
The Journal of
Information Technology Management

Cutter
IT Journal

Vol. 27, No. 10
October 2014

Agile in the Real World

Opening Statement

by Dave Rooney . 3

The Best Project Ever

by Glenn Waters . 6

Near-Agile Software Development Before Agile

by Steffan Surdek . 10

Agile Team 0: The Journey

by Charles C. Rodriguez . 14

Five Process Tweaks That Won’t Prevent You from Being Agile

by Santiago Matalonga . 17

If It’s Broke, Fix It: Inspect and Adapt Is Real Agile

by Jim Benson . 23

“As a coach, it can be frustrat-

ing to hear someone want to

stop the conversation, which is

what invoking the ‘real world’

often does. Yet it’s also an

indication that the person or

group has other issues that are

causing them to lose sleep.”

— Dave Rooney,

Guest Editor

NOT FOR DISTRIBUTION

For authorized use, contact

Cutter Consortium:

+1 781 648 8700

service@cutter.com

Cutter IT Journal®

Cutter Business Technology Council:
Rob Austin, Ron Blitstein, Tom DeMarco,
Lynne Ellyn, Israel Gat, Vince Kellen,
Tim Lister, Lou Mazzucchelli,
Ken Orr, and Robert D. Scott

Editor Emeritus: Ed Yourdon
Publisher: Karen Fine Coburn
Group Publisher: Chris Generali
Managing Editor: Karen Pasley
Production Editor: Linda M. Dias
Client Services: service@cutter.com

Cutter IT Journal® is published 12 times
a year by Cutter Information LLC,
37 Broadway, Suite 1, Arlington, MA
02474-5552, USA (Tel: +1 781 648
8700; Fax: +1 781 648 8707; Email:
citjeditorial@cutter.com; Website:
www.cutter.com; Twitter: @cuttertweets;
Facebook: Cutter Consortium). Print
ISSN: 1522-7383; online/electronic
ISSN: 1554-5946.

©2014 by Cutter Information LLC.
All rights reserved. Cutter IT Journal®
is a trademark of Cutter Information LLC.
No material in this publication may be
reproduced, eaten, or distributed without
written permission from the publisher.
Unauthorized reproduction in any form,
including photocopying, downloading
electronic copies, posting on the Internet,
image scanning, and faxing is against the
law. Reprints make an excellent training
tool. For information about reprints
and/or back issues of Cutter Consortium
publications, call +1 781 648 8700
or email service@cutter.com.

Subscription rates are US $485 a year
in North America, US $585 elsewhere,
payable to Cutter Information LLC.
Reprints, bulk purchases, past issues,
and multiple subscription and site license
rates are available on request.

Part of Cutter Consortium’s mission is to

foster debate and dialogue on the business

technology issues challenging enterprises

today, helping organizations leverage IT for

competitive advantage and business success.

Cutter’s philosophy is that most of the issues

that managers face are complex enough to

merit examination that goes beyond simple

pronouncements. Founded in 1987 as

American Programmer by Ed Yourdon,

Cutter IT Journal is one of Cutter’s key

venues for debate.

The monthly Cutter IT Journal and its com-

panion Cutter IT Advisor offer a variety of

perspectives on the issues you’re dealing with

today. Armed with opinion, data, and advice,

you’ll be able to make the best decisions,

employ the best practices, and choose the

right strategies for your organization.

Unlike academic journals, Cutter IT Journal

doesn’t water down or delay its coverage of

timely issues with lengthy peer reviews. Each

month, our expert Guest Editor delivers arti-

cles by internationally known IT practitioners

that include case studies, research findings,

and experience-based opinion on the IT topics

enterprises face today — not issues you were

dealing with six months ago, or those that

are so esoteric you might not ever need to

learn from others’ experiences. No other

journal brings together so many cutting-

edge thinkers or lets them speak so bluntly.

Cutter IT Journal subscribers consider the

Journal a “consultancy in print” and liken

each month’s issue to the impassioned

debates they participate in at the end of

a day at a conference.

Every facet of IT — application integration,

security, portfolio management, and testing,

to name a few — plays a role in the success

or failure of your organization’s IT efforts.

Only Cutter IT Journal and Cutter IT Advisor

deliver a comprehensive treatment of these

critical issues and help you make informed

decisions about the strategies that can

improve IT’s performance.

Cutter IT Journal is unique in that it is written

by IT professionals — people like you who

face the same challenges and are under the

same pressures to get the job done. Cutter

IT Journal brings you frank, honest accounts

of what works, what doesn’t, and why.

Put your IT concerns in a business context.

Discover the best ways to pitch new ideas

to executive management. Ensure the success

of your IT organization in an economy that

encourages outsourcing and intense inter-

national competition. Avoid the common

pitfalls and work smarter while under tighter

constraints. You’ll learn how to do all this and

more when you subscribe to Cutter IT Journal.

About Cutter IT Journal

Cutter
IT Journal

Name Title

Company Address

City State/Province ZIP/Postal Code

Email (Be sure to include for weekly Cutter IT Advisor)

Fax to +1 781 648 8707, call +1 781 648 8700, or send email to service@cutter.com. Mail to Cutter Consortium, 37 Broadway,

Suite 1, Arlington, MA 02474-5552, USA.

SUBSCRIBE TODAY

Request Online License
Subscription Rates

For subscription rates for online licenses,

contact us at sales@cutter.com or

+1 781 648 8700.

Start my print subscription to Cutter IT Journal ($485/year; US $585 outside North America)

As a consultant and an Agile coach, I’ve had the oppor-

tunity to work with many different clients and speak

to many people about Agile methods. From my earli-

est Agile experiences in 2000 to the present day, I’ve

encountered a common statement made by those who

haven’t been part of teams working in an Agile manner,

and even from some who have. The phrasing always

contains the words “in the real world.”

For example, “Agile is great in theory, but I can’t see it

working in the real world.”

Or how about, “Test-driven development sounds great,

but it’s impractical in the real world.”

Then there’s, “Having each team member dedicated

100% to the team would be wonderful, but in the real

world, we have to live with partial allocations of time.”

The “real world.” What does that really mean? In the

cases where I’ve heard the term, I think that you could

substitute the phrase “in my experience” or “in this

organization in its current state.” As a coach, it can be

frustrating to hear someone want to stop the conver-

sation, which is what invoking the “real world” often

does. Yet it’s also an indication that the person or group

has other issues that are causing them to lose sleep.

