, Sunil, Thomas Kude, and Jonathan Whitaker.
“Artificial Intelligence and IT Professionals.” IT
Professional, Vol. 20, No. 5, September/October 2018.

17Simon, Herbert A. “The Corporation: Will It Be Managed by
Machines?” In Management and Corporations 1985, edited by
Melvin Anshen and George Leland Bach. Praeger, 1975.

18Mithas, Kude, and Whitaker (see 16).

19Mithas, Sunil, and Roland T. Rust. “How Information
Technology Strategy and Investments Influence Firm
Performance: Conjecture and Empirical Evidence.” MIS
Quarterly, Vol. 40, No. 1, March 2016.

20Configurational logic relies on the notions of conjunctural
causality (as opposed to the effect of just one focal variable),
equifinality (multiple pathways to achieve an outcome), and
asymmetric causality (if the presence of a factor is necessary for
success, that by itself does not mean that absence of that factor
will necessarily lead to failure). These notions are sharply
distinct from dominant conventional notions that rely on
singular focus on one variable, unifinal outcomes (only one
way to achieve an outcome), and symmetric causality.

21Park, YoungKi, and Sunil Mithas. “Organized Complexity of
Digital Business Strategy: A Configurational Perspective.”
MIS Quarterly, forthcoming, 2019.

22Mithas, Sunil, and F. Warren McFarlan. “What Is Digital
Intelligence?” IT Professional, Vol. 19, July-August 2017.

Sunil Mithas is a Professor in the Department of Information Systems
and Decision Sciences, Muma College of Business, University of
South Florida. Previously, he taught at the Robert H. Smith School
of Business, University of Maryland, and has held visiting positions
at UNSW Business School, Australia; University of Mannheim,
Germany; and University of California, Davis. Dr. Mithas is among
the top IS scholars in the world, and his interdisciplinary work has
appeared in premier business journals. He has worked on research or
consulting engagements with various organizations, including A.T.
Kearney, Ernst & Young, Johnson & Johnson, the US Social Security
Administration, and the Tata Group, and is a frequent speaker at
industry conferences for senior leaders. Dr. Mithas is Senior Editor
of MIS Quarterly and Production and Operations Management;
Department Editor of Management Business Review; and serves
on, or has served on, the editorial boards of Information Systems
Research and Journal of Management Information Systems.
His papers have won best-paper awards and have been featured in
various practice-oriented publications and websites, such as MIT
Sloan Management Review, CIO, and Bloomberg. Dr. Mithas
earned his PhD from the Ross School of Business, University
of Michigan, and an engineering degree from IIT Roorkee, India.
He can be reached at smithasusf@gmail.com.

Kaushik Dutta is a Professor, Department Chair, and Muma Fellow in
the Department of Information Systems and Decision Sciences, Muma
College of Business, University of South Florida. He has 22 years’
professional and research experience in the field of enterprise IT
infrastructure, data analytics, and big data systems. Dr. Dutta's
current interest is in the area of mobile advertisement, healthcare,
and the application of blockchain in enterprise applications. He
has published 35 journal articles and 64 peer-reviewed conference
publications and holds patents in the areas of IT infrastructure,
caching, and cloud security. Dr. Dutta has received about US $2
million in funding from public and private organizations for research,
student projects, and university IT infrastructure. He has served
as a reviewer of many IEEE, ACM, and INFORMS journals and
conferences. Previously, Dr. Dutta was Associate Professor at
National University of Singapore and Florida International
University, and he was CTO of Mobilewalla, a Madrona-funded
company that developed a big data–based mobile data platform.
He can be reached at duttak@usf.edu.

San Murugesan is a Senior Consultant with Cutter Consortium’s
Data Analytics & Digital Technologies practice, Director of BRITE
Professional Services, and an Adjunct Professor in the School of
Computing and Mathematics, Western Sydney University, Australia.
He is Editor-in-Chief Emeritus of IEEE’s IT Professional. Dr.
Murugesan has four decades of experience in both industry and
academia, and his expertise and interests include AI, the Internet of
Everything, cloud computing, green computing, and IT applications.
He offers certificate training programs on key emerging topics
and keynotes. Dr. Murugesan is coeditor of a few books, including
Encyclopedia of Cloud Computing and Harnessing Green IT:
Principles and Practices. He is a member of the COMPSAC
Standing Committee and a fellow of the Australian Computer Society.
Dr. Murugesan held various senior positions at Southern Cross
University, Australia; Western Sydney University, Australia; the
Indian Space Research Organization; and also served as Senior
Research Fellow of the US National Research Council at the NASA
Ames Research Center. He can be reached at smurugesan@cutter.com.

