
The Journal of
Information Technology Management

Cutter
IT Journal

Vol. 26, No. 11
November 2013

Disciplined Agile Delivery:

The Foundation for Scaling Agile

Opening Statement

by Scott W. Ambler . 3

Toward the Agile Organization:
Accelerating Innovation in Software Delivery

by Alan W. Brown . 6

A CIO/CTO View on Adopting Agile Within an Enterprise

by Peter Herzum . 12

What It Means to Scale Agile Solution Delivery

by Mark Lines and Scott W. Ambler . 18

Supporting Governance in Disciplined Agile Delivery
Using Noninvasive Measurement and Process Mining

by Saulius Astromskis, Andrea Janes, Alberto Sillitti, and Giancarlo Succi 25

10 Principles for Success in Distributed Agile Delivery

by Raja Bavani . 30

“If you want to create an

Agile organization, you

can’t rely on stacking the

deck with your best staff

members — everyone needs

to make the transition, not

just your star players.”

— Scott W. Ambler,

Guest Editor

NOT FOR DISTRIBUTION

For authorized use, contact

Cutter Consortium:

+1 781 648 8700

service@cutter.com

Cutter IT Journal®

Cutter Business Technology Council:
Rob Austin, Ron Blitstein, Tom DeMarco,
Lynne Ellyn, Israel Gat, Vince Kellen,
Tim Lister, Lou Mazzucchelli,
Ken Orr, and Robert D. Scott

Editor Emeritus: Ed Yourdon
Publisher: Karen Fine Coburn
Group Publisher: Chris Generali
Managing Editor: Karen Pasley
Production Editor: Linda M. Dias
Client Services: service@cutter.com

Cutter IT Journal® is published 12 times
a year by Cutter Information LLC,
37 Broadway, Suite 1, Arlington, MA
02474-5552, USA (Tel: +1 781 648
8700; Fax: +1 781 648 8707; Email:
citjeditorial@cutter.com; Website:
www.cutter.com; Twitter: @cuttertweets;
Facebook: Cutter Consortium). Print
ISSN: 1522-7383; online/electronic
ISSN: 1554-5946.

©2013 by Cutter Information LLC.
All rights reserved. Cutter IT Journal®
is a trademark of Cutter Information LLC.
No material in this publication may be
reproduced, eaten, or distributed without
written permission from the publisher.
Unauthorized reproduction in any form,
including photocopying, downloading
electronic copies, posting on the Internet,
image scanning, and faxing is against the
law. Reprints make an excellent training
tool. For information about reprints
and/or back issues of Cutter Consortium
publications, call +1 781 648 8700
or email service@cutter.com.

Subscription rates are US $485 a year
in North America, US $585 elsewhere,
payable to Cutter Information LLC.
Reprints, bulk purchases, past issues,
and multiple subscription and site license
rates are available on request.

Part of Cutter Consortium’s mission is to

foster debate and dialogue on the business

technology issues challenging enterprises

today, helping organizations leverage IT for

competitive advantage and business success.

Cutter’s philosophy is that most of the issues

that managers face are complex enough to

merit examination that goes beyond simple

pronouncements. Founded in 1987 as

American Programmer by Ed Yourdon,

Cutter IT Journal is one of Cutter’s key

venues for debate.

The monthly Cutter IT Journal and its com-

panion Cutter IT Advisor offer a variety of

perspectives on the issues you’re dealing with

today. Armed with opinion, data, and advice,

you’ll be able to make the best decisions,

employ the best practices, and choose the

right strategies for your organization.

Unlike academic journals, Cutter IT Journal

doesn’t water down or delay its coverage of

timely issues with lengthy peer reviews. Each

month, our expert Guest Editor delivers arti-

cles by internationally known IT practitioners

that include case studies, research findings,

and experience-based opinion on the IT topics

enterprises face today — not issues you were

dealing with six months ago, or those that

are so esoteric you might not ever need to

learn from others’ experiences. No other

journal brings together so many cutting-

edge thinkers or lets them speak so bluntly.

Cutter IT Journal subscribers consider the

Journal a “consultancy in print” and liken

each month’s issue to the impassioned

debates they participate in at the end of

a day at a conference.

Every facet of IT — application integration,

security, portfolio management, and testing,

to name a few — plays a role in the success

or failure of your organization’s IT efforts.

Only Cutter IT Journal and Cutter IT Advisor

deliver a comprehensive treatment of these

critical issues and help you make informed

decisions about the strategies that can

improve IT’s performance.

Cutter IT Journal is unique in that it is written

by IT professionals — people like you who

face the same challenges and are under the

same pressures to get the job done. Cutter

IT Journal brings you frank, honest accounts

of what works, what doesn’t, and why.

Put your IT concerns in a business context.

Discover the best ways to pitch new ideas

to executive management. Ensure the success

of your IT organization in an economy that

encourages outsourcing and intense inter-

national competition. Avoid the common

pitfalls and work smarter while under tighter

constraints. You’ll learn how to do all this and

more when you subscribe to Cutter IT Journal.

About Cutter IT Journal

Cutter
IT Journal

Name Title

Company Address

City State/Province ZIP/Postal Code

Email (Be sure to include for weekly Cutter IT Advisor)

Fax to +1 781 648 8707, call +1 781 648 8700, or send email to service@cutter.com. Mail to Cutter Consortium, 37 Broadway,

Suite 1, Arlington, MA 02474-5552, USA.

SUBSCRIBE TODAY

Request Online License
Subscription Rates

For subscription rates for online licenses,

contact us at sales@cutter.com or

+1 781 648 8700.

Start my print subscription to Cutter IT Journal ($485/year; US $585 outside North America)

DISCIPLINED AGILE DELIVERY:
THE FOUNDATION FOR SCALING AGILE

This issue of Cutter IT Journal is a follow-up to June

2013’s “Disciplined Agile Delivery in the Enterprise”

issue. That edition of the journal covered strategies for

bringing greater discipline to Agile software delivery

teams, while this one focuses on how to scale disci-

plined Agile approaches. The term “scaling Agile” has

at least two distinct definitions, both of which make

complete sense. One vision focuses on adopting Agile

techniques across an entire IT organization and ulti-

mately instilling Agile behavior in the enterprise as a

whole. The second vision focuses on how to apply

Agile techniques in complex situations, in geographi-

cally distributed teams, or in regulatory regimes. Some

people mistakenly believe these situations are outside

the purview of Agile, but that’s clearly not true in prac-

tice. In this issue, we explore these visions and show

that both are key aspects to truly scaling Agile.

Scaling Agile Across the Enterprise

The first vision for scaling Agile concerns how to adopt

Agile strategies across an entire IT department and

eventually throughout the organization as a whole.

This requires you to adopt Agile delivery techniques

in most if not all development teams. This is much

more challenging than simply cherry-picking “Agile

friendly” teams, because if you want to create an Agile

organization, you can’t rely on stacking the deck with

your best staff members — everyone needs to make the

transition, not just your star players. When scaling

Agile to the IT department, you will need to adapt all

IT activities to achieve true agility (see Figure 1). Your

Agile transformation efforts will need to take into

account how your enterprise architecture, portfolio

management, operations, data management, and

many other teams work together. Furthermore, your

IT department is just one group within your overall

organization, so a true Agile transformation will

require new behaviors within the business, too.

When helping to transform organizations to become

Agile, my associates and I use something we call the

P3 Change Framework. The idea is that when making

a transformation, you need to consider people, process,

and product factors — a slight rewording of the people,

processes, and tools strategy from the 1980s. Each of

these change factors has subfactors:

Opening Statement

3Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

by Scott W. Ambler, Guest Editor

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

People
Management

IT Governance

Enterprise
Architecture

Asset
Management

Portfolio
Management

Operations and
Support

Program
Management

Information
Management

Solution
Delivery

IT

Figure 1 — Activities within an IT organization.

©2013 Cutter Information LLCCUTTER IT JOURNAL November 20134

n People encompasses skills, mindset, and culture.

n Process encompasses practices, principles, and

lifecycles.

n Product encompasses both tools and platforms.

Although they use slightly different terminology at

times, in the two articles I’ve chosen for this topic, you

will see how the authors found the need to address all

three change factors in some way.

The first of these two articles is written by Alan W.

Brown, author of Global Software Delivery: Bringing

Efficiency and Agility to the Enterprise, former IBM

Rational CTO for Europe, and now a professor at the

Surrey Business School in the UK. In the article, Brown

argues that enterprises require greater openness and

agility to be more innovative in the marketplace. He

describes how the Disciplined Agile Delivery (DAD)

framework provides the most realistic approach to

Agile software development for enterprise-class envi-

ronments. However, he warns that organizational

culture and inertia will choke off the benefits of Agile

unless you specifically deal with them. The article

focuses on how to build an Agile organization, explor-

ing the ways the technology, processes, and people will

be affected. Regarding the people factor, Brown’s expe-

rience is that you need to get the right people, promote

greater collaboration between them, align responsibility

and accountability, and then strive to steer instead of

control (a key plank in DAD’s approach to governance).

On the technology/product side, Brown recommends

that organizations adopt integrated development

tools that support a business-led continuous delivery

approach. Finally, he advocates such process improve-

ments as moving from a development to a delivery

focus, adopting Agile management techniques, promot-

ing validated learning strategies, embracing innovation

accounting, and adopting build-measure-learn cycles.

In our second “enterprise scaling” article, consultant

Peter Herzum shares his experiences bringing Agile

practices and software lifecycle automation into all of

the development teams at Wolfe.com, a leader in the

gift card and online prepaid domain. This Agile devel-

opment strategy enabled the business itself to innovate,

grow, and rapidly respond to change — in other words,

to become an Agile enterprise. This article isn’t specifi-

cally about the adoption of a DAD-based approach, but

almost all of the Agile practices that Herzum applied

at Wolfe are encapsulated within the DAD framework.

These strategies include adopting a parallel indepen-

dent test team to support the “standard” testing strate-

gies employed within the delivery teams, adopting a

full delivery lifecycle that explicitly addresses architec-

ture, transition/release practices, Kanban-based strate-

gies, and development intelligence, to name a few.

While Herzum calls this “Agile 2.0,” my colleagues and

I have called it “Disciplined Agile.” Terminology aside,

we as an industry are sharing similar learnings from

different sources, and to me that’s a healthy sign of

progress within the IT community.

Scaling Agile Delivery for Complex Situations

The second vision for scaling Agile involves ways

you can tailor Agile strategies within teams to address

the complexities they face “at scale” in situations that

require more than a single, small, colocated team. Many

people relate this version of scaling to large teams,

but there’s more to it than that. As Mark Lines and I

describe in our article, Agile approaches are also being

applied by geographically distributed teams, by teams

in compliance situations, by teams that are organiza-

tionally distributed (think outsourcing), and in situa-

tions where there is significant domain complexity or

technical complexity. DAD’s process goal–driven strat-

egy provides the guidance that teams require to adapt

their approach to the context that they find themselves

in, enabling teams to work at scale.

All IT delivery teams are governed in some way, includ-

ing Agile ones. The DAD framework provides explicit

advice for governing Agile teams effectively, because

many organizations run into trouble with Agile when

they mistakenly apply traditional governance strategies.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

UPCOMING TOPICS IN CUTTER IT JOURNAL

DECEMBER

Matt Ganis and Avinash Kohirkar

Value of Social Media Data: Part II

JANUARY

Lynn Winterboer

Does Agile = Better BI/DW?

Terminology aside, we as an industry are

sharing similar learnings from different

sources, and to me that’s a healthy sign

of progress within the IT community.

5Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

In fact, not updating your IT governance approach

to reflect the realities of Agile solution delivery may

be one of the leading causes of failed Agile adoption

programs. In our fourth article, University of Bolzano

researchers Saulius Astromskis, Andrea Janes, Alberto

Sillitti, and Giancarlo Succi describe in detail how to

enhance your governance efforts through automation.

The authors focus on how to noninvasively measure

what is occurring in Agile teams so that you can then

identify potential improvements in your process. This

sort of noninvasive measurement is called development

intelligence (DI) in the DAD framework, and it supports

both process improvement efforts, as described in this

article, as well as governance in general. DI is a strategy

in which a project or portfolio dashboard is automati-

cally populated from data generated by tool usage. This

is an important technique for enabling teams to under-

stand what they are actually doing as opposed to what

they believe they are doing. When implemented fully,

DI provides senior management with accurate insight

regarding the results of the team’s work and thus

allows them to govern more effectively.

One interesting thing about this article is how the team

worked with tooling from multiple sources, most of

which were open source. They in effect showed how it’s

possible to implement DI without requiring a single-

vendor application lifecycle management (ALM) tooling

solution. Another interesting aspect is the authors’ dis-

cussion of how to analyze the data so as to visualize the

existing process, thereby enabling the team to identify

potential bottlenecks that need to be addressed.

Last but certainly not least is the article by Mindtree’s

Raja Bavani. Bavani begins by discussing the particular

challenges of distributed Agile delivery and then works

through 10 principles that he has found to be critical to

success in these situations:

1. Methodology is driven by project teams.

2. Consistent usage of common tools improves

productivity.

3. Infrastructure for communication and coordination

is crucial.

4. Knowledge management is key to success.

5. Quality is multidimensional and owned by

everybody.

6. Distributed Agile requires an inclusive approach.

7. Governance is the backbone of successful

distributed teams.

8. Automation enables sustainable pace.

9. It is essential to streamline the payoff of

technical debt.

10. Ensuring early success is a collective responsibility.

I believe that you will find this issue of Cutter IT

Journal to be very informative. It is not only possible to

scale Agile approaches, it is highly desirable. Enjoy!

Scott W. Ambler is a Senior Consultant with Cutter Consortium’s

Business & Enterprise Architecture and Agile Product &

Project Management practices. He is the thought leader behind

the Disciplined Agile Delivery (DAD) process decision framework,

Agile Model Driven Development (AMDD), the Agile Data (AD)

method, and the Enterprise Unified Process (EUP), and he works with

clients around the world to improve the way they develop software.