When I first connected with others in the Agile space

over a decade ago, there was another common thread

among most of us. We almost all saw the practices

of Scrum and Extreme Programming (XP) and recog-

nized them from previous experience as “things that

worked well.” In 1992, I personally worked on a team

that was colocated with its customer, worked in small

increments, and solicited feedback on the work early

and often. I would consider that group successful,

meeting customer needs in a timely manner even

when those needs changed. The group was able to

consistently do this over the long term, which certainly

fits a loose definition of Agile.

Since Agile didn’t exist then, and we didn’t call our

process anything or have any certifications, how could

it possibly have been successful? Joking aside, this is

the crux of the matter:

Teams and organizations are successfully delivering software

systems and products in this so-called real world.

In early 2001, Cutter Senior Consultant Kent Beck

was interviewed by InformIT for his book with

Martin Fowler, Planning Extreme Programming. In

the interview, Beck shed some light on the origins

of XP, one of the various “flavors” of Agile methods:

The first time I was asked to lead a team, I asked them
to do a little bit of the things I thought were sensible,
like testing and reviews. The second time there was a
lot more on the line. I thought, “Damn the torpedoes, at
least this will make a good article,” [and] asked the team
to crank up all the knobs to 10 on the things I thought
were essential and leave out everything else.1

Did you notice how he phrased that? “I asked them

to do a little bit of the things I thought were sensible.”

He became the lead of the Chrysler Comprehensive

Compensation (C3) team in March 1996 and leveraged

practices that had worked well for him in the past. His

only “tweak” was to determine ways to take those prac-

tices to the “extreme” in order to maximize their benefit.

Obviously, then, people were building software effec-

tively before XP and Scrum and other Agile methods

arrived on the scene, and they are still doing so today.

Opening Statement

3Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

by Dave Rooney, Guest Editor

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

When I first connected with others in the

Agile space over a decade ago, there was

another common thread among most of us.

We almost all saw the practices of Scrum

and XP and recognized them from previous

experience as “things that worked well.”

©2014 Cutter Information LLCCUTTER IT JOURNAL October 20144

IN THIS ISSUE

In our opening article, Glenn Waters describes “the

best project ever” from 1987 — a testament to the fact

that agility existed long before there was a term for it.

Waters points out how his team had all the necessary

ingredients as well as the proper environment in which

to have a real team come together and build a system

that delighted its customers. Their work was visible,

which allowed management to take a lighter approach

than normal, and they often had to use their own

software in practice, prompting empathy with their

customers. Not only was the project successful, the

product that this small team created became the basis

for its own startup company.

Next, Steffan Surdek describes several similar situations

in his article, “Near-Agile Software Development Before

Agile.” Surdek illustrates how the teams with which he

worked agreed on using certain practices (and sticking

with them), which contributed to their success. He also

relates these pre-Agile practices to specific principles

from the Agile Manifesto, showing how they paved the

way to agility.

In “Agile Team 0: The Journey,” Charles Rodriguez tells

us the story of a group within an organization that was

forced by circumstances to embrace agility in order to

have any success delivering their work. Not only did

this group not have any Agile training, they also hadn’t

read any of the literature. Nor did they aspire to do

anything other than stem the tide of defects in their

system and eventually provide enhancements. But

through the combination of a clear vision, committed

people, and colocation, this small group “accomplished

the impossible.” Rodriguez shows how, when faced

with dire situations like this, many organizations move

toward agility out of necessity without even realizing it.

“Context is the key!” is the theme of Santiago

Matalonga’s article, in which he discusses how a

team’s and an organization’s context affects the way

Agile practices are implemented. Matalonga argues

that agility is a continuum rather than a discrete state

and suggests that groups can be Agile without living

in the “sweet spot” of colocated teams composed of

generalists who are dedicated to one project or product

for 100% of their time. In five real-world case studies,

he details various techniques used to overcome what

are considered barriers to agility and that allowed those

teams to effectively deliver software.

Our final article, by Jim Benson, brings in a central

aspect of Lean thinking: inspect and adapt. Benson

demonstrates how that one particular tenet, which is

so critical, is often ignored by teams using a so-called

Agile approach. In one of his three real-world stories,

Benson examines the common Agile metric of velocity,

showing how it can be misused when it is considered

the one-and-only metric for Agile teams when, in fact,

others that are more telling of a team’s true state are

available. He concludes with the advice that you must

“adapt or die.” Any process that doesn’t provide a

means to inspect and adapt — and any team that

doesn’t have the willingness to do so — will not be

successful in the long term.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

UPCOMING TOPICS IN CUTTER IT JOURNAL

NOVEMBER

Ron Zahavi and Alan Hakimi

The IoT: Technologies, Opportunities,

and Solution

DECEMBER

Sebastian Hassinger

Mobile Security: Managing the Madness

People were building software effectively

before XP and Scrum and other Agile methods

arrived on the scene, and they are still doing

so today.

JANUARY

Balaji Prasad

People Architecture Defines

Enterprise Architecture

5Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

AGILE METHODS ARE A STARTING POINT

The recurring theme in this issue is that any predefined

method such as Scrum, XP, or Kanban is simply a

convenient place to start your team’s or your organi-

zation’s journey. All of the stories told in these articles

highlight what Benson says — you must adapt or “die.”

Those adaptations may or may not be part of what’s

generally accepted to be Agile, but as Matalonga tells

us, that’s how adapting to one’s context comes into

play. In their articles, Waters, Surdek, and Rodriguez

all describe how the teams they were a part of spent

time and effort to adjust how they worked in order

to improve.

This issue also highlights that effective teams have

existed long before the Agile Manifesto was written in

2001. In addition, teams are delivering software effec-

tively without using stated Agile methods right now!

In the vast majority of those cases, those teams exhibit

the characteristics of what we know as Agile methods.

The difference is that they’re doing so “in the real

world.”

ENDNOTE

1“Interview with Kent Beck and Martin Fowler.” InformIT, 23

March 2001 (www.informit.com/articles/article.aspx?p=20972).

Dave Rooney is a Senior Consultant with Cutter Consortium’s Agile

Product & Project Management practice. He is a veteran Agile

coach and software developer with more than 30 years’ experience. As

a well-recognized member of the global Agile community since 2000,

Mr. Rooney helps a wide variety of organizations — large and small,

private and public sector, startups and Fortune 15 companies —

improve their software delivery process. He has a deep interest in

the human factors involved in the effective delivery of software that

delights customers and follows practices that make the work environ-

ment not just more humane, but also fun. Mr. Rooney is an active

writer, speaker, and advocate of Agile methods. He can be reached at

drooney@cutter.com.

This is a story about developing software, getting things

done, and delighting customers. It turns out that the

heart of the story is one that embodies Agile principles.