https://medium.com/@karpathy/software-2-0-a64152b37c35
https://www.vox.com/2018/12/12/18134899/internet-broafband-faster-ookla
https://www.vox.com/2018/12/12/18134899/internet-broafband-faster-ookla
https://www.statista.com/statistics/616210/average-internet-connection-speed-in-the-us/
https://www.statista.com/statistics/616210/average-internet-connection-speed-in-the-us/
https://ieeexplore.ieee.org/document/1447180
https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
https://www.computerworld.com/article/3412220/laptops--tablets-and-smartwatches--the-evolution-of-mobile-computing.html#slide7
https://www.computerworld.com/article/3412220/laptops--tablets-and-smartwatches--the-evolution-of-mobile-computing.html#slide7
https://www.computerworld.com/article/3412220/laptops--tablets-and-smartwatches--the-evolution-of-mobile-computing.html#slide8
https://www.computerworld.com/article/3412220/laptops--tablets-and-smartwatches--the-evolution-of-mobile-computing.html#slide8
https://www.wired.com/story/tesla-model3-braking-software-update-consumer-reports/
https://www.wired.com/story/tesla-model3-braking-software-update-consumer-reports/
https://www.computer.org/csdl/mags/it/2017/05/mit2017050004.pdf
https://www.computer.org/csdl/mags/it/2017/05/mit2017050004.pdf
https://www.wsj.com/articles/can-you-build-palo-alto-culture-in-a-kentucky-insurance-company-1430264506
https://www.wsj.com/articles/can-you-build-palo-alto-culture-in-a-kentucky-insurance-company-1430264506
https://www.wsj.com/articles/tony-hsieh-tells-how-zappos-runs-without-bosses-1445911325
https://www.wsj.com/articles/tony-hsieh-tells-how-zappos-runs-without-bosses-1445911325
https://hbr.org/2016/05/embracing-agile
https://ieeexplore.ieee.org/document/8509563
https://www.amazon.com/Management-Corporations-1985-Anniversary-Administration/dp/0837180511
https://www.amazon.com/Management-Corporations-1985-Anniversary-Administration/dp/0837180511
https://ieeexplore.ieee.org/document/8509563
https://dl.acm.org/citation.cfm?id=3177615
https://dl.acm.org/citation.cfm?id=3177615
https://dl.acm.org/citation.cfm?id=3177615
https://misq.org/skin/frontend/default/misq/pdf/Abstracts/14477_SI_CIS_ParkMithasAbstract.pdf
https://misq.org/skin/frontend/default/misq/pdf/Abstracts/14477_SI_CIS_ParkMithasAbstract.pdf
https://ieeexplore.ieee.org/document/8012308
https://ieeexplore.ieee.org/document/8012308

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 21

As software continues to work its way into every corner
of our daily lives, no industry will be spared. While
many new companies get their start every year as
digital-first organizations, many predigital companies
that helped forge the world as we know it are facing
the more challenging task of adapting to this changing
tide. Industries such as construction and logistics are
tackling not only the pressure to adapt to digitally
driven ways of working, but also to continue innovat-
ing. And software systems are not just the new baseline;
they’re uncovering insights and creating opportunities
to expand your business’s capabilities and to offer new
services you might never have predicted.

These innovations don’t come to businesses magically,
though. They require hard work and discipline to craft
software systems capable of supporting them. Like most
new capabilities, the execution matters as much as — or
more than — the strategy. Building the correct software
execution muscle starts with building the right team.
Transitioning from an IT labor strategy to a modern
software labor strategy is key.

Why Is It So Important to Start
with Labor Strategy?

These Employees Will Manage
Your Biggest Cost Center
Technology is becoming the largest cost center for more
and more companies, and these costs are still growing.
A survey last year of 500 US executives from privately
held companies discovered that 57% of mid-market
businesses were spending more on tech than they did
the year before, while a third of respondents were
spending more than 5% of their annual revenues on
technology.1 Another survey that collected responses
from nearly 4,000 CIOs and technology leaders across
84 countries found similar trends: 86% of respondents
expected their IT budgets to increase or stay the same,
with 47% expecting to increase headcount on their IT
teams.2

These investments are not purely to support innovation.
While newer initiatives, such as protecting against
cybersecurity threats and launching new digital
initiatives, account for a large share of the projected
US $4 trillion in IT spending worldwide, a CNBC report
identified enterprise software as the fastest-growing
area of tech investment.3 Companies that don’t consider
themselves tech hubs are being forced to keep up by
building modern infrastructure to allow for rolling
upgrades, cloud migration, and integration of new
insights into a system not designed to support constant
changes.