Mr. Ambler is coauthor of several software development books,

including Disciplined Agile Delivery, Agile Modeling, The

Elements of UML 2.0 Style, Agile Database Techniques, and

The Enterprise Unified Process. He is also a Senior Contributing

Editor with Dr. Dobb’s Journal. Mr. Ambler has spoken at a wide

variety of international conferences, including Agile 20XX, Software

Development, IBM Innovate, Java Expo, and Application

Development. He can be reached at sambler@cutter.com.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

THE INNOVATION CHALLENGE

Innovation is now seen as a business priority that is

essential for success. For businesses around the world

to have real hope of meaningful growth, the collabora-

tive process from idea generation to solution delivery

must be optimized, innovation practices enhanced to be

flexible and repeatable, and leaders trained who are

willing and able to lead teams in an innovation-focused

interactive environment. In the past, innovation was

slow and risky and left to the experts housed in the

R&D department. Today, there is incredible importance

placed on “democratizing innovation” by establishing

practices that increase innovation speed while decreas-

ing risk.1

To address these needs, the focus has moved toward

two key areas: agility and openness. Consumers simul-

taneously require businesses to maintain a constant

open dialogue to monitor feedback and reactions to

product improvements and prototypes, and at the

same time to engage in new forms of rapid producer-

consumer partnerships such as co-creation, evolution-

ary design, and micro-customization. This approach

helps to ensure that the business produces goods and

services its customers require at the speed necessary to

maintain a market advantage. Through a combination

of agility and openness, the benefits of flexibility within

an interactive market-driven conversation must be pur-

sued within companies of all sizes to confront the chal-

lenges of our turbulent economic environment.2 The

goal is to deliver a rapid stream of consumer-tested

ideas to position the company as a leader in the vital

knowledge-driven marketplace.

However, the generation of new ideas is only the

starting point. Success requires overcoming obstacles

to bringing those innovations into routine practice.

Illustrations of the perils of these innovation challenges

abound. For example, it has been estimated that up to

80% of corporate innovations fail and only 10% of small

to medium enterprises can sustain the innovation neces-

sary to generate significant employment.3 In particular,

speed is of the essence in introducing innovation. Intel

Corporation, for instance, claims that 90% of the rev-

enues the firm derives on the last day of the year are

attributable to products that did not even exist on the

first day of that same year.4

Within the software world, this kind of rapid innova-

tion has been the focus of Agile coding approaches such

as Scrum, XP, and Crystal, and it has been extended

into broader software delivery contexts in DSDM

and blended waterfall-Agile methods (denoted as

“wagile” and “water-scrum-fall”). However, it is in

the Disciplined Agile Delivery (DAD) approach that

we see perhaps the most comprehensive and realistic

treatment of Agile software practices as they relate

to the larger footprint typical of most commercial soft-

ware delivery contexts.5 The DAD process framework

recognizes not only the importance of networks of

cross-functional teams, it also explicitly offers support

for scaling key practices across complex working envi-

ronments using techniques that link software develop-

ment efforts into robust software delivery contexts.

Beyond Agile software delivery, an even broader view

of the Agile organization is necessary. Many businesses

see their ambitions thwarted when their Agile software

delivery teams become swamped by overbearing, slow-

moving engineering and management practices. In any

real project, substantial effort is invested in essential

activities such as hiring staff, obtaining and setting up

test equipment, interacting with project and program

management coordinators, training sales teams on new

capabilities, and so on. Without care, the gains from

Agile and open software delivery become insignificant

in the daily cut-and-thrust of a project, or else they

are choked by the broader organizational inertia and

inefficiency that surround them.6

FOCUS AREAS FOR THE AGILE ORGANIZATION

Let me reiterate: innovation at Internet speed is more

than just generating new ideas — it is bringing new

©2013 Cutter Information LLCCUTTER IT JOURNAL November 20136

Toward the Agile Organization:
Accelerating Innovation in Software Delivery

by Alan W. Brown

MAKING THE NEW ROUTINE

7Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

ideas into routine practice. Consequently, the focus

for innovative organizations is always broader than

is often assumed in Agile software development situa-

tions. Business success necessitates optimization of the

collaborative process from idea generation to solution

delivery. This is done by enhancing innovation practices

so they are flexible and repeatable, creating organiza-

tions that adapt and respond in real time to the changes

around them, and encouraging the team-working skills

that are essential for overcoming obstacles inherent to

any creative activity.

This ideal is referred to as the “Agile organization.” It

is a new way of operating based on a set of principles,

practices, and tools that are emerging across a range

of disciplines in systems engineering, IT, and solution

delivery. It extends the principles of DAD and becomes

the driving force for the new digital economy. Organi-

zations unable to make progress toward this goal and

increase capacity to innovate at Internet speed will not

survive. Let’s briefly examine the characteristics of an

Agile organization across three familiar dimensions:

technology, process, and people.

Technology

Many software-intensive businesses have struggled to

transform their lifecycle approach from a development

focus to a delivery focus to improve the speed and flexi-

bility with which they operate. This subtle distinction in

wording represents a dramatic change in the principles

that are driving the management philosophy and the

associated governance models.

As summarized in Table 1, the change in perspective

from software development to software delivery affects

several dimensions. A software delivery perspective

focuses on the following concepts and practices:7

n Continuously evolving systems. Enterprise soft-

ware undergoes a continual process of change.

Traditionally, the goal is to optimize the devel-

opment of the first release of the system, but the

critical activities come after the first release. This

evolution should be the focus of attention, and any

Agile organization must invest in techniques that

support and encourage software to evolve.

n Blending of boundaries between development

and maintenance. Traditionally, a clear distinction

is made between development and maintenance,

with different teams responsible for these activities.

In fact, in many cases these teams may even be in dif-

ferent buildings, on different continents, or managed

by different companies. With an evolutionary view of

software delivery, the distinction between these two

activities is blurred to the point that development and

maintenance are just two aspects of the same need to

create and deliver value to users of the system.

n Sequence of released capabilities with ever-

increasing value. A development view operates

from the understanding that after a deep analysis,

the requirements for a system are signed off and

development of the system begins with the goal to

“fulfill” those requirements and place the system into

production. But the reality in many systems is that

requirements emerge and evolve as more is discov-

ered about the needs of the stakeholders and as

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Software Development Perspective Software Delivery Perspective

Distinct development phases Continuously evolving systems

Distinct handoff from development team
to maintenance team

Common process, platform, and team for
development and maintenance

Distinct and sequential activities:
requirements to design to code to test

Sequence of usable capabilities with
ever-increasing value

Role-specific processes and tools Collaborative platform of integrated, Web-based
tools and practices

Colocated teams Distributed, Web-based collaboration

Governance via measurement of artifact
production and activity completion

Governance via measurement of incremental
outcomes and progress/quality trends

Engineering discipline: track progress
against static plans

Economic discipline: reduce uncertainties, manage
variance, measure trends, adapt and steer

Table 1 — A Software Development Perspective vs. a Software Delivery Perspective

©2013 Cutter Information LLCCUTTER IT JOURNAL November 20138

understanding of the delivery context grows. A more

realistic approach to delivery views the system not as

a number of major discrete releases, but as a continu-

ous series of incremental enhancements with increas-

ing value to the stakeholders.

n Common platform of integrated process and tools.

The siloed delivery approach is usually supported

by processes and tools that are optimized for each

silo. This occurs because most organizations define

processes and acquire the tools individually, function

by function, with little thought for the end-to-end

flow of information and artifacts. A delivery view rec-

ognizes that the interoperation of these processes and

tools is vital for optimizing enterprise system value.

n Distributed Web-based collaboration. Teaming and

teamwork are a focus within functional areas for a

development approach. A delivery view defines the

team more broadly, recognizing that stakeholders

in software delivery may vary widely in function,

geography, and organization. Technology support

to include all those stakeholders in team activities is

essential. While a variety of collaborative, Web-based

technologies have emerged in recent years, many

organizations have deployed them in an ad hoc

way and invested little in any concerted approach to

adopt them across their enterprise software delivery

organization.

n Economic governance tailored to risk/reward

profiles. To manage software development, most

organizations use a collection of processes, measures,

and governance practices that emphasize develop-

ment artifacts such as the software code, require-

ments documents, and test scripts. A delivery view

moves the focus of governance toward the business

value of what is being delivered, aiming to optimize

features delivered and time-to-value of delivered

capabilities, increase burndown of backlogs of new

requests, reduce volatility of systems, and sustain

velocity of delivery teams.

n Measurement based on business value and

outcome. Many enterprise software development

organizations have prided themselves on their

technical skills and the depth of their knowledge

in technologies for software development and

operations. These are vital to success. However,

at times this emphasis on development has created

the perception in the broader organization that the

IT organization is constantly in search of the latest

technology solution with little regard for where and

how such technology investments help the business

achieve its goals. A focus on software delivery gives

greater emphasis to the business value of those

investments and creates a more balanced view

of investment.

This change in thinking radically alters the way

software-intensive businesses approach their task.

A delivery perspective encourages styles of software

delivery that move away from early lock-down of deci-

sions to reduce variance in software projects toward

controlled discovery, experimentation, and innovation.

Process

Most software-intensive businesses focus the majority

of their activities toward core processes aimed at effi-

ciently controlling the management, upgrade, and

repair of their existing systems. Typically, up to 80% of

all costs are consumed in such tasks.8 Consequently, an

Agile organization must ground its work in approaches

that recognize and deliver efficiency in software devel-

opment and delivery. For most organizations, Lean

thinking is the basis for current efficiency approaches.9

Innovation in software delivery is driving a number

of important advances in Lean thinking as it applies

to software-intensive businesses.10 In the move toward

an Agile organization, we see a focus on Lean practices

with the aim of ensuring fast cycles to improve feed-

back and learning across the value chain. The result is

an Agile innovation practice viewed as a series of exper-

iments governed by well-defined hypotheses, a focus on

the speed of testing those hypotheses, and recognition

that a clear approach to measurement and management

is essential to ensure that any experimental approach

converges toward meaningful decision making. Some

key principles are emerging, which have been well

summarized by entrepreneur Eric Ries as:11

n Agility is management. Too many people associate

an Agile organization with a chaotic, “anything goes”

attitude to governance and planning. Nothing could

be further from the truth. In any Agile organization,

there must be a very strong management dimension

to ensure progress is coordinated and aligned. Large

numbers of small incremental changes must be made

based on analytical data. That cannot occur without

discipline and rigor.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Too many people associate an Agile organiza-

tion with a chaotic, “anything goes” attitude

to governance and planning. Nothing could

be further from the truth.

9Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

n Validated learning. Agile decision making requires

constant feedback and is consolidated through fre-

quent reflection. An Agile organization must learn

from the experiments it undertakes and validate that

learning with real-world inputs.

n Innovation accounting. Measuring progress in con-

ventional ways (source lines of code delivered, func-

tion points coded, etc.) offers little value to an Agile

organization. Rather, the organization is optimized

for rapid decision making, flexibility in adopting new

capabilities, and easy adaptation to evolving feedback

from early consumers. Consequently, innovation

accounting focuses on establishing benchmarks for

these areas and accelerating the pace of delivery

based on managing those measures.

n Build-measure-learn cycle. The most critical life-

cycle process in an Agile organization is the “build-

measure-learn” cycle, and a great deal of attention

is directed toward its definition and execution.

Optimizing speed through this cycle ensures that

everyone involved in the organization can move

quickly toward better decision making based on

data from the impact of earlier actions.

In fact, Ries goes further when analyzing successful

software-intensive businesses that are broadly adopting

an Agile approach. He observes that what distinguishes

them from other organizations is they welcome and

embrace change, making many adjustments in approach

as they learn what works and what doesn’t — changes

in value proposition, customer segment, business model,

partner network, and so on. Their key attribute is their

ability to pivot when they gain feedback that is contrary

to their expectations. They change directions but stay

grounded in what they have learned. Furthermore,

they focus on validated learning and employ a rigorous

method for demonstrating progress through positive

improvements in core metrics and key performance indi-

cators (KPIs) critical to the software-intensive business.

People

Many recent studies of high-performing software-

intensive businesses have highlighted the dominant

role played by people and team dynamics in any soft-

ware delivery success.12 In spite of these studies, many

businesses fail to take adequate account of the human

elements of an improvement program and focus a

majority of their attention on the more mechanical

technology and process aspects.

In many regards, the Agile Manifesto13 issued over a

decade ago was explicitly aimed at placing the focus of

attention on the impact of people in software-intensive

businesses. Several Agile software development meth-

ods provide clear guidance on how to motivate teams to

encourage greater innovation,14 with Agile author and

consultant Jim Highsmith perhaps offering the most

straightforward advice on creating and motivating

self-directed Agile teams:15

n Get the right people

n Clearly articulate the project vision, boundaries,

and roles

n Encourage interaction

n Facilitate participatory decisions

n Insist on accountability

n Steer, don’t control

Such simple guidelines present an obvious starting

point for Agile organizations to improve their organi-

zational capabilities. However, their interpretation

and implementation can be much more challenging in

practice if organizations don’t also adopt radical man-

agement principles tuned to rapid decision making.16

Individuals and teams operate within a broader orga-

nizational culture and context. Management consultant

Steve Denning views the drive for greater organiza-

tional agility as a major challenge to traditional man-

agement practices and believes that it requires quite

different approaches to how organizations set goals,

support managers in achieving them, coordinate the

organizational supply chain, set incentives for individu-

als and teams, and communicate paradigms within the

organization and across the extended partner ecosys-

tem. His view is that top-down autocratic management

styles must be replaced by more radical styles based

on meritocracy and shared responsibilities across team

members.

At the organizational level, Agile organizations must

constantly adapt to meet the demands of continuously

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

The key attribute of Agile teams is their

ability to pivot when they gain feedback

that is contrary to their expectations.

©2013 Cutter Information LLCCUTTER IT JOURNAL November 201310

changing business environments. Although it is tempting

to believe that such adaptation can be driven through

high-level corporate initiatives, the most common

approach in Agile delivery involves building the visibil-

ity and credibility of leaders throughout the organization

and to encourage communities led by those elected by

the community itself (so-called “meritocracies”). In this

way, an Agile organization builds an environment that

encourages action from the bottom up and naturally

develops employees who embrace and share new ways

of thinking and working.

In fact, a recent CIO-level study17 emphasized six key

findings that underscore the importance of promoting

an effective organizational context for encouraging

Agile thinking in individuals and teams:

1. Organizations require significant time to absorb

changes and react to new norms. Typically it takes

more than two years for major organizational shifts

to be accepted. Attempting more rapid change in

organizational structures frequently has negative

impacts that overwhelm the improvements they

introduce. Even as organizations work to achieve

rapid innovation, they must recognize that any fun-

damental change cannot be implemented in a single

step but will instead require a series of measured

increments to become routine.

2. Where businesses are experiencing fast-paced

changes in their environment, their employees’ ability

to adapt to change is more significant to success than

their productivity and performance. Not only do

these adaptable employees enhance their own impact

on the organization, but they also learn from others,

seek feedback, and support their peers.