CONTEXT

In 1987, when the Internet was in its infancy, the com-

pany I was working for needed a way to manage its

own network. By “manage,” I mean monitor its real-

time state (up, down, troubled, etc.) and gather data

for performance reports.

What made this an interesting challenge is that it was,

by all accounts, the largest company-run internet in the

world. At that time, network management tools were

quite new and not up to the job of managing such a

large network.

Also unique was the number of Network Operations

Centers (NOCs), the centers where network manage-

ment and operational functions took place. There were

more than 20 NOCs, in various locations around the

world, and each one required access to the same net-

work management tools and network status as the

other NOCs.

Our approach to solving these unique challenges was

to form a small software development team. The team

consisted of four “developers.” I say “developers”

in quotes because even though we were all software

developers by training, each of us performed many

tasks on the project, from requirements gathering to

software design, testing, customer documentation,

distribution, deployment, and support.

Fortunately, our customer and user base were highly

accessible. They were all internal to the company and

keen to help us understand their needs in operating a

network of this size.

OUR “PROCESS”

Understanding Needs in Context

Access to our customers was not nearly enough

to gather requirements, however. This is because

customers will ask for the most interesting features

that solve their immediate problem in their context.

As Henry Ford once said:

If I’d asked my customers what they wanted, they would
have said a faster horse.

We helped our customers with the broader context

so that we would not end up building them “faster

horses.” This process involved working through

problems by bringing differing perspectives to the

discussion. These many perspectives, collaboratively

gathered, helped everyone to get to the true core of

the problem we needed to solve and helped us to

focus on simple, but innovative, solutions.

Another approach we used to deeply understand

where to take the product was to spend time working

as network operators. An experienced network operator

would shadow us as we took on their role for a day.

This immersion allowed us to experience their “nor-

mal” day and to internalize the types of challenges

they faced. We experienced using our software in

their operational environment — which we found

painful at times.

Prioritization Plus

Understanding our customers’ needs was only the first

step in the process, albeit one of the more challenging.

As with almost any software development project, there

is more work to do than can possibly be completed. We

needed a way to organize our requirements.

We could simply keep a prioritized list, which we did,

but it was much more complex than that. We wanted to

deliver features to our customers every couple of weeks:

n To shorten the feedback loop. The best feedback came

from having our customers use working software.

n To receive a return on the software development

investment as soon as possible.

n To see our code working! Progress is a great

motivator.1

In order to achieve the above goals, a simple prioritized

list was not enough. Many features were bigger than

©2014 Cutter Information LLCCUTTER IT JOURNAL October 20146

The Best Project Ever
by Glenn Waters

DEVELOPING DELIGHT

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

7Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

our “every couple of weeks” delivery goal. We had to

break features down into chunks that were goal-sized.

A feature would often be split into many pieces. Each of

those pieces would then be prioritized against all other

feature pieces. Parts of features would often end up

lower in our priority list, sometimes never getting

implemented.

After each delivery cycle, we repeated the above process,

reprioritizing, splitting, and deleting items from our fea-

ture list. This approach to delivering features enabled us

to maximize the amount of value delivered every deliv-

ery cycle and to receive constant feedback.

OUR DEVELOPMENT TEAM

A Real Team

One of the biggest factors in our success was that

we had a “real” team, not just a group of people who

reported to a manager. It was real in the sense that we

supported each other in getting stuff done, we collabo-

rated well, and we had trust and respect for each other.

There were four people on the team. As a small team,

communication was quick and easy. However, the team

was also (just) large enough to have a wide variety of

skills and a diverse set of opinions. Having divergent,

conflicting, opinions forced us to explore ideas deeply

and ultimately drove innovation.

Rarely did one developer own a part of the system.

As individuals, we had our specialty skills, but we

often performed various roles and regularly worked

on different parts of the system. This enabled us to:

n Work on the highest-priority features (rather than

work on features based on available skills), thus

allowing us to maximize value delivery

n Continuously improve the skills of team members

by having people work on parts of the system

unfamiliar to them

n Improve our “lottery factor,” so that any team

member could support our system when others

were away on vacation, out due to illness, or — as

the phrase would have it — should happen to win

the lottery and quit

Colocated

Office space consisted of the standard cube farm. We

had our own office cubicles, which afforded each team

member a level of privacy. Yet the cubes were located

next to one another — within “chair swivel” distance —

which put us into eye contact with the rest of the team

members.

On the one hand, our close proximity allowed for easy

collaboration. On the other hand, it made it too easy

to disturb someone who was in the middle of a deep

thought process. To avoid losing focus on our work,

we developed hand signals that allowed us to defer

and manage disruptions. While some might have

viewed the signals as rude, our team did not, as we all

agreed on how and when we would use such gestures.

Dedicated

Our team was dedicated to creating the network man-

agement system; we did not have other projects — well,

mostly. We did have a support function for other legacy

products. The support function was not significant,

however, so our approach was to rotate one person

on the team through the support function each week.

This allowed three of the team members to be fully

focused on our project, while the fourth person took

on noncritical project tasks in case they were pulled

away for support needs.

LIGHT-TOUCH MANAGEMENT

The project team had a traditional management structure

(i.e., a manager, senior manager, director, and VP), but it

was difficult for us to think of them as management since

they acted more like mentors, giving us guidance and

keeping us in tune with the larger corporate goals. Their

management approach provided sufficient boundaries

for our work while allowing our team enough freedom

and sense of ownership over the project.

I recall a number of occasions when a director or VP

would come around just to check up on how the team

was doing, offer support, or chat about their interest

in the project. While I did not recognize it at the time,

this informal approach to management produced an

environment with a strong sense of trust that created

transparency and encouraged truthfulness.

One of the biggest factors in our success was

that we had a “real” team, not just a group

of people who reported to a manager.

©2014 Cutter Information LLCCUTTER IT JOURNAL October 20148

TECHNICAL PRACTICES

For a software development project in the early 1990s, we

were reasonably advanced in our technical practices. We

often paired while designing, coding, and testing. This

occurred perhaps a couple of hours a day, maybe every

two days. Our design and code benefited greatly due to

the multiple perspectives that went into the system.

Our testing was mostly manual. We did have scripts

to test a couple of key processes and procedures in the

system, but the scripts were not comprehensive. We

would certainly have benefited from a more complete

automated test suite.

Our builds were fully automated — push one button to

start a build. All code was checked out from the source

code control system, built, packaged, and — upon a

successful build — moved to our distribution server

as a “daily.” Occasionally, when we had adequate new

functionality and had tested it enough, we promoted

a build to beta or production.