None of this work is simple, and companies need to
invest in experts to ensure they transition their soft-
ware systems to successfully take advantage of the new
technology. The biggest cost and risk in these continual
transitions are associated with the team and the team
members’ expertise. And none of these costs is likely to
decrease any time soon.

A Different Way of Working
IT investments cause a ripple effect that goes beyond
a company’s balance sheets and into its everyday
operations. As mentioned earlier, software execution
matters as much as software strategy, and high-quality
software execution requires a new way of working that
is foreign to most traditional companies.

Traditional businesses have typically grown successful
through hierarchical processes. Specific tasks, goals,
and priorities are handed down from executives to
managers and then delegated to teams. Higher levels
of authority in the business in many ways dictate the
teams’ daily work.

DON’T GET SWALLOWED UP!

Transformation Starts with the Team
by Paul Pagel

Like most new capabilities, the execution
matters as much as or more than the
strategy.

http://www.cutter.com

22 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Today’s modern, high-quality software cannot be built
this way. Software teams must be highly collaborative,
with frequent feedback loops of multilateral commu-
nication. While executives and managers can help set
a vision, it is the software team of product owners,
designers, and developers who will make the thous-
ands of decisions that will determine the end results.
Consequently, the feedback loops and specialties will
develop inside the team rather than going through the
hierarchy.

Transaction Costs Are Very High
Building teams capable of executing at this level is not
easy. The market has a shortage of experienced, highly
skilled software developers, and even when you do
manage to hire the best and brightest developers and
designers, they will still require a significant investment
in onboarding and training to get them comfortable in
your unique domain, ecosystem, and team workflows.
The transaction costs in recruiting, training, and
retaining this talent start high and will grow with
volatility.

This underscores the importance of building your
software team the right way, from the ground up. If
you invest in hiring the right people to work on the
right problems, the culture created will decrease the
transaction costs involved in software talent.

Why Is Software Delivery Talent
So Difficult to Find?

High-Complexity Activity
Computer science is fractal in nature. At each layer of a
system’s stack, and at each level of abstraction, there is
a dizzying amount of complexity that is easy to get lost
in. Your team will need to understand complexity at
each of these layers well enough to understand the
tradeoffs of different design decisions and how they

might impact larger decisions such as scope and flexi-
bility as your system matures.

Trying to manage your labor within this ecosystem is
equally challenging. It’s often difficult to know how
long a task will take until the developer has begun
building the feature and you can see how the codebase
responds. Your leadership team will need to account
for this ambiguity by growing comfortable with more
uncertainty than you’re used to when building budgets,
forecasts, and project plans.

Generalist and Specialist Skill Sets
Requirement
It’s unrealistic to think any one developer can under-
stand all the complexity described above. You need to
build a team of complementary skill sets and give that
staff the time and space to build expertise to handle the
unique problems and constraints across your system.

Your team will need to feature two different kinds of
expertise: breadth and depth. You will need developers
with a detailed understanding of the holistic system:
where are the important interaction points, what are
the key dependencies, and how is the system shaped?

You will also need team members with expertise in
some of the specialties in the system; for example,
operations, front-end development, or data engineering.
The specialist expertise required may change depend-
ing on the nature of the problems you need to solve,
but it is critical to build the team with the right skill
sets and to ensure they are fully utilized.

Both types of experts are essential to your team and
to your ability to understand and plan for the complexi-
ties within your system in a responsible way. But they
cannot exist in a silo. These two types of experts are
most valuable when they interact with each other.
This adds a layer of complexity to team management
decisions, as there cannot be a full division of labor
across your system. The different team members focus-
ing on different problems need to constantly learn from
each other and collaborate if they are to achieve a high-
quality solution optimized for your system.

What makes this arrangement even more challenging is
that neither of these types of expertise is static. Every six
months, thought leaders introduce new architectural
concepts that can improve your system, and new tools
will show up to support new languages. Becoming an

You need to build a team of complementary
skill sets and give that staff the time and
space to build expertise to handle unique
problems and constraints.

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 23

effective expert in even one specific component requires
actively looking outside of your company’s code for
new ways to constantly improve the system.

No Formal Path to Trained Expert
With so much fluctuation within an expertise, it should
not be a surprise that there is no standard path to
becoming an expert. There is no straight line from
novice to expert. Every developer’s journey to mastery
goes through fits and starts, leaps and setbacks, and
will only result in true mastery if every step is built on a
solid foundation. The immaturity of the industry means
there is no consistent institution or curriculum to ensure
the foundation exists.

While everyone walks his or her own path, the industry
has failed to establish an agreed-upon way to measure
progress, and there is no standard way to gauge
competency in a software discipline. Many in the
industry have adapted by placing an emphasis on
length of experience. If you scroll through any of the
thousands of job postings looking for software devel-
opers, you will see teams looking for developers with
some specified amount of experience — 5, 10, even 15
years’ professional experience using technologies that
have barely been around that long.