3. Agile organizations must improve communication,

increase transparency, and focus on sharing infor-

mation that helps employees be self-directed, be

autonomous, and develop their own solutions to

problems they encounter.

4. The highest-performing individuals and teams in an

Agile organization create strong networks and use

these networks as a primary source of communica-

tion, problem solving, and social interaction.

5. The enablement role assumed in most software-

driven businesses must be revisited for Agile orga-

nizations. They must prioritize coaching, connect

employees to the right networks and communities,

and emphasize honest retrospection and feedback

to improve all aspects of the organization.

6. The focus on agility is a cross-functional effort. It

affects all aspects of the organization, including its

approach to employee hiring and training, perfor-

mance management models, external communica-

tions and public relations, strategic planning, and

technology investment.

SUMMING UP

Agile thinking has galvanized several important ideas

essential to driving innovation in software-intensive

businesses. Here, two aspects have been highlighted:

accelerated innovation practices focused on the rapid

introduction, experimentation, and evaluation of new

ideas and an Agile software delivery perspective on

how software is designed, created, and placed into

production.

The biggest challenge facing an Agile organization con-

cerns a shift in thinking from top-down control, com-

plex preplanning of all actions, and internally focused

metrics for measuring progress to team-based meritoc-

racies, flexible priority-based planning, and outcome-

based metrics. For many organizations, this change

is simple in theory, but very difficult to execute in prac-

tice due to cultural, financial, and operational inertia.

Fundamental characteristics of an organization must

be managed in realizing this change, including such

scaling factors as the organization’s size, geographic

distribution, exposure to external regulatory oversight,

and so on. As a result, moving an organization to an

Agile mindset requires a focus on a small number of

very practical areas where demonstrable, measured

progress can be made. Building on the DAD frame-

work, this article has introduced the change in thinking

required in software-intensive businesses and high-

lighted the essential areas of focus for succeeding with

accelerating innovation in software delivery.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Moving an organization to an Agile mindset

requires a focus on a small number of very

practical areas where demonstrable, measured

progress can be made.

11Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

ENDNOTES

1von Hippel, Eric. Democratizing Innovation. MIT Press, 2005.

2Prahalad, C.K., and M.S. Krishnan. The New Age of Innovation:

Driving Co-Created Value through Global Networks. McGraw-Hill,

2008.

3Levie, Jonathan, and Mark Hart. “Global Entrepreneurship

Monitor: UK 2011 Monitoring Report.” University of

Strathclyde, 2011.

4Augustine, Norman R. Is America Falling Off the Flat Earth?

National Academies Press, 2007.

5Ambler, Scott W., and Mark Lines. Disciplined Agile Delivery:

A Practitioner’s Guide to Agile Solution Delivery in the Enterprise.

IBM Press, 2012.

6Brown, Alan W. Global Software Delivery: Bringing Efficiency and

Agility to the Enterprise. Addison-Wesley Professional, 2012.

7Royce, Walker, Kurt Bittner, and Mike Perrow. The Economics

of Iterative Software Development: Steering Toward Better Business

Results. Addison-Wesley Professional, 2009.

8Jones, Capers. Software Engineering Best Practices. McGraw-Hill,

2010.

9Liker, Jeffrey. The Toyota Way: 14 Management Principles from

the World’s Greatest Manufacturer. McGraw-Hill, 2004.

10Coplien, James O., and Gertrud Bjørnvig. Lean Architecture

for Software Development. Wiley, 2011.

11Ries, Eric. The Lean Startup: How Constant Innovation Creates

Radically Successful Business. Penguin Business, 2011.

12Curtis, Bill, William E. Hefley, and Sally A. Miller. The People

CMM: A Framework for Human Capital Management. 2nd edition.

Addison-Wesley Professional, 2009.

13Agile Manifesto (http://agilemanifesto.org).

14Cohn, Mike. Succeeding with Agile: Software Development with

Scrum. Addison-Wesley Professional, 2010.

15Highsmith, Jim. Agile Project Management: Creating Innovative

Products. 2nd edition. Addison-Wesley Professional, 2009.

16Denning, Stephen. The Leader’s Guide to Radical Management:

Reinventing the Workplace for the 21st Century. Jossey-Bass, 2010.

17“Building a Change-Ready IT Organization.” Corporate

Executive Board, September 2012.

Alan W. Brown is Professor of Entrepreneurship and Innovation

in the Surrey Business School, University of Surrey (UK), where

he leads activities in the area of corporate entrepreneurship and open

innovation models. In addition to his teaching activities, Dr. Brown

focuses on innovation in a number of practical research areas with

regard to global enterprise software delivery, Agile software supply

chains, and the investigation of “open commercial” software delivery

models. He has formerly held a wide range of roles in industry,

including Distinguished Engineer and CTO at IBM Rational,

VP of Research at Sterling Software, Research Manager at Texas

Instruments Software, and Head of Business Development in a

Silicon Valley startup. In these roles, Dr. Brown has worked with

teams around the world on software engineering strategy, process

improvement, and the transition to Agile delivery approaches. He has

published over 50 papers and written four books. He holds a PhD in

computing science from the University of Newcastle upon Tyne (UK).

He can be reached at alan.w.brown@surrey.ac.uk.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

From April 2011 to December 2012, I was in charge

(initially as executive consultant and later as CTO) of

the IT organization of Wolfe, LLC, the rapidly growing

corporate owner of Giftcards.com and other brands in

the online prepaid domain.

My consulting group, Herzum, Inc., was hired to

introduce project-level Agile best practices (the COSM

approach1) and software lifecycle automation (a set

of Atlassian2 products) to all of the company’s software

development teams. After the initial phase, the engage-

ment evolved to supporting the group in the adoption

of a disciplined, scalable, agile approach to IT that

would allow the business to rapidly innovate and grow

and enable IT to quickly respond to business changes.

In this article, I describe the roadmap and the progres-

sion of best practices introduced, emphasizing activities

that are common across agility-in-the-large transforma-

tions. (Note: In this article, I will use the lower-case

term “agile” in its dictionary sense, and the upper-case

term “Agile” when referring to best practices based on

the Agile Manifesto [Scrums, sprints, user stories, test-

driven development, continuous integration, etc.].)

INITIAL GOAL: PROJECT-LEVEL AGILE BEST PRACTICES

Initially, the company engaged Herzum to provide

support for:

n Adopting specific tools (by Atlassian) to automate

the software development and release lifecycles

n Becoming “Agile” — helping them select appropriate

Agile best practices and coaching them in the effi-

cient adoption of those practices

n Configuring and extending the tools to conform to

the specific Agile practices selected

This initial set of activities became Phase 0 of the agile

transformation of the IT organization.

At the time (April 2011), the development team was

composed of 12 highly skilled developers who had

extensive experience in developing e-commerce solu-

tions based on the LAMP (Linux Apache MySQL PHP)

stack but little Agile experience. The development

organization was organized in a centralized develop-

ment team that serviced seven different e-commerce

business units.

PHASE 0: SPRINTS AND RELATED TOOL SUPPORT

Phase 0 lasted three months. In the first three weeks,

we installed an initial configuration of the tools and

provided Agile training and relevant tool training.

Subsequently, we led (as Agile Masters) two pilot

projects, began to provide overall support to other

projects and activities, and progressively expanded

Agile adoption to the whole development organization.

This was a typical Agile 1.0 adoption, consisting of

focused sprints and related practices along with tools

for project- and enhancement-based releases (releases

based, week after week, on addressing “the next set

of features and stories”). The phase ended when all

development teams had adopted a tool-supported Agile

approach to software development, using, for example,

two-week release sprints (one week development/

development testing, one week preproduction testing

performed by a test team), story-based development,

story points, Scrum/sprint boards for daily/weekly

project tracking, and burndown-burnup charts.

Phase 0 significantly shortened the time to market for

all business units, created a focused weekly cadence

for all activities, and enabled a weekly release-to-

production process for each business unit. It also

©2013 by Herzum, Inc. All rights reserved.CUTTER IT JOURNAL November 201312

A CIO/CTO View on Adopting Agile Within an Enterprise
by Peter Herzum

ACHIEVING AGILITY-IN-THE-LARGE

KEY POINT

Some Agile experts advocate the elimination of sep-

arate testing teams. In my experience, high-availability

e-commerce sites strongly benefit from having such teams.

But all organizations — including those with a separate

testing team — benefit from pushing as much testing and

quality assurance as possible to the development team,

making it co-responsible for the quality of their deliverables.

13Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

provided the basis for a disciplined, measured approach

to projects and releases.

The combination of practices and tool support was criti-

cal during this phase. Tools included a best-in-class

issue management system (JIRA), an Agile project man-

agement tool (GreenHopper, recently renamed JIRA

Agile), and a wiki-based knowledge management tool

(Confluence). These tools allowed company-wide visi-

bility of all projects, which was critical for satisfying the

compliance requirements of the prepaid industry.

Goals Revised: Roadmap for an Agile IT

During Phase 0, the Herzum team performed an assess-

ment of the entire IT organization and provided short-

term, medium-term, and long-term recommendations.

The assessment was based on the COSM agile enter-

prise maturity model. Key dimensions of this model

include project-level processes (project management,

requirements, development, release, QA), but also

enterprise-level elements, including portfolio manage-

ment, IT management, enterprise architecture, software

automation, collaboration, social/mobile (common to

all e-commerce companies), data warehouse/business

intelligence, IT management, IT organization, and IT

operations. COSM takes the view that agility-in-the-

large cannot be achieved without combining project-

level practices with strategy-focused disciplines,

adaptive architectures, and the appropriate software

factory3 tools.

The organization was experiencing significant growth.

The business units (and related online applications) had

grown organically and/or by acquisition, resulting in

online applications that had been rapidly developed

with a time-to-market emphasis. There were technical

and architectural redundancies (for example, multiple

shopping carts). Overall, the group was the victim of its

own success, as demonstrated by the fact that the num-

ber of daily visitors had grown rapidly, requiring the

online applications to provide higher levels of quality,

scalability, performance, availability, and security than

originally expected. The majority of the applications

were due for a revamp. At the same time, in order to

maintain Wolfe’s leadership in the prepaid online mar-

ket, there was a need to continue to rapidly implement

new features.

The objectives thus shifted from adopting “basic” Agile

best practices to establishing an agile IT function — one

managed with the discipline required to contribute to

the success of the business, effectively respond to the

rapidly changing needs of the business, and scale to

a growing set of teams and a growing business. This

also required transformation to a set of architecturally

sound, reuse-based applications that would reduce

maintenance costs, address production quality issues,

and much more.

Many businesses have a need for discipline that is a

prerequisite for achieving explicit business objectives.

For example, in the prepaid cards domain, compliance

with the Level 1 Payment Card Industry Data Security

Standard (PCI DSS) requires a detailed level of trace-

ability and documented change management. The

dichotomy between required discipline and agility is

a common challenge of modern enterprises.

To address these many objectives, we defined an IT

roadmap organized in three phases:

n Phase 1 — Consolidation and Innovation. This

phase was designed to enable specific business,

functional, and technical objectives. It involved a

sweeping revamp of existing applications and consol-

idation of new Agile practices, as well as innovation

through adoption of new business solutions, new

technologies, and new architectural approaches.

n Phase 2 — Fit for Growth. This set of initiatives not

only addressed the ongoing significant business growth

(in terms of volumes and visitors) and other changes,

but also the explosive growth planned for 2013.

n Phase 3 — Sustainable Growth.

I will only focus on those elements that are relevant for

our “agility” topic. A simplified summary of the phases

is presented in Table 1.

PHASE 1: CONSOLIDATION AND INNOVATION

Phase 1 lasted six months (until the end of 2011). As

part of the consolidation, we addressed a new set of

best practices, but also organizations, architectures,

technologies, and automation (the “software factory,” in

COSM terms):

n Agile 2.0. We expanded the adoption of agile (not

only Agile) best practices and supporting tools to

include feature-driven management, integrated

QA (testing and reviews) and release management

(tool-supported continuous assembly and integration,

automated release management), customer support,

IT operations, and advanced project management.

n “Factory 2.0.” The above practices were supported

and automated by an integrated toolset that included

tools for continuous integration and continuous

delivery (Bamboo), code repository management

(FishEye), review management (Crucible), and

test-case management (Herzum Test Manager).

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

©2013 by Herzum, Inc. All rights reserved.CUTTER IT JOURNAL November 201314

n Component-based, service-oriented, reuse-centric

architectures. We established adaptive architectures,

simplifying the overall application portfolio and

establishing a reusable foundational set of services, as

well as introducing a content management system for

the 70% of the Web pages that were mostly “content.”

n Lifecycle automation and collaboration (“software

factory”). We extended the automation and collab-

oration tools to the whole IT function and beyond.

n Organizations. The IT organization doubled in size

and, in addition, started to make use of external

teams and contractors. Existing and new agile prac-

tices, architectures, and technologies had to rapidly

scale and be easily adoptable by new teams.

At the end of Phase 1, the whole of IT and most busi-

ness teams had been involved in the agile transfor-

mation. At this time, “agility” included the following

capabilities:

n Business collaboration. High levels of collaboration

between IT and business teams enabled the company

to rapidly define projects and provide tracking and

transparency in terms of what would be released

and when.

n Integrated content changes. These allowed the

marketing team, and the business teams in general,

to perform daily controlled releases for Web content

changes in a controlled environment without involv-

ing IT.

n Continuous delivery. We achieved 95% automation

of the release process from development to test, pre-

production, and release to production. This removed

most defects due to the release process, improved

schedule predictability, and produced a high speed

of release. We could, for example, release patches in

a disciplined, controlled process in minutes and major

high-quality releases on a weekly basis.

n Integrated Kanban for IT operations and customer

support. Tool-supported Kanban allowed for easy

and traceable escalation to development and directly

integrated with the sprint-based application releases

(when relevant).

n Transparent IT. The adopted best practices provided

a transparent “fish bowl” approach to the whole soft-

ware supply chain, from project inception to release

to maintenance and operations. Both business and IT

representatives could access collaboration tools and

directly verify the status of each project and each

detailed requirement/bug being addressed by each

release. They could also drill down to specific activi-

ties of each resource and even specific code being

written by individual developers.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Phase 0 Phase 1 Phase 2 Phase 3

Focus Sprints and
Related Tool
Support

Consolidation and
Innovation

Fit for Growth Sustainable Growth

Duration 3 months 6 months 12 months 12 months

Project

Processes

Agile 1.0:
Weekly
sprints,
story-based

Agile 2.0: Continuous
integration and delivery,
integrated QA, Kanban
for operations/customer
services

Business project
management, QA to
include business QA,
cosourcing

Optimizations
and evolutions

Integrated IT

Processes

IT operations, help desk,
IT continuity

Strategy-focused IT,
project/application
portfolios, financial
management

Main Factory/

Tools Focus

Issue
management,
collaboration

Automated release
management, QA
(test case management,
reviews)

IT dashboards, QA
automation, proactive
IT reporting

Business dashboards,
proactive business
reporting, cosourcing

Main

Architecture

Focus

Project
architecture

Foundational services
such as security, content
management, and more

Core component/
applications, data
architecture

Enterprise architecture

Table 1 — IT Roadmap by Phase

15Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

n Proactive reporting. This included automatic email

notification to interested parties of releases and

scheduled generation (and email) of management

reports.

n Complete, metrics-based tracking. From require-

ments to development to testing to release, complete

metrics-based tracking was another new capability.