Installation was simple. Generally, one command would

upgrade the system. An upgrade would only require

one or two seconds of system downtime, minimizing

impact to operations. Backing out of builds was just as

simple and quick.

HOW AGILE WAS THAT?

I am sure you have noticed that I have not mentioned

Agile terms at any point up to now. That is because

there was no Agile back then — at least as a known

process. However, nearly everything that our team

did was Agile as it is known today. It was “real”

Agile in the sense of continuous improvement and

amplified learning.

Our development was incremental and iterative. We

delivered something every couple of weeks — sprints.

We had a product backlog. It was prioritized, generally

well split into sprint-sized chunks, and value-focused.

We frequently worked with our customers to determine

if we needed to add, change, or delete backlog items.

We had a team. We had each other’s backs. We worked

closely together — pairing, sharing, and learning together.

We were T-shaped — each of us had our specialties, but

we all did many types of work. We were colocated, dedi-

cated to the one project, and self-organizing. We were a

real team!

We limited work in progress (WIP), which allowed us to

focus on getting few pieces of work done and done well.

We followed the Lean pull principles, only starting new

work when capacity existed. Limiting WIP helped us:

n Improve quality through better focus

n Increase ROI by reducing the amount of incomplete

software residing in the development team

n Shorten the very important feedback loop between

developer and customer

What Were We Missing?

There were a couple of practices that Agile today

considers important, at least in some contexts.

We did not have a dedicated product owner. We all

played the role of product owner, which worked well.

We did not have a ScrumMaster role. Our management,

in a servant leadership2 type of way, could have been

considered our ScrumMaster. Management did help

“clear the path” (remove impediments) to getting work

done, which is a key function in the ScrumMaster role.

We didn’t have the activities that Scrum defines, at

least not in a formal way. In terms of the standard

Scrum activities:

n Our sprint planning was ad hoc. So was our backlog

grooming.

n We did not have daily Scrums. Instead, we all sat

within earshot of each other, synchronizing and

communicating frequently during the day.

n Sprint review (aka the “demo”) took place whenever

a feature was complete. Sometimes this happened

on our local machines. More often, we installed the

new software in a live NOC, doing a five-minute

walkthrough with the operators and learning from

it in a live environment.

n We didn’t have sprint retrospectives as a defined activ-

ity, but we talked all the time about improvements we

wanted to make to our process. Better still, we tried

new ways of working together frequently — just

“micro” changes. If we liked a change, we kept it. If

not, we improved it further or discarded the change.

n We did not do burn-up or burn-down charts. Actually,

we rarely estimated other than crudely for the pur-

pose of determining where the most value could be

generated from the items in our product backlog. We

certainly had no formal notion of velocity.

n We did not use test-driven development (TDD) prac-

tices. From a developer perspective, TDD would have

helped us. There were enough times that the system

regressed, and we felt the pain. Some of those times

the regressions made their way into our customer

environment. Then both sides felt the pain.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

9Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

n As for acceptance test-driven development (A-TDD),

those practices would not have been of much value

to us. A-TDD helps to bridge the communication gap

between customer, product owner, and development

team. We didn’t have much of a gap, as we were all

product owners.

WHY “BEST PROJECT EVER”?

This was the “best project ever” because we had fun.

Lots of fun. “Work” was enjoyable. We were regularly

solving problems for our customers.

In his book Drive,3 Daniel Pink talks about autonomy,

mastery, and purpose as key factors in a successful

knowledge-based workplace. He writes, “People need

autonomy over task (what they do), time (when they

do it), team (who they do it with), and technique (how

they do it).”

Autonomy drives a sense of ownership and intrinsic

motivation. Our network management project had

high levels of autonomy in all the senses Pink talks

about.

Mastery is the ability to become better at something

that matters. Mastery requires problems that are

”neither too easy, nor too hard.”4 Our project was

on the leading edge of a brand-new technology space

and in a uniquely large environment where we were

challenged to improve. We constantly strove to become

better in many areas, including:

n Customer interactions

n Development tools

n Software distribution and deployment

n How we interacted with management

n How we worked as a team

Finally, Pink says, “Humans, by their nature, seek

purpose, a cause greater and more enduring than

themselves.” Our purpose was to delight our customers.

Every day we set out to make their jobs easier through

using our software. Over time, our purpose grew even

further, to outside of the company. We contributed our

unique knowledge about scalable network management

to the Internet Engineering Task Force (IETF), an inter-

national body that oversees Internet standards.

Autonomy, mastery, and purpose — we had them all.

I believe that at the core of our success were these three

principles, which allowed us to innovate, delight, and

have fun while doing so.

EPILOGUE

For nearly 10 years we continued to develop the soft-

ware. However, as time went by, commercial network

management software was maturing. Eventually, the

commercial software was at a state where it made more

sense to purchase a system that was supported by far

more people than the four developers building our sys-

tem. However, that was not the end of the story for the

software itself, nor for my Agile journey.

A couple of people in the company recognized the

valuable software asset that we had created. They

negotiated a contract with my employer to take the

software to a newly formed startup. The startup

continued enhancing the software and was successful

in marketing it for a number of years.

Personally, I have continued working in an Agile fash-

ion throughout my career. This has included continued

success as a developer on other projects as well as in

“managing” and “directing” teams. From “the best

project ever” onward, the essence of the Agile Manifesto

has always been in my practice and in my heart.

ENDNOTES

1Amabile, Teresa, and Steven Kramer. The Progress Principle:

Using Small Wins to Ignite Joy, Engagement, and Creativity at

Work. Harvard Business Review Press, 2011.

2Greenleaf, Robert K. Servant Leadership: A Journey into the

Nature of Legitimate Power and Greatness. Paulist Press, 1977.

3Pink, Daniel H. Drive: The Surprising Truth About What

Motivates Us. Riverhead Books, 2011.

4Pink (see 3).

Glenn Waters is a seasoned technology executive with over 25 years

of experience in many aspects of the software industry. Mr. Waters

has served as an Agile coach, helping to lead large corporations and

government organizations as they adopt Agile. He has successfully

worked with Agile at all levels of an organization, from helping teams

improve technical and collaborative practices up to introducing the

Agile mindset to CxO offices.

Mr. Waters regularly speaks at Agile gatherings, has helped organize

a number of Agile conferences, and is a cofounder of the Agile Ottawa

Meetup group. His training and coaching have received praise from

organizations around the world. When not helping organizations, Mr.

Waters is often found in the kitchen planning and preparing gourmet

meals. He can be reached at glenn@westborosystems.com, Twitter:

@gwww, and Linkedin: http://ca.linkedin.com/in/glennwaters/.