This metric, however, is woefully inadequate for
judging someone’s actual capabilities. Simply deliver-
ing software is an insufficient metric, and it becomes
misleading in predictable ways. Software development
10 years ago looked a lot different than developing
today’s modern software systems. Every year we
discover new ways of architecting our code, gain new
tools to build on new platforms, and discover new best
practices to apply to these. As a result, the experience
of developing a particular product 10 years ago is often
less relevant than the lessons you would have gained
from developing a similar product just 10 months ago.

Throughout my career, I have seen dozens of software
crafters with only a few years’ experience mentor others
who — though they have been industry professionals
for decades — had never been taught to follow the
more foundational principles and practices that lead
to higher-quality software. While the experienced
developer might have a better recall of idiomatic
nuances, the inexperienced one may be the developer
who understands how to apply best practices and will
drive your team to success.

Another popular approach to training developers for
success has been the influx of coding bootcamps and
similar programs. These programs are good crash
courses for developers to quickly get up to speed
on the skills they need to contribute to a particular
software stack, but the expediency of this training is
often chasing after trailing indicators of what the
industry wants.

One lesson we can take away from these programs
is that there’s no shortcut to mastery. It requires an
ongoing investment in continual learning at every
stage of a developer’s career.

Fast-Changing Skill Sets
These problems are endemic to software because
the industry itself has immature and changing best
practices. Software is still a relatively new discipline,
and the frequency of change in tools and technologies
has made it difficult to cement established best practices
the way other disciplines have, much less have those
practices become commonplace around the world.

Without strong guardrails around the ways we work,
teams are often tempted to take shortcuts to deliver
more quickly and please their stakeholders. This short-
sighted strategy has led to enormous waste that riddles
the industry.

Every corner cut at the beginning of a project has the
potential to add exponential complexity later. Several
months down the road, as you’re collecting live user
feedback and fine-tuning your business model, what
might seem like trivial software changes will end up
requiring massive refactorings or rewrites because so
many layers of complexity will have been built on top
of a decision your team never considered might need
to change.

After being involved in helping hundreds of projects
either get unstuck after years of stagnancy or trying to
anticipate changes to a greenfield app, I have seen how
following disciplined practices and processes makes all
the difference.

What Do You Do About It?
Software teams need to be structured to deal with
fragility. Fragility is a shortcoming that’s easy to
understand; when you try to add new features or

http://www.cutter.com

24 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

modify the codebase in some way, it crumbles like a
house of cards, with unintended side effects causing
bugs throughout the system. The goal is to build
talented teams that don’t fall into this trap. Organiza-
tions must create a system that is not just sturdy and
resilient to change, but actually thrives on change. A
high-quality software system will respond to a failure
by exposing new and stronger ways of designing and
architecting it.

To incorporate a software delivery capability, an
organization should embrace this mentality throughout
its entire operation. From the executive team on down
to junior workers, your team should thrive on adopting
new technology, practices, and processes. There are
three primary ways companies can do this effectively,
as we explore below.

1. Become a Training Organization
As technology becomes more chaotic, your business can
approach this challenge as an opportunity rather than
as a threat. Investing in your team’s ongoing education
will inspire team members to dive deeper and learn
more about how to improve operations. While this
training will not have an obvious or immediate impact
on your bottom line or productivity, it will provide
the support needed for your team to discover the
most stable solutions, allowing for higher profitability
and sustainability in the long run.

There are many different ways to implement this kind
of training. Companies can offer budgets for attending
conferences and taking advantage of other educational
venues and materials and hold regular “lunch and
learn” workshops to introduce new tools and concepts.
However, it is important to move the professional
development budget past these traditional ideas into
creating a learning culture that has maximum impact.
For example, companies can adopt weekly “10% time”
reserved for professional development and learning;

they can develop apprenticeship programs or dedicated
mentoring programs. The important distinction is that
sufficient space and investment are devoted to training
for it to become part of both the work and the company
culture, rather than an afterthought or yearly endeavor.
Training should be modeled from the top down, with
leaders visibly participating in growing their own skills
and investing in learning as a core value.

There is a distinct competitive advantage in being able
to grow your own talent through training and experi-
ence. Having a combination of expert practitioners
(who can push your technology forward) and teachers
(who can educate your team on how to keep up with
any changes) can go a long way toward keeping your
team engaged and productive for long careers. Expert
teachers and mentors will also allow you to hire smart
people from a wider range of backgrounds and train
them to be engineers. This provides not just a competi-
tive advantage in hiring but also helps you train new
mentors and teachers and create a virtuous feedback
cycle of mentorship that will guarantee a baseline of
quality across your team as you scale your business.