Each requirement was automatically linked to the

tests and the software code produced. This also

hugely simplified compliance.

This new approach to the software supply chain, which

favored transparency of development and releases, high

levels of automation, and a highly collaborative envi-

ronment, contributed to the group’s being voted among

the best places to work in the Pittsburgh Post-Gazette’s

“Top Places to Work” poll in 2011.

The innovation part of the transformation focused on

the rapid introduction of new features and initiatives,

such as social login, gamification, and new search

engine optimization (SEO) strategies, all of which

were implemented in a matter of weeks.

Phase 1 created the prerequisites for not only an agile

IT, but — more importantly — an agile business.

Indeed, business benefits from Phase 1 included:

n Market penetration. We experienced acceleration of

our market penetration through new offerings (year-

to-year increases of 40%-60% in volumes), advanced

techniques to improve our SEO standings, improved

customer retention and conversion rates (more than

double), and much more.

n Time-to-market speed. We could now bring new

features to market within weeks of conception (at

times, within days) and with significant quality.

n Reduced software development costs. We saw sig-

nificant reduction of development and maintenance

costs for our e-commerce applications.

n Traceability, quality, and more. The adoption of

tools for unit test and application test (both test speci-

fication and execution), the extension of QA practices

(both reviews and testing) to the various phases

of the software supply chain, and support for low-

granularity levels of traceability assured a high level

of quality in our software. We also significantly

improved our uptime and production performance.

PHASE 2: FIT FOR GROWTH

Phase 2 lasted 12 months (all of 2012). Most of Phase 2

addressed the introduction of new business initiatives

(such as the introduction of new giftcard products, a

mobile offering, and vastly improved search capabilities)

and new architectural solutions (significant performance

improvements, a total upgrade of the security architec-

ture, a redesigned data architecture, etc.). The IT team

had grown to 35 people. The time dedicated to IT trans-

formation was limited, so we had to pick our priorities

carefully.

The key objectives were to allow IT to respond to

the fast pace of the business, addressing the required

extra-functional requirements (availability, scalability,

performance, security, etc.), and preparing the company

for the planned exponential business growth. The objec-

tives had more to do with supporting business innova-

tion and growth than with “Agility.”

Phase 2 was driven by an aggressive set of idealized

IT targets, such as “0% downtime,” “100% release-to-

production automation,” and “0% QA-identifiable pro-

duction defects.” Achieving these goals required us to

revamp the organization and the applications and intro-

duce several IT best practices in conjunction with the

next level of Agile practices. For this article, I will focus

on the subset of Phase 2 activities related to agility.

The Phase 1 tools and approaches were extended to

all parts of the business, including customer service,

fulfillment, marketing, sales, and business operations.

In addition, we explicitly focused on:

n Portfolio management. We implemented Agile solu-

tions for project portfolio and application portfolio

management and for IT management in general. This

made project creation and cross-project reporting

easy and enabled cross-project integration and the

development of customizable dashboards.

n IT financial management. We integrated the budget-

ing and financial tracking of projects in the overall

processes.

The time dedicated to IT transformation

was limited, so we had to pick our priorities

carefully.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

©2013 by Herzum, Inc. All rights reserved.CUTTER IT JOURNAL November 201316

n Technologies refresh. We adopted newer technolo-

gies and solutions that would simplify development

and maintenance. For example, we replaced the Zend

framework with Symfony, and the Subversion ver-

sion control system with Git, and further optimized

our release management and change tracking.

n Cosourcing. Adopting a transparent cosourcing

model allowed for flexible growth of the IT resourc-

ing model in a period of accelerated development.

n Architecture 2.0 — core. We redesigned a set of core

components for reuse and scalability. This was the

most important element in achieving new levels

of agility.

n Improved collaboration tools. We further expanded

our collaboration tools (e.g., adopting HipChat),

expanding and optimizing support for continuous

delivery and collaboration.

At the end of Phase 2, so I could fully focus on my

consulting group, I helped select a new CTO. My

replacement and I overlapped for several months,

and in that time it was fascinating (and a great lesson!)

to see a new, experienced CTO take ownership of

“my” team in a friendly, managed transition. Metrics

and reports that I considered key were ignored.

Technologies that I did not consider important became

high priority. Practices that I would require every day

stopped being used. And yet, IT continued to improve.

AGILITY IN THE ENTERPRISE

After a profound, company-wide, architecture-driven,

tool-supported IT transformation, we had an agile IT

organization. Apart from reaching at least Level 2 on

all dimensions of the COSM agile maturity model, we

could now claim:

n Highly productive development teams. We were

now able to bring to market new features across

multiple online business units on a weekly basis, and

complete new solutions within four to eight weeks,

in a fully traced/tracked, transparent set of develop-

ment projects.

n High levels of release and delivery automation. This

included QAs, as well as metrics to tune and control

the process at the portfolio level.

n “Agile” as a pervasive concept across IT and the

business. We used the same Agile tools (the Atlassian

tools) across the business, and several business

processes were reflected in the JIRA workflow

engine, providing high visibility and reporting

automation. Compliance and financial management

were built into the processes. The whole business

(customer service, fulfillment, sales, marketing, etc.)

was able to escalate specific technical issues to the

development team and see them rapidly resolved.

n Adaptive architectures. We used common technolo-

gies, common foundation services, and common core

components across all applications, hugely reducing

maintenance and extension costs.

The emphasis of some of our initial practices changed.

For example, we had to address sprint fatigue: five to

eight full releases to production each week by a team

of 30 individuals is an incredible pace to keep up over

a period of 20 months. Self-organizing teams were

shortcutting Agile practices, with no particular negative

impact: teams knew what everybody was doing, so

even the 15-minute Scrum meetings were considered

a waste of time. Teams with good velocity didn’t care

about measuring it. They chose to implement more

features rather than spending time in story-point esti-

mation and tracking.

The business had dashboards to verify the status of

projects and complete access to the details of each proj-

ect, feature, story, test, and defect and how these items

related to each other. These dashboards were progres-

sively tuned, since executives were focused on business

drivers: How many giftcards have we sold today? How

many visitors did we have today?

So some Agile best practices came and went. What

stayed were the new integrated disciplines, the archi-

tectures, and the integrated collaboration tools that

enabled responsiveness to the business.

CONCLUSIONS

Industry-wide adoption of Agile practices and tools at

the project level is increasing at an exponential rate.

Enterprises are learning to balance these project-level

Agile best practices came and went. What

stayed were the new integrated disciplines,

the architectures, and the integrated collab-

oration tools that enabled responsiveness

to the business.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

17Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

practices with the required IT-wide disciplines. Agility-

in-the-large requires an integrated approach combining

project-level and IT-wide practices, with (at the very

least) adaptive architectures and software factories. The

appropriate tools are a critical success factor in agility-

in-the-large IT transformation.

Obviously, the IT transformation is never the primary

objective: businesses must focus first of all on business

success. Business objectives always trump Agile objec-

tives. The roadmap to an agility-in-the-large transfor-

mation must deal with carefully selected priorities.

Installing new practices is relatively simple. Adopting

integrated approaches that combine the disciplines

required by IT for business alignment, business respon-

siveness, and (for example) self-organizing develop-

ment teams is harder, and it significantly benefits from

a heavy emphasis on adaptive architectures and soft-

ware factories. When possible, transforming application

portfolios to component-based, service-oriented archi-

tectures is a critical success factor, but transforming

applications takes longer than transforming teams.

A word of caution: throughout this article, I differenti-

ated between use of the term “agile” as a never-ending

quest for nimbleness and the ability to adapt to change,

and the use of the term “Agile” to indicate the set of

best practices popularized by the Agile Manifesto and

subsequent trends. Is “Agile” always agile? Not really.

If a CEO needs to change sprint scope on a regular

basis, Agile is not agile if it does not make this easy. If

the VP of Sales needs an accurate “project percentage

complete,” to say “Agile does not measure percentages”

is not agile. An agile organization can deal with all

business requests. “Agile” will continue to expand

and storm the industry if we stay away from dogmatic

adoptions.

Our industry now has vast experience in reaching

and continuously optimizing high levels of agility

through the adoption and alignment of IT best practices

(enterprise architectures, IT governance, IT strategy,

application/project portfolio management, IT service

management, cosourcing, and many others) and project-

level Agile practices. Successful agile enterprises often

have a healthy mix of enterprise discipline and project-

level Agile practices, where the two levels of best prac-

tices integrate with and augment each other for IT and

business success. This is clearly the current frontier of

Agile adoption.

ENDNOTES

1COSM is a fourth-generation, disciplined, scalable agile

approach to software manufacturing. For more information,

see www.herzum.com/cosm.

2Atlassian (www.atlassian.com).

3The COSM software factory is a set of tools, technologies,

processes, procedures, standards, and how to’s that govern

software development from requirements to deployment.

Peter Herzum is a serial entrepreneur, an internationally renowned

IT and Agile expert, and a successful CIO. For his work at Wolfe,

he was named one of the Top 100 CIOs of 2012 by CIO magazine

and was a finalist for the 2012 CIO of the Year award from the

Pittsburgh Technology Council. He is the author of the industry

bestseller Business Component Factory, which has been translated

into multiple languages and adopted as a textbook in university

courses and continuing education programs worldwide.

As the founder and CTO of the Herzum Group, Mr. Herzum has

extensive experience in large-scale Agile adoptions, enterprise and

IT strategy, enterprise architectures, advanced and innovative tech-

nologies, and management and ALM methodologies specifically for

software products and large enterprises. He has over 25 years’ experi-

ence in managing, architecting, and consulting for large enterprises

using innovative technologies. He is a frequent speaker at interna-

tional conferences on topics such as Agile practices, enterprise and

software architectures for large enterprises, IT innovation, and IT

strategy. Mr. Herzum is particularly passionate about helping orga-

nizations use IT for business success, transforming themselves into

agile, disciplined, lean, automated producers of innovative software

solutions. And, of course, he is passionate about piano jazz. He can

be reached at peter@herzum.com.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Although many Agile teams are small, say 10 or fewer

people, and either colocated or at least near-located,

the majority of Agile teams work in more complex

situations. For example, some teams are several dozen

people in size and sometimes larger. Some teams are

geographically distributed. Some are taking on very

challenging problems. It’s easy to observe that organiza-

tions are actively applying Agile strategies in a range

of situations and are tailoring these strategies to suit

their needs. We’re learning that a context-sensitive

approach to IT solution delivery is much more effective

than a single, common approach prescribed to all teams.

Individual teams find themselves in unique situations

and therefore need the freedom to act accordingly.

This article describes:

n Context-dependent scaling factors

n How Disciplined Agile Delivery (DAD) provides

a foundation from which to scale

n Why being goal-driven is the key to scaling

n The four critical goals for scaling

CONTEXT COUNTS: SCALING FACTORS
IN AGILE SOFTWARE DELIVERY

What scaling factors should we consider when tailoring

our approach to Agile solution delivery? Several years

ago, while working with IBM customers around the

world to adopt and scale Agile, Scott developed the

Agile Scaling Model (ASM) to help answer this ques-

tion. In parallel to this work on the ASM, Philippe

Kruchten was working on something he terms “situa-

tional agility,” the heart of which constitutes eight fac-

tors often referred to as the “Octopus model.”1 In late

2012, we began thinking about how to combine and

evolve these two frameworks into one, originally calling

the result the Process Context Framework (PCF). We

moved away from that name because the framework

was clearly applicable to more than just software

process, and hence we adopted the name Software

Development Context Framework (SDCF), which also

includes people, process, and tools.2

Figure 1 summarizes the six scaling factors of the SDCF,

indicating the range of each factor. On the left-hand

side is the “simple” extreme, and on the right-hand side

is the “challenging” extreme. Any given team will find

itself somewhere on the spectrum for all six scaling fac-

tors, hopefully closer to the simple extreme on the left

than the challenging extreme on the right. In various

IT surveys over the years (most recently in the 2012

Agility at Scale survey3), we have found evidence that

organizations are applying Agile at all levels of scale, so

let there be no doubt that organizations are attempting

to scale Agile.

Now that we understand the scaling factors faced by

Agile teams and that these factors necessitate adapting

our approach for more complex endeavors, we’re

in a position to discuss the realities of scaling Agile

strategies within a team. Often organizations begin

experimenting with Agile by adopting methods such

as Scrum with a few ideas from XP, usually running a

few pilot projects to learn about the fundamentals of

Agile. A common realization is that teams need to go

far beyond Scrum (a strategy that Scrum proponents

refer to as “Scrum And”), and they start adding in tech-

niques from other sources to address the issues Scrum

doesn’t. Until recently, the only recourse that organiza-

tions had was to formulate their own process — often

still calling it Scrum — an endeavor that typically

proved time-consuming, expensive, and difficult when

©2013 Cutter Information LLCCUTTER IT JOURNAL November 201318

What It Means to Scale Agile Solution Delivery
by Mark Lines and Scott W. Ambler

GO FOR THE GOAL

Team Size

Geographic Distribution

Organizational Distribution

Compliance

Domain Complexity

Technical Complexity

2

Colocated

Single Division

None

Straightforward

Straightforward

1000s

Global

Outsourcing

Life Critical

Very Complex

Very Complex

©2013 Scott Ambler + Associates

Figure 1 — Scaling factors faced by Agile teams.

19Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

Agile process expertise wasn’t available. But now orga-

nizations have the option of using the DAD framework,

a hybrid approach that has already done a lot of the

hard thinking about how all these Agile techniques

fit together and when (and when not) to use each one.