I have had many conversations with people over the

last five years that have told me there is nothing really

new in adopting Agile practices. These people often tell

me that Agile is either merely common sense or a set of

good practices people bundled together and put under

an umbrella. I am here to tell you that in many ways

I agree, and there is some truth to this!

In this article, I take a stroll down memory lane, looking

back on many of the traditional and Agile projects that

I worked on and trying to determine what made them

successful. I have boiled it down to some of the key

practices we used on these projects and made links

between these best practices and what I teach teams

every day working as an Agile coach.

By way of background, I wrote my first piece of commer-

cial software back in the early 1990s. It was a shareware

application to manage the file areas of an electronic bul-

letin board system. I wrote other shareware applications

back then, but I have a special place in my heart for that

specific program. There is nothing like fully owning an

application end to end — from the visioning to the cod-

ing, testing, packaging, and marketing of it — as a way

to learn about developing quality software.

Throughout my career, I have worked in small compa-

nies with relatively few developers and in much larger

companies on commercial software development proj-

ects. In many of the small companies, we did not talk

about “waterfall” or “Agile”; we mainly jumped in

and coded whatever we needed to build. In some

of the larger companies, I saw very formal waterfall

development processes as well; I cannot say that these

processes always helped us develop better software.

WORKING CLOSELY WITH CLIENTS

Back in my shareware development days, my main

“client” was also one of my closest friends. I had fun

exploring new things, and we both toyed around

with the results of my work. Throughout our informal

development cycles, he would regularly use, and do

real-life tests of, the various applications I was working

on. We had regular conversations about the glitches

and annoyances he discovered, and I kept him aware of

what was coming next.

In the mid-to-late 1990s, when I was developing soft-

ware in small companies or working on my own proj-

ects, my team members and I were often forced to put

ourselves in the shoes of our end users. Before coding,

we needed to build a high-level design around the

purpose of our projects. To do this, we usually brain-

stormed about what the applications needed to do and

why. We also discussed the potential users and the gen-

eral look and feel of the application. In an Agile project,

the parallel would be building a vision and identifying

the business objectives. In our case, putting ourselves in

the shoes of our end users also meant playing with our

software and asking if we would use these applications

ourselves. Were they simple and user-friendly enough?

Would we use them every day, or would they annoy us?

In an Agile world, we often talk about the importance

of involving the client (or key stakeholders) throughout

the development cycle. My work experience mainly

allowed me to work with two types of clients: internal

clients (as part of the IT department in the mid-to-late

1990s) and with product management teams (from 2000

to 2010).

Internal Clients

Internal clients were always happy to contribute and

were interesting to collaborate with because they were

as close to an end user as we could get. When the team

needed information or wanted to see how our applica-

tion would fit with how the clients worked, we could

meet with them and show them our progress. We spent

20-40 minutes with some internal clients each day,

while we only scheduled a weekly meeting with others.

The great thing about meeting these internal clients reg-

ularly was that we pretty much always delivered what

they needed in the end. We had to manage scope creep

and continuous requests for changes at first, but we

usually found a space where we aligned around a

common vision and the problem faded away.

When I compare those experiences with our internal

clients to some of my experiences now in an Agile

©2014 Cutter Information LLCCUTTER IT JOURNAL October 201410

Near-Agile Software Development Before Agile
by Steffan Surdek

LESSONS FROM THE WAYBACK MACHINE

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

11Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

world, the main difference I see is in the formality of

the role brought about by naming someone the prod-

uct owner. The way the business sees the role and the

impact of assigning someone full-time to the role can

create resistance in some organizations. Although the

Agile mindset encourages building a new partnership

between the business and development sides of an orga-

nization, the hard truth is that, in some places, the nega-

tive history and distrust are difficult to overcome. In a

business world constantly changing to become leaner

and more competitive, freeing someone up to play the

product owner role full-time is a challenge for many

organizations.

External Clients

External clients were another source of feedback. When

these clients needed help resolving technical issues, we

would sometimes send someone to help them onsite.

These trips were always great opportunities to see

people using our software. Were they working around

usability issues that we did not even know existed?

Were they getting frustrated with certain features?

Would a small change in functionality or a report make

a big difference to them? In an Agile world, teams typi-

cally receive these types of comments through end-of-

sprint reviews or user acceptance testing.

My experiences with product management teams in the

commercial software arena varied greatly. Often there

was a lack of a clear product roadmap or a general lack

of vision and strategy, which made it difficult for teams

to deliver the right solutions. These issues affect all soft-

ware development teams, whether they are Agile or not.

The main difference, though, is that an Agile project

using Scrum has regular inspection points that would

raise such issues much faster.

CONTINUOUS INTEGRATION

On some of my earlier projects in the 1990s, we had no

real reason for continuous integration, while on others,

we had no source control at all. We either compressed

the source code for each release in a single file we

archived somewhere on a server, or we created separate

folders on a shared server for each release. Ideally, in

such cases, our practice was to fix bugs in the following

release and never go back to update the code of a previ-

ous version. In small projects, this worked fine, but in

larger commercial software packages with larger cus-

tomer bases, it did not make sense anymore. The teams

I worked with used a variety of approaches to deal with

this issue, as I will outline in this section.

In Agile projects, we encourage teams to do continuous

delivery of software. As mentioned earlier, working

closely with clients meant we needed to be able to show

them our work regularly as the project progressed. When

working alone, making a build is easy, but as soon as a

small team begins working together on a project, some

form of continuous integration needs to happen.

Early in 2000 was the first time I worked with multiple

team members on a big project where we needed

to integrate our code in the same code base. We had

a basic agreement among team members to check in

our latest functional code in the version control system

every Friday. Overall this worked well, but whenever

team members changed either common pieces of code

or sensitive pieces of code, we would schedule conver-

sations about the changes before integrating them.

On a life-critical application in another company,

we had an integration team that manually merged in

changes for each release. This implied that developers

needed to isolate their changes for any bug fix or fea-

ture in branches created from the main integration

stream. Developers also needed to document their

changes and get them peer reviewed before the integra-

tion team integrated them into the official builds. The

integration process was painful because of the overhead

involved for everyone from the developers to the team

integrating the work. Because of the code complexity

and various governance requirements, though, the team

accepted the process as an added layer of quality assur-

ance that created accountability and provided tracking

on the content of a release.

From 2007 to 2010, I had my last encounter with contin-

uous integration as a developer with a technically gifted

team. We were not using any Agile software project

management practices, but we were the proverbial

geeks looking for easier ways to deliver high-quality

software. The version control system ran validation

rules against the code that was being checked in to

ensure each developer followed coding standards. We

also put in place a build server that would check for

changes and compile the code in the integration branch

every hour. The build server automatically ran a basic

Although the Agile mindset encourages build-

ing a new partnership between the business

and development sides of an organization, the

hard truth is that, in some places, the negative

history and distrust are difficult to overcome.