One of the key factors in this strategy is making sure
you’re hiring for the right traits. Rather than using
the application and interview process to check off past
accomplishments and experiences, you should look
for a curiosity and growth mindset, with the capacity
to learn whatever your potential new hire doesn’t
already know. This type of hiring process is an imper-
fect science, as it requires diving quite a bit deeper than
the stuff highlighted on someone’s CV. However, if you
can ensure the people you are hoping to train actually
want to grow and learn, they are much more likely to
remain engaged and successful employees throughout
their careers.

2. Invest in Keeping Retention High
Complex workers are intrinsically motivated through
autonomy, pursuit of mastery, and clear connection to
the challenges they are solving. One of the best ways
to keep retention high is to encourage and feed team
curiosity. Your teams will stay engaged and invested
if you give them interesting problems to work on and
the support and opportunity to solve them.

It is important to consider carefully how you provide
this support. Investing in a network of skilled managers
and mentors ensures that all team members have
someone supporting their functional and career

Investing in a network of skilled managers
and mentors ensures that all team members
have someone supporting their functional
and career development and never feel that
they are on their own.

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 25

development and never feel that they are on their own.
Developers stuck on a problem need to have outlets
where they can ask for and receive help.

These support systems should lend themselves
naturally to a culture of feedback essential to making
your team feel invested and secure in their role at
your company. If team members are struggling, they
should have support built into their regular work
cycles. If they are performing extremely well, they
should be recognized. It’s important to celebrate
successes and regularly remind your team that their
work is appreciated.

It also helps to pay your team competitively and offer
inclusive and flexible working policies. Many tech
companies invest in flashy perks — like free lunches
and onsite ping pong. There is nothing inherently
wrong with these perks, but they should not come at
the expense of policies that provide for a healthy work-
life balance. When your company is flexible to different
working arrangements and embraces policies that
encourage outside interests, you’re helping to establish
an environment that is sustainable for long careers. If
you provide support to employees at all phases of life,
you’re not only encouraging employees to stay but also
helping attract people with diverse and complementary
skill sets and background experiences.

3. Mix in Specialists from the Outside
While it might follow logically that a team fully
dedicated to your software and your business’s unique
problems is a positive, teams can struggle when they
fall too far into their own work silo. If your teams are
completely absorbed in your software system, they
aren’t paying attention to developments in the com-
munity that could provide a simpler solution or even
transform your employees’ capabilities by adopting
new strategies and tools.

Whether you bring in specialists from the outside to do
one-off training presentations, to consult on the state
of your software system, or to offer a more prolonged
residency program, gaining insight into new ways of
working and thinking through problems is invaluable.

Such insights will not only stimulate your team but also
ensure your organization is keeping up with modern
standards and practices. It is important to break down
the walls of the organization to ensure improvements
are flowing in.

Conclusion
Yes, software is eating the world, but a successful
strategy for adapting to this new reality will still
revolve around attracting and growing the talented
people who can drive innovation and manage your
business’s new technological foundation.

Investing in a holistic onboarding program and
ensuring your team has the skills and resources to
continue growing within their roles will go a long way
toward making sure your business keeps pace with
today’s rapidly changing tools, processes, business
priorities, and more. A human-centered approach will
also protect your business from being swallowed up
by today’s constant change and will maintain more
authentic and lasting engagements with both employ-
ees and your system’s users.

References
1Bujno, Maureen, and Chris Jackson. “1 in 3 Mid-Sized Firms
Lack IT Governance and Could Face Digital Disruption.”
The Business Journals, 8 December 2018.

2Pratt, Mary K. “How to Build the Next Generation of IT
Leaders.” CIO, 6 August 2018.

3Rosenbaum, Eric. “Tech Spending Will Near $4 Trillion This
Year. Here’s Where All That Money Is Going and Why.”
CNBC, 8 April 2019.