With DAD’s goal-driven approach, it becomes easy

to tailor the framework to address the scaling factors

appropriately.

DISCIPLINED AGILE DELIVERY (DAD)
AS A FOUNDATION FOR SCALING

As we’ve said, many organizations start their Agile

journey by adopting Scrum because it describes a good

strategy for leading Agile software teams. Scrum, how-

ever, is only part of what is required to deliver sophisti-

cated solutions to your stakeholders. Invariably, teams

need to look to other methods to fill in the process gaps

that Scrum purposely ignores. When looking at other

methods, there is considerable overlap and conflicting

terminology that can be confusing to practitioners as

well as outside stakeholders. Worse yet, people don’t

always know where to look for advice or even what

issues they need to consider.

To address these challenges, the DAD process decision

framework provides a more cohesive approach to Agile

solution delivery.4 To be more exact, here’s our defini-

tion of DAD:

The Disciplined Agile Delivery (DAD) process decision
framework is a people-first, learning-oriented hybrid
Agile approach to IT solution delivery. It has a risk-value
delivery lifecycle, is goal-driven, is enterprise aware, and
is scalable.

DAD provides a foundation from which to scale

because it:

n Addresses the full delivery lifecycle. DAD recog-

nizes that projects go through some startup activities

as well as the work involved in transitioning the

solution to stakeholders.

n Is a hybrid of good ideas. DAD adopts proven

practices from methods such as Scrum, XP, Agile

Modeling, and Kanban, to name a few. DAD shows

how practices for management, testing, architecture,

programming, continuous integration, deployment,

and other practices fit together.

n Is goal-driven. We have found that process-related

goals are fairly consistent across most types of proj-

ects. However, context is inevitably different, so DAD

provides easy-to-consume guidance for how to adapt

to the unique situations that you will face.

Of all these aspects of DAD, our experience is that adopt-

ing a goal-driven approach is the one that most organiza-

tions have missed in their attempts to successfully scale

Agile solution delivery. Let’s explore this further.

DRIVEN BY PROCESS GOALS: THE KEY TO SCALING

Even today with Agile software development, it’s

comfortable to think that prescriptive strategies such as

managing changing requirements in the form of a prod-

uct backlog, holding a daily meeting where everyone

answers three questions, having a single requirements

owner (and thereby one neck to wring), and other such

ideas will get the job done. But we all know that some

of these “rules” are meant to be broken. There are actu-

ally many reasonable methods for managing require-

ments change, there are various means of coordinating

within a team besides a daily stand-up meeting, there

are different ways to explore stakeholder needs, and so

on. Each of these strategies has advantages and disad-

vantages, and each has a range of situations in which

it is appropriate. DAD describes a straightforward,

easy-to-consume strategy that is goal-driven. It has a

visual component (process goal diagrams that summa-

rize the fundamental process decision points) and a tex-

tual component (goals tables that describe the factors to

be considered, various options for each factor, and the

tradeoffs between them).

Thanks to this goal-driven approach, DAD avoids being

prescriptive and is therefore more flexible and easier to

scale than other Agile methods. For example, where

Scrum prescribes a value-driven product backlog

approach to managing requirements, DAD instead says

that during construction you have the goal of address-

ing changing stakeholder needs. It also indicates that

there are several factors related to successfully accom-

plishing a goal that warrant consideration and several

techniques/practices that you should consider adopting

to achieve that goal. DAD goes further and describes

the advantages and disadvantages of each technique

and the situations it is best suited for. Yes, Scrum’s

product backlog is one way to address changing stake-

holder needs, but it isn’t the only option, nor is it the

Yes, Scrum’s product backlog is one way to

address changing stakeholder needs, but it

isn’t the only option, nor is it the best option

in many situations.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

©2013 Cutter Information LLCCUTTER IT JOURNAL November 201320

best option in many situations. Figure 2 shows the goals

that are consistent with any project regardless of type,

whether it is custom development or implementing

a package.

FOUR CRITICAL GOALS FOR SCALING

Pareto Saves the Day

The goals Explore Initial Scope, Identify Initial Technical

Strategy, Coordinate Activities, and Move Closer to

Deployable Release seem to bear the brunt of an organi-

zation’s process tailoring efforts when working at scale.

It really does seem to be one of those Pareto situations

where 20% (of the goals, in this case) accounts for 80%

of the work. The process tailoring decisions that you

make regarding these goals will vary greatly based on

the various scaling factors we depicted in Figure 1.

Applying Goal Diagrams to Address Scaling Factors

Figure 3 provides an example of a DAD process goal

diagram. To address the Explore Initial Scope process

goal, we need to consider various issues or process fac-

tors in order to work most effectively in the context that

we find ourselves in. While mainstream Agile methods

trivialize the need to do any planning prior to coding,

DAD recognizes that most projects do indeed spend

some time exploring the scope of the project. As you

can see from the figure, there are a number of choices

for each factor. As with all process goal diagrams,

Figure 3 doesn’t provide an exhaustive list of options,

although it does provide a pretty good start. Some

choices, such as work item list, are bolded and itali-

cized, which indicates that they are good places to start

for a typical DAD team. Some issues show an arrow

beside the options, which indicates that the choices at

the top are generally the most effective and the better

alternatives to strive for. A team will make hundreds of

process decisions, and these diagrams can be used to

ensure that the team considers the various options. An

example of a decision might be what View Types could

we use to depict scope? In this case, DAD recommends

starting with a combination of usage modeling, domain

modeling, and nonfunctional requirements. For usage

modeling, user stories are the most popular Agile

approach, but you could also create use case diagrams

or personas as needed.

The process goal diagram for Explore Initial Scope gives

us some ideas to consider when eliciting the require-

ments of the solution. For small projects, simply creat-

ing a work item list of stories and other work might be

sufficient. However, even for small projects, ignoring

other strategies such as various modeling techniques

could mean that we risk missing functionality or, worse,

creating work items for the wrong functionality. As

the complexity of the domain increases, or a regulatory

requirement demands it, it becomes necessary to vary

the View Types as well as the Level of Detail. The geo-

graphic and organizational distribution typical in out-

sourcing scenarios will also lead to different levels of

documentation requirements. Technical complexity is

a scaling factor that will affect the scope identification

approach. For example, air traffic control systems will

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Form Initial Team

Develop Common Vision

Align with Enterprise Direction

Identify Initial Technical Strategy

Explore Initial Scope

Develop Initial Release Plan

Secure Funding

Form Work Environment

Identify Risks

Produce Potentially Consumable Solution

Address Changing Stakeholder Needs

Move Closer to Deployable Release

Improve Quality

Prove Architecture Early

Ensure Solution Is Consumable

Deploy Solution

Grow Team Members

Fulfill Team Mission

Leverage and Enhance Existing Infrastructure

Mitigate Risk

Improve Team Process and Environment

Coordinate Activities

Inception
(How Do

We Start?)

Construction
(How Do We

Produce a Solution?)

Transition
(How Do

We Deploy?)

Ongoing
(What Do We

Do Throughout?)

Disciplined

Agile

Delivery

©2013 Disciplined Agile Consortium

Figure 2 — The process goals of DAD.

21Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

require more than a Scrum product backlog of stories

to adequately capture the scope of the system.

Figure 4 depicts the process goal diagram for Identify

Initial Technical Strategy. For a simple website appli-

cation, a minimalist approach to documenting the

architecture would likely be appropriate. Informal mod-

eling sessions around a whiteboard might be all that is

required. However, for a technically complex system,

your nonfunctional requirements might include the

need to address concerns such as performance, load,

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Goals-Driven

Requirements Envisioning (Light Specification)
BRUF (Detailed Specification)

None

Usage Modeling
Domain Modeling
Process Modeling

User Interface Modeling

Nonfunctional Requirements

Informal Modeling Sessions
Formal Modeling Sessions

Interviews

None

Work Item Pool

Work Item List
Scrum Product Backlog

Formal Change Management

None

Acceptance Criteria
Explicit List
Technical Stories

None

Level of Detail

View Types

Modeling Strategy

Work Item

Management Strategy

Nonfunctional

Requirements

Explore Initial

Scope

Figure 3 — Process goal diagram: Explore Initial Scope.

High-Level Overview
Detailed Interface
Detailed End-to-End
None

Technology
Business Architecture
User Interface (UI)

Informal Modeling Sessions
Formal Modeling Sessions
Single Candidate Architecture
Multiple Candidate Architectures

Extend Existing Solutions
Configure a COTS Package
Extend a COTS Package
Build from Scratch

Level of Detail

View Types

Modeling Strategy

Delivery Strategy

Identify Initial
Technical Strategy

Figure 4 — Process goal diagram: Identify Initial Technical Strategy.

©2013 Cutter Information LLCCUTTER IT JOURNAL November 201322

fault tolerance, security, and other architectural chal-

lenges. Perhaps multiple candidate architectures need to

be considered. In cases like this, more View Types will

be required, at a greater Level of Detail. For geographi-

cally or organizationally dispersed teams, sharing infor-

mation about the architecture will also need to be done

in a more formal manner. An interesting consideration

when identifying a Delivery Strategy is whether you are

going to build from scratch, extend existing solutions,

or perhaps purchase and integrate a package. You can

in fact use an Agile approach to each of these scenarios,

although the way that you describe your technical

approach will need to be adapted.

The process goal diagram for Coordinate Activities is

shown in Figure 5. This process goal is interesting

for several reasons. First, some of the issues are team

focused, in particular Artifact Ownership and Coordinate

Within Team. Second, several issues reflect the fact

that DAD teams are enterprise aware and thus describe

strategies for coordinating with others external to the

team. For example, your team may need to coordinate

with your organization’s enterprise architects and oper-

ations staff, potentially adopting some of the strategies

captured by Coordinate Across IT. You are also likely

to employ Share Information strategies. If you have a

release organization, then your team may need to adopt

one or more Coordinate Release Schedule strategies (or,

if there’s no release team, then your team will still need

to somehow coordinate releases with other delivery

teams and with your operations team). Third, several

issues address scaling factors. For example, large teams

(often called “programs”) will find that they need

to adopt strategies called out by Coordinate Within

Program. Teams that are geographically or organiza-

tionally distributed will need to consider strategies from

Coordinate Between Locations. They may find that they

need to have people who act as boundary spanners

(i.e., serve as key liaisons at each site) and even invest

in enabling some people to gather physically at critical

times. Naturally, if you don’t face a scaling issue such

as geographic distribution, then the issue Coordinate

Between Locations isn’t something you need to consider.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Non-Solo Development
Conversations
Informal Reviews
Formal Reviews
None

Collective Ownership
Disparate Ownership

Coordinate Meetings
Visualize Work
Status Meetings
Just-in-Time (JIT) Modeling
JIT Planning

Coordinate Meetings
Visualize Work
Common Cadences
Product Owner Team
Architecture Owner Team
Management Team

Enterprise Professional as Team Member
Documented Enterprise Strategy (Light)
Documented Enterprise Strategy (Detailed)
None

Release Train
Release Windows
Unique Project Releases
None

Share Information

Artifact Ownership

Coordinate
Within Team

Coordinate
Within Program

Coordinate
Across IT

Coordinate
Release Schedule

Coordinate
Activities

Gather Physically at Critical Times
Ambassadors
Boundary Spanners
Adopt Collaborative Tools

Coordinate
Between Locations

Figure 5 — Process goal diagram: Coordinate Activities.

23Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

Lastly, for large-scale efforts where multiple teams need

to deliver functionality in parallel, it might make sense to

Coordinate Release Schedule using a release train.

Figure 6 provides some ongoing guidance to consider

when fulfilling the goal Move Closer to Deployable Release.

For small projects, it is relatively easy to have working

and tested software at all times, as well as to make fre-

quent releases to stakeholders if basic Agile technical

practices such as continuous integration and continuous

deployment are in place. However, as projects face

various scaling factors, this becomes more difficult.

With regard to Deployment Strategy, many companies

implementing Agile like to boast about their ability to

deploy new functionality to customers on a daily basis.

In many situations, this is only possible due to the sim-

plistic or localized impact of the change made to the

solution. In addition, this typically only appears in envi-

ronments with minimal compliance requirements and

in organizations that are risk tolerant. However, for the

majority of enterprises that are implementing Agile at

scale, the ability to do daily deployments of material

functionality is not a practical reality. Highly regulated

organizations are generally quite risk-averse, and they

therefore need to devote more effort toward Validation

and Verification activities. For instance, they may find

it necessary to conduct formal reviews as well as static

and dynamic analysis of the work products. As an addi-

tional measure of quality assurance, parallel indepen-

dent testing is often a good approach to Validation. As

domain and technical complexity increases, the need

for sophisticated Validation practices also becomes

more acute. For complex solutions, manual regression

testing is impractical. Automated testing practices can

increase confidence that changing or adding new func-

tionality will not break existing functionality and can

give the team the confidence to rework aspects of the

system without breaking something else.

While we have given some examples of how these

diagrams can be very useful for providing guidance

on what choices to make in various scaling scenarios,

it is worthwhile to restate that there are textual tables

behind each diagram to provide some more detailed

advice for how to apply DAD’s process decision frame-

work. Of the 22 DAD goals listed in Figure 2, the four

we’ve discussed here will address roughly 80% of the

tailoring required to address the scaling factors called

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Continuous Deployment
External Releases as Appropriate
Internal Release Each Iteration
Single Release

Configuration Management
Version Control
Shared Folders
Maintain Traceability
None

Active Stakeholder Participation
Continuous Documentation — Same Iteration
Continuous Documentation — Following Iteration
Document Late
None

Active Stakeholder Participation
Continuous Planning
Plan Late
None

Test-Driven Development (TDD)
Acceptance TDD (ATDD)
Continuous Integration (CI)
Test-After Development
Parallel Independent Testing
End-of-Lifecycle Testing
Manual Testing
None

Non-Solo Development
Informal Reviews
Formal Reviews
Static Analysis
Dynamic Analysis

Deployment Strategy

Asset Management

Document Strategy

Deployment Planning

Validation

Verification

Move Close to
Deployable Release

Figure 6 — Process goal diagram: Move Closer to a Deployable Release.

©2013 Cutter Information LLCCUTTER IT JOURNAL November 201324

out in Figure 1. The other 18 goals will still be affected,

but to a much lesser extent.