©2014 Cutter Information LLCCUTTER IT JOURNAL October 201412

suite of automated tests and would send an e-mail

notice when someone broke the build with a change.

The benefit of using this approach was that it allowed

the team to know very quickly if any changes delivered

to the integration branch broke the build, and thus we

could take action to correct the problem(s). At the time,

we were also working with a distributed team in India,

and the automated process helped provide a form of

sanity check of the build for both teams at the end of

their respective workdays.

In an Agile world, automating processes and testing

allows teams to have a repeatable process and build a

safety net for the quality of the product. One interesting

note is that although people associate these practices

with Agile teams, they are equally as effective in tradi-

tional software projects. Just as there are traditional

teams that use these practices but nothing else, many

Agile teams only do Agile planning and do not use tech-

nical practices such as automated testing and continuous

integration.

TESTING AND FIXING ALL THROUGH THE RELEASE

Because of my early experience developing shareware,

doing thorough and continuous testing as well as “eat-

ing my own dog food” have always been key practices

for me in software development. Back then, I did the

unit and usability testing myself and provided regular

builds to one of my friends to get his comments and

find more defects.

When I worked in larger companies with internal clients

or testers, the two keys to testing during the develop-

ment process were putting in place some form of con-

tinuous integration and properly guiding testers toward

what they should be testing. For example, if we had a

screen to manage users, we might deliver everything

they needed to add a new user, but they may not

be able to delete or edit them right away. Delivering

functionality this way allowed our testers to start their

work in parallel to us and enabled us to get feedback on

usability and defects earlier as well.

How often we delivered testing builds to our testers

depended on the project size and the nearness of the

testers. For some projects we delivered weekly builds,

but on others we delivered every other day.

In an Agile world, the “definition of done” guarantees

the quality of the deliverables by helping teams better

understand everything they need to do to deliver

completed increments of software to a production

environment. You can see it as a checklist the team can

use to make sure they did everything necessary before

making the feature available to users. Although we

did not have that on the teams I led, at a minimum we

always tried to ensure that we handled and corrected

defects as quickly as we could. This allowed us to keep

the list of defects short and easy to manage in a spread-

sheet. We rarely had defects stuck on the list for more

than a couple of weeks, except for minor ones.

By delivering code regularly to our testers, we also

avoided another trap for new Agile teams, which is

delivering working code to the testers only in the dying

days of a sprint. When this happens, some developers

believe their work for the sprint is complete, but if

testing is incomplete, the feature will not count as

“done” at the end of the sprint.

REUSING CODE AND KEEPING IT SIMPLE

One of my favorite projects was a timesheet entry

application that I worked on from 2000 to 2005. This

project was a great showcase for many of the coding

best practices that I had seen. In one of the years I was

there, we redesigned the application from scratch to use

a distributed architecture, which we also designed and

developed. We were under pressure to develop this

new version as quickly as possible, and this caused

big challenges for the development team. We chose

the approach of developing a couple of object-oriented

frameworks to support our work: a server-side frame-

work to handle the requests and a client-side one to

manage the user interface.

In Agile projects, we often encourage teams to develop

features an iterative and incremental way. This means

we expect teams to deliver smaller but functional

and useful slices of software that build on top of one

another. In this project, that is how we built our frame-

work, but we called it developing “testable activity

flows.” We started with a few basic abstract classes

(the base of every screen), which drove an empty

screen with add/remove/edit/save/undo operations.

We created one of the easiest screens and wrote the

code to add and save a new item. This allowed us to

start populating the database, and our next increment

allowed us to load existing items, select one item, edit,

undo our changes, or save it back to the database.

By delivering code regularly to our testers,

we also avoided another trap for new Agile

teams, which is delivering working code to

the testers only in the dying days of a sprint.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

13Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

While we were building each increment, we gave builds

to our tester to start playing with so we could discover

if we had defects we did not know about yet. Each

increment taught us a bit more about our distributed

architecture, the pieces we needed in the framework,

and the hooks we needed to set up in the code to keep

the code generic for each new screen.

Usually, we encourage Agile teams that are developing

new features to architect and code only what they need,

as they need it. That is what we instinctively did on

this project. Once we got our first screen fully working,

we took another screen with similar attributes and

used it to confirm our design. Eventually, we selected

a screen with a slightly different set of challenges and

implemented it to discover how the framework could

support it. Working in this way reduced our code

maintenance in the long run and allowed us to evolve

our early framework.

The great thing about this design was how much

easier it made testing and code maintenance in the long

run. Testers initially panicked because some defects

appeared on many screens, but for the developers, a

single fix in the framework resolved many defects.

One thing I often hear teams new to Agile complain

about is the potential need for continuous refactoring,

because they have a strong need to code and deliver

something only once. For example, they are uncomfort-

able with the idea of developing only part of a screen

and then cycling back to it in another sprint in order to

add more functionality. Their ingrained belief is they

need to do it all in one fell swoop.

For us, the framework forced discipline on the team. We

tried to keep the code in the base classes as completely

generic as possible, and we would call abstract or vir-

tual functions implemented in the descendant classes to

fill in the blanks when required. This approach encour-

aged us to refactor the code continuously to make sure

we were not repeating code that either belonged in a

base class or that needed to be made generic in a sepa-

rate library.

Two other good Agile practices around coding are clean

code and minimizing documentation. While these may

not have been conscious goals of ours at the time, the

project teams I worked with nevertheless used to ensure

that we had clear class and method names in our code.

We used design patterns to bring consistency to the code

and simplify code reuse, and we also worked hard at

writing methods with a single purpose that were, more

often than not, no longer than 50 lines of code. These

practices allowed us to make the code self-documenting,

as we isolated everything and our clear method names

made reading the code akin to reading a book.

Many teams I worked with also had formal code review

practices in place to ensure the quality of the code.

While some distributed teams used collaboration tools

to help keep track of necessary changes, others did

not; they only met face-to-face to discuss the needed

changes. Face-to-face meetings were more effective, but

they required us to have webcams for the distributed

team members. At a minimum, it was important for

distributed team members participating in a code

review to at least be on a phone call, because using

only the collaboration tool sometimes caused commu-

nication issues and delays in addressing the concerns

highlighted in the tool.