Paul Pagel is the founder of 8th Light and a leading voice in the
software community. Under his direction as CEO, 8th Light has
doubled in size twice and currently employs more than 150 software
professionals across five offices. Mr. Pagel has also overseen the
evolution of 8th Light’s apprenticeship program, transitioned the
company to employee ownership, and set strategy to bring a set of
services to market. He earned an executive master’s of business degree
from Northwestern University’s Kellogg School of Management
and a bachelor of science degree in computer science from DePaul
University. He can be reached at paul@8thlight.com.

http://www.cutter.com
https://www.bizjournals.com/bizjournals/news/2018/12/06/1-in-3-mid-sized-firms-lack-it-governance-and.html
https://www.bizjournals.com/bizjournals/news/2018/12/06/1-in-3-mid-sized-firms-lack-it-governance-and.html
https://www.cio.com/article/3294697/how-to-build-the-next-generation-of-it-leaders.html
https://www.cio.com/article/3294697/how-to-build-the-next-generation-of-it-leaders.html
https://www.cnbc.com/2019/04/08/4-trillion-in-tech-spending-in-2019-heres-where-the-money-is-going.html
https://www.cnbc.com/2019/04/08/4-trillion-in-tech-spending-in-2019-heres-where-the-money-is-going.html

26 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

The mantra of “disrupt or be disrupted” has created
an increasing demand for organizations to be more
adaptable and responsive than their competition.
Over the last five to 10 years, the idea of “digital
transformation” has led to an increased prevalence
of Agile ways of working in today’s enterprises. Agile
promises to make teams more adaptable and responsive
and to reduce products’ time to value. As organizations
“go Agile” to reap the benefits of these new ways
of working, they restructure themselves to have end-
to-end feature teams. Such feature teams (e.g., Large-
Scale Scrum [LeSS] or Spotify squads) theoretically are
capable of taking responsibility for the design, imple-
mentation, and evolution of end-to-end, customer-
centric features in digital products or platforms.

However, after trying this new organizational structure
for a few months or years, organizations eventually
stumble upon challenges and realize that the end-to-end
feature teams aren’t really working for them. Though
this approach to digital transformation usually succeeds
in positively addressing a number of mindset issues, a
fundamental problem arises when organizations try to
make feature teams work with traditional architecture
(or architectural patterns). Organizations quickly realize
that fundamental limitations in their technology assets
— systems, infrastructure, and tooling — prevent them
from reaping some of the most valuable benefits of the
new, Agile ways of working. The weakest link is to be
found somewhere else.

Digital transformation has hit a wall. The need for
reinventing how we think about and approach archi-
tecture is becoming ever more prevalent, especially if
an organization is to truly become Agile.

The Need for a Managed
“Messy” Architecture
It is important to understand that software develop-
ment has changed significantly in the last few years.
Software is no longer built totally from the ground
up without any dependency on some form of existing
software solutions, nor does software come purely from
all-encompassing, off-the-shelf packages configured to
one’s needs, spanning multiple business or technical
domains. Software is now essentially built by “smart
stitching” together already existing pieces of legacy
code, new code, open source software and frameworks,
and software-as-a-service (SaaS)/platform-as-a-service
(PaaS) solutions, while leveraging core infrastructure-
as-a-service (IaaS) components that also significantly
affect functionality.

Thus, today’s best architecture is essentially minimalist,
messy, and inconsistent. Architecture should no longer
aim to provide robust, detailed frameworks for man-
dated solutions and componentry. Rather, architecture
should focus on strong general design principles and
ensure that it provides guardrails for security, scalabil-
ity, availability, elasticity, and maintainability (all the
typical “-ity” nonfunctional requirements). Moreover,
architecture needs to enable solutions that allow for
rapid evolution of product and platform features, as
well as experimentation with new technologies, by
ensuring that all integrations are open as well as API-
and event-driven. Architecture should also ensure that
all technology decisions support safe, error-free, low-
latency, continuous delivery to facilitate a rapid pace
of change in a trusted manner.

Fundamentally, we need to recognize that time to value
is the most important decision factor in today’s world.
Optimizing time to value through the ability to sustain
a rapid pace of quality software delivery is what archi-
tecture’s contribution to digital disruption needs to be
all about. As long as the solution’s reliability is assured,
we should no longer care about duplication, solution
“inconsistency,” or anything that conflicts with the

WHAT NOW?

The Evolving Role of Architecture in Digital Transformation
by Michael Papadopoulos and Olivier Pilot

Today’s best architecture is essentially
minimalist, messy, and inconsistent.

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 27

more traditional approaches of the past that have
emphasized consistency and reuse (see sidebar, “What
Use Is Reuse?”). In today’s context, it is increasingly as
relevant to design for (unexpected) change as to design
the change itself.

Feature Team Limitations in
Agile Transformations
Feature teams working in a traditional architecture
cannot meet the agility expectations that Agile transfor-
mation promises. With a traditional architectural view,
“feature teams” aren’t actually feature teams. They
focus on the top layers of the architecture, the user
experience layer, and, in the best case, the API layer.
They rely on large, shared medium- to high-complexity
layers underneath, which are difficult to safely and
quickly adapt and change. Not only does this mean
that feature teams cannot truly own their “stack,” it also
means that the traditional promise of reusability and
consistency is typically not kept, because only a limited
separation of concerns by business domain exists in
these shared layers.