PARTING THOUGHTS

There are several fundamental advantages to taking a

goal-driven approach to Agile solution delivery. First,

it makes your process options obvious. The 22 process

goals, in combination with the more detailed process

goal diagrams, make the range of available Agile prac-

tices very clear. Second, DAD’s goal-driven approach

supports process tailoring by making your process deci-

sions explicit. Third, scaling Agile delivery strategies

is enabled by delineating the strengths and weaknesses

of each practice. (This advice is currently captured as

textual tables in the DAD book5 and programmatically

in several software process tools.) Fourth, a goals-based

approach clarifies what risks you’re taking on because it

makes your process decision options and their tradeoffs

explicit. Fifth, it takes the guesswork out of extending

Agile methods to address the context a delivery team

is facing.

DAD seems to be resonating with organizations around

the world that are looking for a pragmatic approach

to scaling Agile in the enterprise. This stuff is hard.6

Presenting various strategies for achieving scale in

a straightforward manner — with advantages, dis-

advantages, and considerations for each approach —

can make the challenges less daunting.

ENDNOTES

1Kruchten, Philippe. “Contextualizing Agile Software

Development.” Journal of Software: Evolution and Process,

Vol. 25, No. 4, April 2013, pp. 351-361.

2Ambler, Scott W. “Scaling Agile: The Software Development

Context Framework.” Disciplined Agile Delivery, 15 March

2013 (http://disciplinedagiledelivery.wordpress.com/2013/

03/15/sdcf).

3Ambler, Scott W. “Agility at Scale Survey: Results from the

Summer 2012 DDJ State of the IT Union Survey.” Ambysoft,

2012 (www.ambysoft.com/surveys/stateOfITUnion201209.

html).

4Ambler, Scott W., and Mark Lines. Disciplined Agile Delivery:

A Practitioner’s Guide to Agile Software Development in the

Enterprise. IBM Press, 2012.

5Ambler and Lines (see 4).

6For more information about DAD and the four process

goals described in this article, visit DisciplinedAgileDelivery.

com. The Disciplined Agile Consortium (DisciplinedAgile

Consortium.org) maintains a directory of certified DAD

practitioners and instructors.

Mark Lines is Managing Partner at Scott W. Ambler + Associates.

With Scott Ambler, he is coauthor of Disciplined Agile Delivery:

A Practitioner’s Guide to Agile Software Delivery in the

Enterprise. Mr. Lines is a “disciplined” Agile coach, helping organi-

zations all over the world transform from traditional to Agile methods.

He also helps customize Agile governance practices to accelerate com-

plex projects in large enterprises. Mr. Lines delivers workshops on

Disciplined Agile Delivery (DAD) as well as other Agile topics. He

writes for many publications, is a frequent speaker at industry confer-

ences, and blogs about DAD at www.DisciplinedAgileDelivery.com.

He can be reached at mark@scottwambler.com.

Scott W. Ambler is a Senior Consultant with Cutter Consortium’s

Business & Enterprise Architecture and Agile Product &

Project Management practices. He is the thought leader behind

the Disciplined Agile Delivery (DAD) process decision framework,

Agile Model Driven Development (AMDD), the Agile Data (AD)

method, and the Enterprise Unified Process (EUP), and he works with

clients around the world to improve the way they develop software.

Mr. Ambler is coauthor of several software development books,

including Disciplined Agile Delivery, Agile Modeling, The

Elements of UML 2.0 Style, Agile Database Techniques, and

The Enterprise Unified Process. He is also a Senior Contributing

Editor with Dr. Dobb’s Journal. Mr. Ambler has spoken at a wide

variety of international conferences, including Agile 20XX, Software

Development, IBM Innovate, Java Expo, and Application

Development. He can be reached at sambler@cutter.com.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Customers not only expect developers to provide work-

ing code, but also to contribute toward a working IT

system. Developers need to cooperate closely with the

team that handles IT operations in order to coordinate

and integrate software development, technology oper-

ations, and quality assurance.1 To accomplish this,

approaches like the Disciplined Agile Delivery (DAD)

framework have been proposed.

The DAD process decision framework differentiates

itself from other Agile methods in that it provides an

end-to-end solution delivery lifecycle (i.e., a description

of how a team can proceed from the inception of an IT

solution to its release).2 It incorporates recognized soft-

ware development methods such as Scrum, Kanban,

Agile Modeling, and Extreme Programming and

extends these “construction-focused” methods with

approaches that ensure the delivery of a solution and

not just working code. DAD considers governance to

be of major importance, and it incorporates explicit

guidelines to implement governance into the process.

The DAD framework also incorporates ideas coming

from DevOps, a movement that addresses the problem

that developers and system administrators basically

have opposing interests. Stakeholders expect develop-

ers to constantly increase the provided value, to exploit

new technologies, to add new features — in other

words, to improve software. In contrast, stakeholders

expect administrators to deploy software and keep

it working. Naturally, administrators tend to resist

change, as it threatens the stability of the system.

This is the result of a traditional division of labor fol-

lowing the principle divide et impera (“divide and rule”):

one team develops, another team tests, and another

team deploys. In such companies, the work of develop-

ers is “just thrown over the wall” to the system admin-

istrators, and they have to deploy the changes. If a

problem arises, system administrators adjust or write

their own deployment scripts, modify configuration

files, adapt the installation environment, and so on to

reflect the production environment, which might be

different from the development or QA environment.

Often they duplicate the work already done in previous

environments, and since they cannot build on the expe-

rience gained there, they may introduce or uncover

new bugs.3 If the deployment fails, then a blame game

begins, in which system administrators blame devel-

opers for writing bad software and developers blame

system administrators for not being able to install it.

One goal of DAD is to efficiently guide the communica-

tion between different departments and groups, and by

doing so, to facilitate the process of achieving common

goals more efficiently. We discuss in this article how we

can support this process by visualizing the steps that

are actually carried out and comparing them with the

steps that should be carried out. We will be able to see

the sequence in which these activities are executed and

how the effort is distributed among the executed activi-

ties. This knowledge can later be used to find opportu-

nities to collaborate, improve, or change.

GOVERNANCE IN DISCIPLINED AGILE DELIVERY

DAD divides the whole solution lifecycle into three

main phases:

1. Inception

2. Construction

3. Transition

Figure 1 shows the activities foreseen for the Construction

phase. The horizontal axis of the diagram represents the

timeline of the implementation, divided into five phases.

The activities inside each phase contribute to four goals,

shown on the vertical axis.

Figure 1 shows the activities recommended by DAD.

Activities for which we automate the measurement are

marked with a circle; the other activities are marked

with a diamond. Below we will discuss how to automate

the measurement of activities marked with a circle.

25Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

Supporting Governance in Disciplined Agile Delivery
Using Noninvasive Measurement and Process Mining
by Saulius Astromskis, Andrea Janes, Alberto Sillitti, and Giancarlo Succi

THE REAL VS. THE IDEAL

©2013 Cutter Information LLCCUTTER IT JOURNAL November 201326

To efficiently manage the communication between dif-

ferent departments and groups, DAD makes the follow-

ing recommendations, which it subsumes under the

term “Information technology governance”:4

n Establish chains of responsibility, authority, and

communication in support of the overall enterprise’s

goals

n Establish measurements, policies, standards, and

control mechanisms to enable people to carry out

their roles and responsibilities effectively

In this article, we focus on this governance objective,

particularly on how to establish measurements and

control mechanisms using process mining. We will

show how to evaluate:

n Whether the process steps shown in Figure 1 are

executed (i.e., process mining)

n Whether the sequence of steps follows the recom-

mended one (i.e., process conformance checking)

COMBINING NONINVASIVE MEASUREMENT AND
PROCESS MINING TO MAKE THE PROCESS VISIBLE

In this section, we will explain how to combine non-

invasive measurement and process mining5 to support

governance within Disciplined Agile Delivery. We use

the process depicted in Figure 1 for our example.

An Architecture to Collect Noninvasive Measurements

To observe the workflow performed by the developers,

we use measurement probes (more on these below) to

collect data about the interactions of the developers

with the development tools the team uses to implement

a work item.

Let us assume we are at the beginning of a new itera-

tion, in which the development team begins implement-

ing a set of work items. The project is developing a Web

application in Java using Apache Tomcat as a platform.

The tools used in the development process are:

n Twist (from Thoughtworks) for acceptance testing

n Visual Paradigm for modeling

n Eclipse IDE for coding and unit testing

n Jenkins (from Jenkins CI, formerly Hudson Labs)

for continuous integration

n Sikuli Script for GUI testing

n Microsoft Office for documentation

n Bugzilla for task management

The work items selected for the current iteration are

requests for new features in the system. The devel-

opment team implements each work item using the

activities depicted in Figure 1.

To collect data about which applications developers use,

when they use them, and what they do with them, we

have developed an application (we call it “Trace”) that

tracks which window the developer is focused on. With

this application (using the API offered by Windows),

we are able to log whenever the focus changes from one

window to another. If the focus changes, the application

logs the following data:

n The time and date of the focus change

n The name of the application that was used

n The title of the window (this occurs only for those

applications in which the title of the window is the

name of the document being edited)

The team uses Bugzilla to manage the status of a work

item. An add-on6 written for Bugzilla reports to the

server the following data as a work item is changed:

n The time and date of the event

n The ID of the work item

n The event type (added, modified, removed)

n The status of the work item (new, assigned,

released, etc.)

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

 Timeline (production and delivery phases)

Understand
the work

Explore
the solution

Build
the solution

 Validate the
integrated
solution

Share the
solution

Goals

Prevent
problems

Deliver
work

Find
problems

Improve
quality

Create acceptance tests

Model requirements a bit ahead

Model solutions a bit ahead

Validate solution with architecture spike

Design unit tests

Code unit tests

Model storm
requirement

 Model
storm solution

Consider consumability

Write production code

Create build Deploy to integration
environment

Continuous deployment

Partial regression of unit tests

Code review

Full regression of unit test

Run acceptance tests

Automated GUI testing

Exploratory testing
Deployment testing Continuous documentation

Non-solo development

Fix problems

Refactor

Figure 1 — Phases, goals, and activities to deliver a work item.
(Adapted from Ambler and Lines.)

27Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

Moreover, the team uses two additional measurement

probes: an add-in7 for Microsoft Office and a plug-in8

for Eclipse. Whenever a developer changes the focus

from one document or one piece of code to another,

these probes report:

n The time and date of the focus change

n In Microsoft Word: the name of the document

n In Eclipse: the name of the project, the namespace, the

name of the class, the current method signature, and

the current action (edit, debug, execute)

The data from all four measurement probes (Trace,

Bugzilla, Microsoft Office, and Eclipse) is sent to the

server and fed into a process-mining algorithm. A possi-

ble architecture of the measurement system described

here is depicted in Figure 2. As shown, the data is col-

lected on the team members’ computers (laptops or

workstations) and is sent to a message queue.

We use a message queue to minimize the workload of

the client computers. Developers do not want their

machines to slow down because some measurement

program is running in the background. By employing

a message queue (we use Apache ActiveMQ), we can

minimize the time the client machine is busy uploading

data. The data is then read from the message queue,

processed, and inserted into the data warehouse. Due

to the large amount of data we collect, we use a NoSQL

database, Apache Cassandra. The data is then extracted

from the data warehouse and processed to display it on

a dashboard.9 An example of the data our system col-

lects is shown in Table 1.

The format of the collected data is the same for other

phases, too, except that during the development phase,

more detailed data (also project names, namespaces,

class names, and method signatures) is collected.

How to Analyze the Data Using Process Mining

Before we can use the data in Table 1, it has to be pre-

processed. We have to map the collected events to those

activities that we want to study. In our case, these are

the activities of Figure 1. In this example, we look only

at the activities marked with a circle. To assign activities

to events, we define logical rules, as in Table 2.

After applying the rules to the events, we can pass

them to a process-mining algorithm that mines a

process model. This process model describes what is

really happening during development and can be used

to compare that to what should happen. Thus we com-

pare the real process to the ideal process. The mined

process shows the identified activities, their sequence,

and timing information. We exclude events that do not

match any of the rules.

To extract the visual process model from the event log,

we use an algorithm called the heuristics miner,10 as this

algorithm is suited for real-world data.11 The heuristics

miner algorithm is able to deal with noisy data, ignor-

ing rare events and activities, and therefore to generate

simple models that represent only the most common

behavior.

The process model we obtained in our case is depicted

in Figure 3.

This visualization of the mined process model reveals

the most common transitions between the activities of

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Message queue Data warehouse

Laptop

Dashboard

Workstation

Computer Data transfer

Legend

Data processing and transfer

Figure 2 — Data flow within the measurement framework.

User Application File Source Start End Action

1 Twist projects/p8/at1scn 1 9:19:01 9:21:15

1 Chrome 1 9:35:07 9:37:23

1 MS Word projects/p4/Req02.doc 1 10:01:51 10:12:51

1 Eclipse ArchSpike/web/login.jsp 2 10:35:11 10:44:24 Edit

1 MS Word projects/p1/Req02.doc 1 11:05:54 11:15:32

1 Eclipse ArchSpike/web/login.java 2 11:15:32 11:19:08 Execute

… … … …

*This excerpt shows the data coming from one developer in the “Understand the work” phase, in which he or
 she uses the Twist tool to create the acceptance tests and Microsoft Word to write the more detailed specification
 of the requirements.

Table 1 — Excerpt of the Data Collected During the Execution of the Iteration*

©2013 Cutter Information LLCCUTTER IT JOURNAL November 201328

the events we collected. The thickness of a line repre-

sents the frequency of transitions; the intensity of the

shading of an activity represents the relative effort

compared to the overall effort.

This model is interpreted as follows:

n An activity is present in the model. The data

contains a significant amount of events assigned

(through a rule) to the activity shown in the model.

n An activity is not present in the model. The data does

not contain a significant amount of events assigned

(through a rule) to the activity shown in the model.

This could also mean that the rules do not assign the

correct activity to the collected events.

n One activity is connected with another activity.

The data contains a significant, low amount of events

in which one activity B follows another activity A.

n One activity is connected with another activity

through a thick line. The data contains a significant,

high amount of events in which one activity B follows

another activity A.

n The line connecting two activities has an arrow

only on one side. The data contains only transitions

from the first activity to the second but not vice versa.

n The line connecting two activities has arrows on

both sides. The data contains transitions from the

first activity to the second and vice versa.

n An activity is shaded with a light color. Considering

the total effort, the amount of time spent in this activ-

ity is relatively low.

n An activity is shaded with a dark color. Considering

the total effort, the amount of time spent in this activ-

ity is relatively high.