CONCLUSION

When writing this article, I realized the biggest factor

in our teams’ successful delivery of software was that

we upheld a high level of discipline in following our

development practices. Without discipline and struc-

ture, your teams will struggle whether you are using

Agile practices or not.

I’m always amused when I hear the phrase “Agile says

[insert statement here],” because when you think about

it, Agile is born from a manifesto that contains just

four values and 12 principles. Neither the values nor

the principles tell you exactly what to do; they simply

offer some high-level guidelines to follow.

When you look at Agile practices from that point of

view, it is easy to see why some people have the

impression there is nothing new here, because essen-

tially there isn’t. You do not need to reinvent the wheel;

you can simply determine which of the best practices

you have used before will help you align your team

with the principles and values contained in the Agile

Manifesto.

Steffan Surdek is an Agile coach and trainer at Pyxis Technologies.

As a coach, he strives to create engaged teams led by inspiring and

empowering leaders for the sake of making the software development

workplace fun again. Mr. Surdek has worked in IT for over 20 years

in collaboration with many distributed teams around the world.

He speaks at many conferences and user groups about leadership and

agility with distributed teams. Mr. Surdek is coauthor of the book

A Practical Guide to Distributed Scrum, written in collaboration

with the IBM Scrum Community. He blogs about life and agility at

Surdek Solutions (www.surdek.ca) and about authentic leadership at

Provoking Leadership (www.provokingleadership.com). He can be

reached at steffan@surdek.ca.

Why do some organizations lose focus on true agility

and distract themselves with “going Agile”? Agile

product development, along with its various frame-

works, has matured over the last decade. These frame-

works have offered different interpretations of the same

message: the Agile Manifesto. Each framework intro-

duces its own artifacts, ceremonies, and deliverables.

Almost inevitably, these items become the obsession of

teams attempting to adopt Agile. Organizations, teams,

and individuals lose themselves in the mechanics of

“being Agile” instead of taking the time to realize true

agility.

Unknowingly, most organizations already exhibit signs

of agility. Consider what happens when a company or

team goes through an emergency or “fire.” Employees

and managers drop titles and processes, establish a

collaborative zone, and focus on accomplishing their

mission. For some reason, the more people attempt to

interpret a simple message, like the manifesto, the more

complex they make it. I have had the opportunity to

work on several teams over my career. I have witnessed

teams with no knowledge of the Agile frameworks flour-

ish and deliver, and I’ve also witnessed teams with all

the information at their fingertips flounder and struggle.

In 2006, I enjoyed the amazing experience of working

as part of a team that exercised agility without reading

a book or researching a framework. We didn’t have a

creed, process, or manifesto at our disposal, but we did

have a vision; our primary purpose was to see the suc-

cess of that vision. The simplicity of that goal allowed

us to accomplish what seemed impossible. While we

were ignorant of the Agile Manifesto and the various

Agile frameworks, in our story we naturally imple-

mented some very familiar activities.

THE TEAM

In the summer of 2006, a small development team

formed for the sole purpose of maintaining and enhanc-

ing our company’s invoicing engine. The application’s

portfolio contained over 200 tickets, consisting of defect

reports and change requests. Along with two other

developers, I accepted the assignment, knowing it

would provide a challenge like no other in my career.

In addition to the developers, two analysts and a proj-

ect manager were assigned to the project. Interestingly,

the assembled group did not receive its priorities from

the primary stakeholders responsible for invoicing. As

we will see, this disconnect between the stakeholders

and the delivery team would result in poor productivity

and perceived quality.

A ROCKY BEGINNING

In its first few months, the team struggled and lost

ground. Our IT department ran both the development

and project management team; there was little connec-

tion to our company’s growing needs, and the com-

munication was fragmented. Our priorities were set

from the top down, with little input from the person-

nel most familiar with the application’s strengths and

weaknesses. Frustrated with the inability to attack the

technical debt, our best developer departed in the fall of

2006. Our ticket count continued to grow, and we were

not releasing code quick enough. If we were going to

make any progress, we needed a change fast.

ORGANIZATIONAL CHANGE

Tired of the lack of progress, the organization made

a drastic adjustment to the team’s structure. An oper-

ations team that reported directly to the business

formed. This team absorbed the project manager’s and

analysts’ positions. Their goal was simple: ensure top

quality of the invoices generated while maintaining

production levels. The development team remained

within IT, but from that point on, we would take

prioritization directly from the operations team. The

company hired a new operations manager to lead the

movement. This new manager brought a servant-leader

approach to both teams. He understood that the oper-

ations analysts and developers knew the system best,

and he would balance our recommendations for pri-

oritization along with those of the stakeholders. These

two moves would serve as the catalysts for our team’s

long-term success.

©2014 Cutter Information LLCCUTTER IT JOURNAL October 201414

Agile Team 0: The Journey

by Charles C. Rodriguez

EMBRACING THE AGILITY WITHIN

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

15Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

FORMING

Both teams were given the same long-range vision: elim-

inate all major bugs, guarantee invoice accuracy, and

support new products. One afternoon, the operations

manager and I were reviewing the 200-plus tickets; we

both wondered how in the world we were going to pull

off a miracle and accomplish our goal. Everything was

working against us: long release cycles, QA bottlenecks,

and constant new product rollouts. In this meeting, we

joked how our situation resembled a historical moment,

the Battle of Thermopylae. The movie 300 had just been

released, and though we were joking at the time, it felt

like an appropriate analogy for our situation. There

stood a small, skilled team facing a seemingly endless

onslaught of tickets. Rushing in and attacking large

chunks over a long release cycle would prove disastrous.

Similar to the Spartans, who used their knowledge of the

terrain to fend off waves of attackers, we decided to dig

in our heels, rely on our expertise with the system, and

knock out tickets in quick, controlled bursts.

STORMING

In order to succeed, we knew we had to make commu-

nication across both teams a priority. We acknowledged

that open, honest communication would be the glue

for collaborating on fires and designing new products.

Like the Spartans, we would work as one single unit.

Colocation was key; the ability to collaborate in our

“war room” effectively built trust within the teams.

Our team consisted of outstanding professionals, and

we knew we could count on them to follow through

with the level of communication required. First, we

faced the traditional release cycle; it was far too long

and hindered the kind of progress we sought. The

teams negotiated a break from the traditional four- to

six-month release cycle; instead, we would deploy a

small number of tickets weekly. In exchange for this

schedule, the development and operations teams agreed

to accept full responsibility for the entire development

lifecycle. Everyone was responsible for all aspects of

the product, which created a sense of ownership for

the product. Because the operations team owned the

application, they would provide the sign-off on releases.

The sense of ownership drove our commitment to code

quality and care for the application.