Conway’s law famously says that “organizations which
design systems ... are constrained to produce designs which
are copies of the communication structures of these organiza-
tions.”1 When an organization decides to structure the
teams that look after its digital products and platforms
into feature teams, the technology stack must closely
follow that structure. Most organizations, however, do
not structure their technology stacks in this way, and

the challenges that we observe today when trying to
make changes at speed are usually attributable to that
misalignment.

In the traditional architecture stack shown on the left
side of Figure 1, products A, B, C, D are all dependent
on a few stacks, and there is high reuse and high
consistency. The right side of the figure shows that
changing one of the layers to meet the needs of product
A may introduce changes that break B, C, and/or D.
This is why Band-Aid solutions (e.g., increased

What Use Is Reuse?
Consistency and reuse were a key requirement in even the
near past mainly due to the operational burden of running
multiple solutions — you needed people to manage the infra-
structure, the databases, and the networks. However, with
the advent of more automation, DevOps, and technological
breakthroughs such as serverless moving us into low-impact
operations, more solutions can be supported without the
need for ever-larger operational teams.

Creating reusable software isn’t free, however. To support
planned reuse, teams need to expend more effort creating
the software — more documentation, more planning, more
tests. This leads to an increased time to value.

With one of the key benefits of reuse fading away and the
key challenge to creating reusable software still in play,
should we really continue to strive for it?

Figure 1 — The challenges of making changes in a traditional architecture.

http://www.cutter.com

28 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

dependency management, big room–planning events,
Scrum of Scrums–style meetings, and giant dependency
boards) are in vogue in some companies. Not only do
dependencies introduce significant challenges regard-
ing time to value, but they also usually introduce hid-
den costs, since nobody factors in the cost of additional
project planning time and of time wasted in meetings
devoted to ensuring that nothing gets broken.

Thus, we need an architecture that is capable of
supporting a feature team–based organization at the
deepest level. To achieve that type of architecture,
products should effectively be microservices — smaller,
decoupled parts that are loosely bound together to
create a whole application or product. Importantly, it
is acceptable to have duplication in these microservices.

When each team has full end-to-end ownership of the
stack, as shown in Figure 2, changes in one stack do not
affect any other stack. There is no need for increased
dependency management, big room–planning events,
Scrum of Scrums–style meetings, and/or giant depend-
ency boards. This simplifies management, allows for
rapid change, effectively reduces time to value (the
most significant effect), and eventually decreases costs
(through reduced management overhead).

A significant percentage of reuse is still possible,
however, if you use domain-driven design and the
atomic design principle (i.e., everything begins with
the smallest element of the interface: the atom).2 We
would argue that this is the correct approach to reuse as
opposed to the monolithic layers frequently observed
today. You can reuse and recombine your “atoms” to
create entirely new elements (modules). These atoms
on their own are not useful; in fact, they are not even
deployed on their own; rather, they are shared building
blocks. If you design your elements correctly, your
atoms can become “shared libraries” across the
duplicated components, as shown in Figure 3.

A level of orchestration still needs to happen on top
of the atom, but that is where the specialization and
decoupling from other services come in. Your atoms
essentially become your underlying stack: your identity
and access management service, your API gateway,
your load balancer technology, and so on. Essentially,
this way of thinking also helps you move toward
“function as a service” and SaaS, enabling the rapid
implementation and evolution of the digital products
and platforms from which you decide to derive a
competitive advantage.

For example, unless your business is in identity and
access management, you probably should not spend
time and effort creating an identity and access man-
agement stack; instead, you should just integrate an
existing solution. The same criterion applies for all such
technical component types (e.g., API gateway, database
stores, data streaming, analytical engines).

Figure 2 — End-to-end ownership of the technology stack by features teams.

Products should effectively be microservices
— smaller, decoupled parts that are loosely
bound together to create a whole application
or product.

Get The Cutter Edge free www.cutter.com Vol. 32, No. 7 CUTTER BUSINESS TECHNOLOGY JOURNAL 29

Pay Attention to Architecture for
Successful, Sustainable Digital
Transformation
Digital transformation has focused on evolving orga-
nizational structures and processes to move closer to
what digitally native organizations have defined as end-
to-end feature teams. These evolutions are clearly going
in the right direction for any organization wishing to
fulfill the promises of digital transformation. But they
are not sufficient.