CONCLUSION

The process model can be mined for the whole team or

for each individual. To avoid a negative impact on the

motivation of the collaborators — they might feel spied

on by the measurement probes — we recommend

aggregating the data on the team level and looking at

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Figure 3 — Mined process model of a work item implementation as defined in Figure 1.

Activity Rules

Create acceptance tests Application = Twist

Create GUI tests Application = Sikuli

Model the requirements Application = MS Word and File is “req*.doc”

Model the solution Application = Visual Paradigm

Model storm the solution Application = Eclipse and Project is “arch_spike_WI*” and Action is “Edit”

Write documentation Application = Microsoft Word

Code unit tests Application = Eclipse and File is “test*.java” and Action is “Edit”

Write production code
(business logic)

Application = Eclipse and File is not “test*.java” and File is not “*.jsp”

Write code (user interface) Application = Eclipse and File is “*.jsp” and Action is “Edit”

Create build Application = Eclipse and File is “*.ant” and Action is “Edit”

Execute unit tests Application = Eclipse and File is “test*.java” and Action is “Execute”

Table 2 — Some Rules for Assigning Activities to Events

29Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

what the team is doing well and where it needs to

improve. (That said, a developer might want to extract

the process model of only his or her data to study how

he or she is developing.) The mined process model

helps to identify:

n The activities that the team carries out

n The sequence of activities the team carries out

n The distribution of effort between the activities

n Missing activities

n The process conformance of the team (in general

and for specific work items)

n The typical process per work item type

n The degree of conformance to a defined process

Furthermore, the mined process model can be used

for sprint retrospectives, to show stakeholders how

the sprint was actually executed and to brainstorm

about possible ways to improve the next one. Such an

approach can help both the team and management to

understand how the team spends its time and whether

it is doing the right things. The team can also use the

obtained process model to measure improvement; that

is, to evaluate the decisions taken before the sprint by

observing whether those decisions led to process

improvement.

Software is intangible, and so are the processes used to

develop it. This fact creates a challenge when it comes

to governance within a software development organiza-

tion. It is difficult to objectively measure and evaluate

the performance of the processes in place and to check

whether they conform to the ones imposed by manage-

ment. The noninvasive measurement and process min-

ing approach we have described in this article makes it

easier to visualize and analyze the actual processes in

an organization. The results can be used by both devel-

opment teams themselves and by management to prop-

erly guide the delivery of products.

ENDNOTES

1Spinellis, Diomidis. “Don’t Install Software by Hand.” IEEE

Software, Vol. 29, No. 4, July 2012.

2Ambler, Scott W., and Mark Lines. Disciplined Agile Delivery:

A Practitioner’s Guide to Agile Software Delivery in the Enterprise.

IBM Press, 2012.

3Edwards, Damon. “What is DevOps?” dev2ops, 23 February

2010 (http://dev2ops.org/2010/02/what-is-devops).

4Ambler and Lines (see 2).

5The basics of noninvasive measurement and process mining are

covered in: Astromskis, Saulius, Andrea Janes, Alberto Sillitti,

and Giancarlo Succi. “Implementing Organization-Wide

Gemba Using Noninvasive Process Mining.” Cutter IT Journal,

Vol. 26, No. 4, 2013.

6The Bugzilla development team uses the term “add-on” to

describe an extension to Bugzilla.

7Microsoft uses the term “add-in” to describe an extension to

Microsoft Office.

8The Eclipse development team uses the term “plug-in” to

describe an extension to Eclipse.

9Janes Andrea, Alberto Sillitti, and Giancarlo Succi. “Effective

Dashboard Design.” Cutter IT Journal, Vol. 26, No. 1, 2013.

10De Weerdt, Jochen, Manu De Backer, Jan Vanthienen, and

Bart Baesens. “A Multi-Dimensional Quality Assessment

of State-of-the-Art Process Discovery Algorithms Using

Real-Life Event Logs.” Information Systems, Vol. 37, No. 7,

November 2012.

11De Weerdt et al. (see 10).

Saulius Astromskis is a PhD student at the Free University of

Bolzano-Bozen (Italy). His research interests include Lean software

development, noninvasive software measurement, and software devel-

opment process mining. Mr. Astromskis holds a master’s of science

degree in informatics from Vilnius University, Lithuania. He can be

reached at saulius.astromskis@unibz.it.

Andrea Janes is Assistant Professor of Software Engineering at the

Free University of Bolzano-Bozen. His research interests include Lean

software development, value-based software engineering, and empirical

software engineering. Mr. Janes holds a master’s of science degree in

business informatics from the Technical University of Vienna and

is pursuing a PhD in informatics at the University of Klagenfurt

(Austria). He can be reached at ajanes@unibz.it.

Alberto Sillitti is Associate Professor of Computer Science at the

Free University of Bolzano-Bozen. He has been involved in several

EU-funded projects related to open source software, services architec-

tures, and Agile methods in which he applies noninvasive measure-

ment approaches. Additional research areas include mobile and Web

services. Dr. Sillitti has served as a program committee member of

several international conferences and as program chair of OSS 2007,

XP2010, and XP2011. He is the author of more than 80 papers for

international conferences and journals. Dr. Sillitti holds a PhD in

electrical and computer engineering from the University of Genoa

(Italy). He can be reached at asillitti@unibz.it.

Giancarlo Succi is a Senior Consultant with Cutter Consortium's

Agile Product & Project Management practice. He is also Professor

of Software Engineering and Director of the Center for Applied

Software Engineering at the Free University of Bolzano-Bozen.

Dr. Succi's research areas include Agile methodologies, open source

development, empirical software engineering, software product lines,

software reuse, and software engineering over the Internet. He is

the author of four books and more than 300 papers published in inter-

national conferences proceedings and journals. He can be reached at

gsucci@cutter.com.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

The Agile movement is all about delivering business

value in short iterations at a sustainable pace, adapting

to changing business needs. Agile software develop-

ment focuses on early delivery of working software

and considers working software the primary measure

of progress. It creates an environment that responds

to change by being flexible and nimble. It discourages

the creation of extensive documents that do not add

any value. In simple terms, adherence to the Agile

Manifesto and the principles behind it is the foundation

of Agile delivery.

Since 2001, various Agile software development and

project delivery methods (XP, Scrum, DSDM, etc.) have

gained widespread popularity. Originally, such meth-

ods were primarily developed for software projects exe-

cuted at a single location. Today, with many adopters

and practitioners across the globe, Agile methods are

showing promising results in multisite projects, too.

Offshore delivery models have been successful in appli-

cation maintenance and enhancement projects for more

than two decades. In the case of development projects,

iterative lifecycle approaches are more widespread

and acceptable than the classical waterfall approach

in delivering results and ensuring customer satisfac-

tion. Thinking beyond the original 12 Agile principles

declared by the authors of the Agile Manifesto is

essential to the success of distributed Agile projects.

In this article, I present 10 principles of distributed

Agile. These 10 principles, together with the 12 Agile

Manifesto principles, provide the necessary foundation

for geographically distributed Agile teams.

Distributed Agile software development/testing simply

involves applying Agile principles and practices to

software projects executed by distributed teams. These

teams could be on two or more floors of the same build-

ing or in different buildings, cities, or countries and

across time zones. Distributed Agile teams require more

discipline than colocated Agile teams. They need to be

disciplined enough to decide what is “just enough” in

order to move swiftly and avoid waste. For this, their

approach needs to be based on time-tested principles.

GLOBAL SOFTWARE ENGINEERING
AND DISTRIBUTED AGILE

Global software engineering (GSE) entails software

engineering projects executed by virtual teams from

different time zones and diverse cultures. Over the past

decade, GSE has become popular due to several factors

such as optimal costs, availability of a skilled pool of

resources, and globalization trends such as mergers and

acquisitions. Distribution of teams becomes a complex

issue as an increasing number of teams from different

organizations participate in a project from different

locations or sites, as shown in Figure 1. Distributed

teams also face such challenges as project complexity,

disparate distribution of lifecycle activities, different

pricing models (which can lead to different ways of

measuring outcomes), and cultural incongruities.

In theory, distributed Agile is nothing but the applica-

tion of Agile methods (such as XP, Scrum, and DSDM)

in GSE projects. In practice, as we will see, such meth-

ods need to be customized, or a hybrid method imple-

mented, to suit the project context.

©2013 Cutter Information LLCCUTTER IT JOURNAL November 201330

10 Principles for Success in Distributed Agile Delivery
by Raja Bavani

IN IT TOGETHER

Organization
(0 vendor, 1+ vendors)

Location

(1 country, multiple countries)

Number of teams
(2, 3, 4, etc.)

Other Factors
(Lifecycle, project
complexity, pricing
model, culture, etc.)

Figure 1 — Distribution of teams.

31Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

THE CHALLENGES OF DISTRIBUTED AGILE

The challenges of distributed Agile1 can be divided

into three broad categories:

1. Communication and coordination

2. Time zone differences

3. People, culture, and leadership style

1. Communication and Coordination

Geographically distributed teams do not get the oppor-

tunity to have face-to-face meetings or informal hallway

or water-cooler discussions. In contrast, colocated team

members have the advantage of interacting with each

other and with the onsite customer on a daily basis.

This helps them understand and refine requirements

in a timely manner. Distributed teams have to depend

on a set of tools and processes in order to communicate

and coordinate with each other. Also, unlike colocated

teams, distributed teams need to practice just-enough

documentation in order to create and retain knowledge

across teams. This requires discipline and rigor.

2. Time Zone Differences

Time zone differences will obviously impact distributed

teams. This impact can be either positive or negative

depending on the work culture and relationship among

team members. For example, two teams from different

time zones with five hours of overlap may feel very

comfortable working with each other, as they can

communicate in real time with relatively little effort.

However, the more they utilize their time in commu-

nication and coordination, the less time they will have

for other engineering activities. At the other extreme, if

there are two teams with only one hour of overlap, they

may have to work extra hours to achieve adequate com-

munication and coordination unless they are exception-

ally efficient and smart in using their one-hour overlap.

The way distributed teams manage this issue depends

on the next challenge of distributed Agile: people, cul-

ture, and leadership style.

3. People, Culture, and Leadership Style

People from different geographies or countries have

discernible traits related to how they communicate,

what they really mean by the things they convey, or

how they collaborate with team members. For example,

when someone in the US says “yes,” he or she means a

firm “yes,” whereas if it comes from someone in India,

most likely it means “Let me try and see” (i.e., not a

firm “yes”). Also, the culture of the organization plays

a significant role when it comes to behavior at work.

Leadership style can be command-and-control or collab-

orative in nature. In one project situation, the master

location may be driving the other locations. In another,

there may be a collaborative partnership among all loca-

tions. Leadership style determines the way a team is

taken care of and nurtured in exceptional situations.

When things go wrong, some leaders look at the appar-

ent results and take rapid action, whereas a seasoned

leader would collect all the facts and find the root

causes before arriving at a decision.

Organizations that are new to Agile or going through

Agile transformation find it very difficult to cope with

these challenges, whereas organizations that promote

Agile and have an established Agile culture tend to

manage these challenges confidently and execute suc-

cessful projects. Geographically distributed teams need

to understand and appreciate cultural differences and

work together to ensure harmony and rapport among

all teams. Successful teams consciously adhere to certain

principles, and it is this principle-centered approach

that helps them face the challenges of distributed Agile

and deliver the best results.

10 PRINCIPLES OF DISTRIBUTED AGILE DELIVERY

Through my experience working with project teams and

in interactions with industry experts, I have garnered

and applied the following 10 principles in distributed

Agile delivery contexts. The results have been positive

throughout.

1. Methodology Is Driven by Project Teams

Agile software development in a distributed environ-

ment does not mean step-by-step implementation of

any specific Agile methodology (e.g., Scrum) with high

expectations of on-time, high-quality delivery. When

geographically distributed teams are driven by a cook-

book methodology, they struggle to deliver meaningful

solutions. This approach can hinder the team members’

ability to listen to one another and respect new ideas,

thus making it harder to customize the methodology to

suit the project context. An orchestra of expert musi-

cians may be equipped with impeccable scores and

world-class instruments, but if the musicians lack peo-

ple skills or cannot collaborate, they will fail to deliver

When geographically distributed teams are

driven by a cookbook methodology, they

struggle to deliver meaningful solutions.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

©2013 Cutter Information LLCCUTTER IT JOURNAL November 201332

the best performance in a given situation. In a geo-

graphically distributed project, the best way to avoid a

similar fate is to ensure that the methodology is driven

by teams!

This means collaboration among distributed teams to

identify processes that follow Agile principles and to

put those processes together in a methodology that

works for them. Distributed Agile projects suffer when

a methodology adopted by one subteam is allowed

to drive the rest of the team. Successful distributed

Agile projects happen when collaborative teams work

together to define a methodology that suits the overall

project context. The definition of such a methodology

occurs by means of open communication and ongoing

minor adjustments to make things work. Furthermore, a

methodology that works for one distributed ecosystem

may not work for another distributed ecosystem. The

reason is that while the basic tenets of a methodology

may remain intact, the implementation details will vary

across ecosystems.2

This distributed Agile principle focuses on two

dimensions: (1) a collaborative approach to tailoring

a methodology to fit a context, and (2) ongoing efforts

to continuously improve the methodology in order to

sustain throughput and quality. While focusing on these

two dimensions, distributed project teams must think

beyond standalone “named” Agile methods that work

for small, colocated teams and instead learn from

disciplined frameworks such as the Unified Process.

Enterprise projects require a more rigorous approach

because of stage gates and entry criteria for budget

approvals and regulatory compliance. Understand-

ing the Disciplined Agile Delivery framework3 and

tailoring4 it to suit enterprise projects is a way to adhere

to this principle. Obviously, when there is a need for a

methodology expert to help you define what is right for

your project (which is the case in most situations), it is

worth considering an expert coach to assist you in the

first two or three projects.

2. Consistent Usage of Common Tools
Improves Productivity

Tool selection plays a vital role in distributed Agile

projects. For example, effective tools for managing user

stories as well as related communication and coordina-

tion mechanisms contribute positively to distributed

Agile projects. Indecisive approaches to tool implemen-

tation or introduction of new tools during project execu-

tion will hamper effective management of user stories.

It is strongly recommended that distributed Agile teams

consider a Web-based tool that supports specification

of user stories as well as facilitates collaboration among

team members. Not having the right tool for managing

users stories will increase the risk of requirements being

misunderstood. This will have a direct impact on soft-

ware quality as well as team productivity.

Team members in distributed teams must also have

access to a standardized set of tools for engineering

activities such as design, coding, static analysis, unit

testing, build automation, test automation, defect track-

ing, and so on. Moreover, they need to use such tools

consistently in order to realize the benefits. Disparate

tools result in compatibility issues and hinder team

productivity.

Ensuring that geographically distributed teams have

access to common tools right from the first iteration is

critical to success. When distributed teams accept and

adhere to this principle, they identify tools and make

such tools available to all team members. Otherwise the

principle becomes no more than an aspirational state-

ment that is only partially fulfilled, resulting in either

nonavailability of tools or inconsistent usage of them.

Process frameworks such as DAD recommend a phased

approach to software delivery in which the first phase

(the Inception phase in DAD) focuses on laying a firm

foundation in order to ensure iterative construction.

One of the recommended key activities in this phase

is to identify common tools, facilitate training, and

implement techniques to avoid suboptimal usage of

tools. This is because consistent and optimal usage of

common tools improves team velocity.

3. Infrastructure for Communication
and Coordination Is Crucial

Team members of geographically distributed teams

depend on phone calls, chat, email and videoconfer-

encing for communication. Also, they depend on

Web-based tools for Agile project management, issue

tracking, defect tracking, and so on. It is crucial to have

an infrastructure that supports distributed development

in order to relieve teams from technical issues related

to communication and coordination.

The Agile Manifesto values “Individuals and interac-

tions over processes and tools.” Geographically distrib-

uted teams need the right infrastructure, which includes

tools and protocols, in order to communicate and coor-

dinate. Therefore it must be an ongoing goal for teams

to leverage and enhance their existing infrastructure,

and DAD includes this goal.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

33Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

4. Knowledge Management Is Key to Success

Assimilation, creation, dissemination, and regular

upkeep of knowledge related to technology as well as

the domain elements of a project are critical to success

in distributed projects. In distributed Agile projects,

knowledge management (KM) becomes even more

important because of Agile’s emphasis on delivering

meaningful solutions over short iterations while

responding to changes coming from business users.

Knowledge management starts with learning and ends

with efficient learning enablement. While Agile meth-

ods promote learning through such means as retro-

spectives, product demos, and the like, geographically

distributed teams require additional formal mechanisms

to foster knowledge management. What can distributed

teams do to initiate and sustain KM? They can imple-

ment a set of KM practices. One such practice is to hold

regular knowledge-sharing sessions that promote both

technical and domain learning. Another practice is to

create “knowledge nuggets” in the form of concise doc-

uments or wiki pages. These can benefit remote teams

as well as new members of a local team.

Lack of focus on KM causes serious issues during

unforeseen situations such as attrition. Individuals who

join the team as replacements for departing team mem-

bers struggle to understand the project domain and

technology. They consume significant time from veteran

team members, resulting in a loss of team productivity.

A systematic and consistent focus on KM improves the

ability to assimilate new team members in order to

expand teams and manage attrition effectively.

5. Quality Is Multidimensional
and Owned by Everybody

Quality can be seen in terms of intrinsic (or internal)

quality and external quality. External quality is an

attribute that relates to the end-user experience.

External quality can be assessed and improved through

black-box testing and defect prevention. Internal quality

is invisible to the end users but visible to various

groups in the development team such as designers,

developers, maintainers, and technical reviewers.

Internal quality can be assessed through reviews and

static analysis. Internal quality can be improved by

means of defect prevention as well as defect detection

followed by analysis and fixing of bugs and other code

quality issues.

Quality can be improved from different dimensions or

streams of activities such as requirements inspection,

design reviews, functional testing, performance testing,

security testing, compliance testing, exploratory

testing, and so forth. Agile teams understand this multi-

dimensional aspect of quality and value a whole-team

approach. Obviously, the set of metrics or measures

used to understand the progress of projects needs

to be multidimensional. Also, in a distributed project

situation, team members from every location have to

demonstrate a relentless focus on quality.

This leads us to the fact that distributed teams cannot

thrive when there are double standards. A typical

example of a double standard is when one team does

not practice automated unit testing but expects another

team to stay up to date on maintaining unit test scripts.

This is detrimental to teamwork as well as the quality

of deliverables. Again, quality is multidimensional and

owned by everybody.

6. Distributed Agile Requires an Inclusive Approach

More than allocating functional modules or user stories

across sites, distributed Agile teams need to consider

an inclusive approach in order to nurture distributed

ecosystems. There are several practices that align with

this principle. For example, facilitating a “base camp”

at the beginning of the project at a central location is

the first step in ensuring inclusion and putting the right

foot forward.5

Setting up the base camp involves forming a seed team

with at least one team lead, one or two technical leads,

and a handful of engineers. Typically, members of this

seed team are selected from distributed locations. They

come together and, depending on the size of the project,

spend four to eight weeks at the location from which

the project initiates. The objectives of setting up this

base camp are visioning,6 understanding the high-level

scope, deciding on team structure and composition,

identifying tools and setting up the environment,

architecture envisioning, and so on.

Establishing a base camp offers several benefits. On the

project execution front, it provides an opportunity to

achieve adequate clarity on the technical environment,

tools, and key engineering processes. On the people

front, it enables rapport building that promotes efficient

Distributed teams cannot thrive when there

are double standards.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

©2013 Cutter Information LLCCUTTER IT JOURNAL November 201334

resolution of issues and conflicts during the project. In

DAD, the Inception phase provides distributed teams

with a similar opportunity and includes clear guidelines

and goals.

The next practice is to allocate funds for team members

to travel across sites at regular intervals and to facilitate

such travel plans. Implementing distributed test drives

or reviews, distributed retrospectives, and distributed

root cause analyses is also a way to nurture inclusion.

7. Governance Is the Backbone
of Successful Distributed Teams

Distributed teams cannot function without a collabora-

tive governance mechanism. In the case of projects exe-

cuted across multiple geographic locations and time

zones with employees of the project sponsor organiza-

tion, external vendors, and independent contractors, the

complexity of governance increases multifold. Hence it

is absolutely essential to form a governance team that

comprises representatives from all locations and works

together as a single body in order to run distributed

projects successfully. Governance has been one of the

key success factors in distributed projects.

Even though every project needs well-defined mile-

stones and goals, it is critical to define success criteria

at the governance level. This helps distributed Agile

governance teams understand project success in terms

of a common set of parameters. Without this step, gov-

ernance teams tend to focus on transactional issues and

miss the big picture.

While it is imperative to have a long-term view of the

future, it is equally important to focus on early wins.

One way to accomplish this is to define success parame-

ters beyond tested code and avoid extensive low-value

documentation, which is subject to costly rework. To

make this happen, distributed Agile governance teams

must have a strong, visible commitment to the success

of projects. Having a one-year roadmap and identifying

milestones or events that can be measured every quarter

is a way to promote early success and mitigate risks.

8. Automation Enables Sustainable Pace

Automation of engineering tasks such as build creation,

test data creation, unit test execution, regression testing,

test result analysis, and the like is necessary to avoid

manual effort spent on routine tasks. With automation,

team members get adequate time to focus on critical

tasks that need manual intervention. The significance

of automation is greater in distributed teams than in

colocated teams. This is because a lack of automation

initiatives in one location will impact the quality and

schedule of dependent locations.

9. It Is Essential to Streamline the Payoff
of Technical Debt

Distributed teams need to be aware, aligned, and

organized in managing technical debt in order to

deliver maintainable, robust software.7 In his blog

post “The Financial Implications of Technical Debt,”8

Jim Highsmith articulates that the financial impact of

technical debt goes beyond the cost of fixing the debt;

technical debt also has a big impact on the ROI of any

project because it delays benefits and makes the project

costlier to implement.

There is no better way to start a project than by making

sure that certain key activities are carried out in a disci-

plined manner in order to avoid the accumulation of

technical debt. Methodologies such as DSDM and DAD

include such practices. Good examples from DAD are

architecture envisioning in the Inception phase and

regular focus on modeling on an as-needed basis in

the Construction phase. Architecture envisioning is an

essential practice for avoiding technical debt to begin

with. Architecture prototyping is another technique that

reveals technical risks up front and hence enables the

early payoff of certain types of technical debt, which

otherwise would involve lot of rework at a later stage

of the project.

10. Ensuring Early Success Is a Collective Responsibility

Aiming for instantaneous results from the first iteration

of a distributed Agile project is an unrealistic expec-

tation. Nevertheless, achieving early success is both

vitally important and the collaborative responsibility

of project teams as well as governance teams.

Aiming for instantaneous results from the first

iteration of a distributed Agile project is an

unrealistic expectation.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

35Get The Cutter Edge free: www.cutter.com Vol. 26, No. 11 CUTTER IT JOURNAL

During the initial stages of a distributed Agile project,

the progress of iterations is very significant, and it

happens in the form of issue resolution, continuous

improvement, and the formulation or revision of

policies among remote teams. The best way to start

the first iteration is by including user stories that are

simple to implement and not necessarily critical to the

business. This will enable the teams to accomplish the

goals of the first iteration with relative ease. Performing

iteration-end process reviews along with retrospectives

during the first four to six iterations will help ensure

positive progression and hence early success.

A lack of focus on achieving early success can lead to

severe issues, misunderstandings, and an absence of

confidence in the project delivery model. On the other

hand, consistent focus on ensuring early success in dis-

tributed Agile projects introduces positive reinforce-

ment in project teams, motivates team members, and

boosts performance. As I noted above, ensuring early

success is a collective responsibility.

MOVING FORWARD

Over the past 10 years, industry experts and methodol-

ogy gurus have spoken and written about their experi-

ences with distributed Agile and shared their practices.

We are entering an era in which enterprises — includ-

ing large companies in banking, insurance, retail, and

other sectors — are adopting Agile in a significant way.

This means an increasing adoption of Agile practices by

geographically distributed teams. In order to nurture a

community of practice in distributed Agile and promote

knowledge sharing, a group of like-minded profession-

als (including myself) founded the Global Distributed

Agile Consortium in 2013 and started sharing our

thoughts through the Global Distributed Agile

Consortium Blog.9 We foresee a large number of

geographically distributed teams joining the Agile

bandwagon over the next decade. The 10 principles

discussed in this article align with process frameworks,

such as DAD, which can be tailored to suit distributed

ecosystems. I am confident that adhering to these

principles and considering a principle-centered

approach to Agile software development will enable

geographically distributed teams to deliver results.

ENDNOTES

1Woodward, Elizabeth, Steffan Surdeck, and Matthew Ganis.

A Practical Guide to Distributed Scrum. IBM Press, 2010.

2Hoda, Rashina, Philippe Kruchten, James Noble, and Stuart

Marshall. “Agility in Context.” Proceedings of OOPSLA ’10.

ACM, 2010.

3Disciplined Agile Delivery (www.disciplinedagiledelivery.com).

4Boehm, Barry, and Richard Turner. “Observations on Balancing

Discipline and Agility.” Proceedings of the Agile Development

Conference (ADC ’03). IEEE Computer Society, 2003.

5Bavani, Raja. “Critical Success Factors in Distributed Agile

for Outsourced Product Development.” Proceedings of the

International Conference in Software Engineering (CONSEG-09).

Computer Society of India, 2009.

6Highsmith, Jim. “What Is Agile Software Development?”

CrossTalk, October 2002.

7Bavani, Raja. “Distributed Agile, Agile Testing, and Technical

Debt.” IEEE Software, Vol. 29, No. 6, November 2012.

8Highsmith, Jim. “The Financial Implications of Technical

Debt.” Jim Highsmith (website), 19 October 2010 (http://

jimhighsmith.com/the-financial-implications-of-technical-debt).

9Global Distributed Agile Consortium Blog (http://blog.

distributedagile.org).

Raja Bavani is Chief Architect of Mindtree and plays the role of Agile

Evangelist. Mr. Bavani has more than 20 years’ experience in the IT

industry and has presented papers at international conferences on top-

ics related to code quality, distributed Agile development, customer

value management, and software estimation. His areas of interest

include global delivery models, Agile software development, require-

ments engineering, software architecture, software reuse, customer

value management, knowledge management, and IT outsourcing.

Mr. Bavani is a member of the IEEE and the IEEE Computer Society

and regularly interfaces with educational institutions, offers guest

lectures, and writes for technical conferences. Mr. Bavani can be

reached at raja_bavani@mindtree.com; blog: www.blogs.mindtree.

com/author/raja-bavani.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Cutter
IT Journal

About Cutter Consortium
Cutter Consortium is a truly unique IT advisory firm, comprising a group of more than

100 internationally recognized experts who have come together to offer content,

consulting, and training to our clients. These experts are committed to delivering top-

level, critical, and objective advice. They have done, and are doing, groundbreaking

work in organizations worldwide, helping companies deal with issues in the core areas

of software development and Agile project management, enterprise architecture, business

technology trends and strategies, enterprise risk management, metrics, and sourcing.

Cutter offers a different value proposition than other IT research firms: We give you

Access to the Experts. You get practitioners’ points of view, derived from hands-on

experience with the same critical issues you are facing, not the perspective of a desk-

bound analyst who can only make predictions and observations on what’s happening in

the marketplace. With Cutter Consortium, you get the best practices and lessons learned

from the world’s leading experts, experts who are implementing these techniques at

companies like yours right now.

Cutter’s clients are able to tap into its expertise in a variety of formats, including content

via online advisory services and journals, mentoring, workshops, training, and consulting.

And by customizing our information products and training/consulting services, you get

the solutions you need, while staying within your budget.

Cutter Consortium’s philosophy is that there is no single right solution for all enterprises,

or all departments within one enterprise, or even all projects within a department. Cutter

believes that the complexity of the business technology issues confronting corporations

today demands multiple detailed perspectives from which a company can view its

opportunities and risks in order to make the right strategic and tactical decisions. The

simplistic pronouncements other analyst firms make do not take into account the unique

situation of each organization. This is another reason to present the several sides to each

issue: to enable clients to determine the course of action that best fits their unique

situation.

For more information, contact Cutter Consortium at +1 781 648 8700 or

sales@cutter.com.

The Cutter Business

Technology Council
The Cutter Business Technology Council

was established by Cutter Consortium to

help spot emerging trends in IT, digital

technology, and the marketplace. Its

members are IT specialists whose ideas

have become important building blocks of

today’s wide-band, digitally connected,

global economy. This brain trust includes:

• Rob Austin
• Ron Blitstein
• Tom DeMarco
• Lynne Ellyn
• Israel Gat
• Vince Kellen
• Tim Lister
• Lou Mazzucchelli
• Ken Orr
• Robert D. Scott