Once the top layers of an existing technology architec-
ture have been transformed to support more Agile
digital product and platform implementation, much
work still needs to be done at a deeper level to align
architecture and feature teams. To achieve this, one
needs to accept that the speed to market promised by
end-to-end feature teams can be achieved only if such
teams have maximum autonomy regarding the tech-
nology stack on which they build. In a traditional
architecture, this is usually difficult since the technology
stack is organized in large, shared layers with the —
often missed — objective of enabling maximum reuse of
technology components. Such traditional architectures

make the lives of feature teams difficult at best, since
changes to a feature can easily break another team’s
feature.

Beyond Agile and Scaled Agile, architecture needs to
be on the priority list of any organization wishing to
go further in deriving competitive advantage from
technology. Architecture’s focus should change from
simply driving consistency and reusability to allowing
a safely managed, messy, occasionally inconsistent
architecture that focuses on minimizing time to value.
Indeed, modern architecture needs to enforce strong
principles for the design and safe delivery of software
at pace, while reusability is managed at the atomic,
rather than the component or service, level. This
modern architecture, we believe, is a key area that
will differentiate the winners and losers of the next
wave of digital transformation.

References
1“Conway’s law.” Wikipedia.

2Hacq, Audrey. “Atomic Design: How to Design Systems of
Components.” UX Collective, 28 June 2017.

Figure 3 — Using the atomic principle to allow for reuse in a managed “messy architecture.”

http://www.cutter.com
https://en.wikipedia.org/wiki/Conway%27s_law
https://uxdesign.cc/atomic-design-how-to-design-systems-of-components-ab41f24f260e
https://uxdesign.cc/atomic-design-how-to-design-systems-of-components-ab41f24f260e

30 ©2019 Cutter Information LLC CUTTER BUSINESS TECHNOLOGY JOURNAL

Michael Papadopoulos is a Senior Consultant with Cutter Consorti-
um's Business & Enterprise Architecture practice and Chief Architect
of Arthur D. Little’s UK Digital practice. He is passionate about
designing the right solutions using smart-stitching approaches,
even when elegance and architectural purity are overshadowed by
practicality. Mr. Papadopoulos leads the scaling of multidisciplinary
organizations by focusing on continuous improvement, establishing
quality standards, and following solid software engineering practices.
He mentors team members, leaders, and managers along the way. Mr.
Papadopoulos is a strong advocate of the DevOps culture and Agile
principles and has demonstrated experience in solving problems in
challenging global environments. Coming from a development back-
ground, he remains highly technical, with hands-on involvement in
code review, design, architecture, and operations. Mr. Papadopoulos
has 15 years’ experience in technology and digital consulting and has
worked in a variety of sectors, including telecom, gaming, energy, and
media. He can be reached at mpapadopoulos@cutter.com.

Olivier Pilot is a Senior Consultant with Cutter Consortium’s
Business & Enterprise Architecture practice and a Principal Architect
with Arthur D. Little’s UK Digital practice. He has broad experience

across a range of projects involving enterprise architecture. His focus
areas include digital strategy, Agile digital solution delivery, design
and architecture, C-level advisory, and information systems roadmaps.
Mr. Pilot’s recent sample engagements include production of a tech-
nical and industrial strategy for a large European mobility provider to
enter the “mobility-as-a-service” space; design and delivery of a real-
time voucher decision and distribution engine for a FTSE 100 gaming
and entertainment firm; delivery of digital concept store prototypes,
demonstrating facial recognition, proximity marketing, and smart
vending use cases to the board of a global Fortune 100 FMCG firm;
working as design authority for the Agile delivery of a real-time
monitoring and alerting solution to detect and assign issues in 40+
digital products of an FTSE 100 online education company; and
serving as lead architect for a large international airline in the Agile
delivery of an innovative, real-time, situational-awareness dashboard
on top of siloed systems to enable coordinated decision making in
disruption. Previously, Mr. Pilot worked at Atos Consulting and Cap
Gemini. He holds a master’s of engineering degree in IT from Ecole
Centrale de Lyon. He can be reached at opilot@cutter.com.

Cutter Consortium is a unique, global business technology advisory firm dedicated

to helping organizations leverage emerging technologies and the latest business

management thinking to achieve competitive advantage and mission success. Through

its research, training, executive education, and consulting, Cutter Consortium enables

digital transformation.

Cutter Consortium helps clients address the spectrum of challenges technology change

brings — from disruption of business models and the sustainable innovation, change

management, and leadership a new order demands, to the creation, implementation,

and optimization of software and systems that power newly holistic enterprise and

business unit strategies.

Cutter Consortium pushes the thinking in the field by fostering debate and collaboration

among its global community of thought leaders. Coupled with its famously objective

“no ties to vendors” policy, Cutter Consortium’s Access to the Experts approach delivers

cutting-edge, objective information and innovative solutions to its clients worldwide.

For more information, visit www.cutter.com or call us at +1 781 648 8700.