Our weekly cadence consisted of three major short —

30-minute — meetings. On Monday, the operations team

would present the highest-priority tickets, and our devel-

opment team would pick those we felt could be com-

pleted by week’s end. Sometimes we chose tickets that

would carry over into the next release because of sizing

issues, but that was an acceptable risk. Wednesdays con-

sisted of a quick status update. By then, we would know

what was in danger of falling by the wayside and what

would release on Friday. We also used this meeting as an

opportunity to make any changes in scope to our tickets.

By Friday, we were in full release mode. We tried to

avoid last-second changes, but they happened often.

However, working closely with the operations team

guaranteed that we did not introduce unnecessary risk;

they were excellent at rejecting dangerous, 11th-hour

changes. By the end of the day, we were deploying some

tickets and prepping others for the following week.

NORMING

We started following our strategy in November 2006,

and we consistently followed it until February 2008.

Operations prioritized the work, the developers coded,

and we all agreed on the tickets for release at the end of

every week. For the first time in the team’s history, we

gained ground, completing over 200 tickets in a year.

The application was at its most stable, and it met the

company’s performance demands. In less than two years’

time, our small group had accomplished the impossible.

Although the amount of new work coming in didn’t stop,

the backlog now numbered fewer than 50 tickets.

The pace we established was brutal. It was common

to work 10-plus-hour days at the office, weekends, and

evenings. Despite the tenacious pace, the entire team

remained steadfast in accomplishing the goal of stability

and maintainability for the system. A high level of com-

mitment existed at the heart of the team — if one team

member worked late, we all stayed with him or her. On

new product release weekends, team members would

volunteer to pull an overnight shift to watch for any

possible fallout.

There was a clear understanding of how important this

application was to the organization. As a result of our

success, our team was allowed to operate outside of the

IT department’s established rules and processes; many

other teams did not enjoy such freedom. Unfortunately,

that freedom didn’t sit well with some, and eventually

things had to change again.

THE END OF AN ERA

Like the Spartans at Thermopylae, our team could only

hold out for so long. Eventually, the development team

was moved away from the operations team. It’s amazing

how sitting in close proximity breaks down communi-

cation barriers, but now we no longer had the benefit of

colocation. The frenetic pace drove two of the developers

©2014 Cutter Information LLCCUTTER IT JOURNAL October 201416

to seek new opportunities. Thus, we had to start all over

again with a growing backlog and fresh faces.

With a new team came new imposed policies. We

would once again follow the standard four- to six-

month release cycle. Instead of one source for priori-

tization, the requests would come from a variety of

stakeholders across the organization, and of course

every request from the stakeholders was marked as

highest priority. The newly assembled development

team was just as skilled as the previous one, but all the

factors that led the previous team to success had been

removed. Momentum was lost, and our team fell into

the dark void of waterfall software development.

LOOKING BACK

Eight years later, the operations manager and I were

enjoying my farewell dinner with some members of

the original team. Over the last few years, agility had

become something the organization aspired to achieve.

However, teams equipped with all the information they

could possibly want about the Agile framework were

struggling with mere fundamentals and debating trivial

definitions rather than focusing on producing. How, in

contrast, did a team with no knowledge of Agile frame-

works unknowingly stumble upon so many of Agile’s

core values? I believe I can attribute our success to three

core factors:

1. We had a clear vision.

2. We had the right personnel who were fully committed.

3. We took full advantage of being colocated.

The sense of urgency created a bond within our team

that helped us avoid silly arguments over process and

rules. Ironically, that sense of urgency also exposed our

inability to establish a sustainable pace; our success

increased the demand for results, and we didn’t have

the tools available to regulate that pressure.

On the night of that farewell dinner, we toasted to all

we had accomplished as a small team facing a mono-

lithic challenge. We did not win the war, but we came

together and won an amazing battle. Though our team

was long forgotten in the years that followed, we had

pioneered agility in the organization.

CONCLUSION

Conversations with several colleagues in the soft-

ware industry have yielded the same frustrations and

difficulties in adopting an Agile framework. Most of the

conversations revolved around switching away from a

sequential product delivery model and their organi-

zation’s attempts to translate the prior processes and

practices into Agile frameworks. In these cases the

“process” became the central focus, which completely

contradicts the core of Agile, which is the manifesto:

We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we
have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.1

My experience with the team in 2006 and undergoing

a complete enterprise adoption of Agile years later has

provided an interesting perspective. To me, the intent of

Agile and its various frameworks is simple and unified:

“Get people together so they can collaborate in an

attempt to reach a goal.” I am not advocating that

we burn all the books and delete all the information

available. However, why not view these resources as

guidelines rather than doctrine?

As human beings, we naturally want to introduce order

and process into something we don’t quite understand.

Yet in times of crisis, we don’t give a second thought to

kicking all the formalities to the curb and finding a way

to bond together. If we can introduce that same sense of

urgency into product development, we’ll realize the

true agility we already possess and abandon the false

notion of “being Agile.”

ENDNOTE

1Agile Manifesto (http://agilemanifesto.org).

Charles C. Rodriguez, cofounder of Synergetic Management Solutions,

works with organizations that are attempting to make the transition

from sequential to iterative product development. At Agile West

2013, it became apparent how many organizations struggle with the

adoption of Agile frameworks. After successfully leading a movement

at his previous employer to switch from waterfall to Scrum, Mr.

Rodriguez decided to work alongside companies to help guide them

through the twists and turns of an enterprise Agile adoption. He takes

a hands-on approach to learn about a company’s background, current

processes, and where they wish to be in the future. Along with his

work in software product delivery, Mr. Rodriguez is also expanding

the application of Scrum to physical fitness and wellness. In a society

where clients want instant gratification, most individuals become

discouraged with their attempts to achieve weight loss and become

healthier. The iterative philosophy behind Agile frameworks provides

an excellent medium for helping clients see their progress one “sprint”

at a time. He can be reached at ccrodriguez@agilescrumdaddy.com.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Agile methodologies have proven their worth in their

almost two decades of existence. Yet just like many other

technologies, they have also been misused and abused.

Fervent Agile crusaders advocate their use in almost any

context. These fanatics will deny teams and projects the

title of “Agile” if the practices dictated by their method-

ology are not followed. In this article, I will argue that so

long as the values of the Agile Manifesto are respected,

your process can still be Agile even if it does not follow

a standard Agile methodology to the letter.

WHAT IS AGILITY?

The question of “being Agile” has troubled many soft-

ware developers over the last decade. In the years that

have passed since the signing of the Agile Manifesto,

Agile methods have gained mainstream adoption in the

software industry.1 Such success has brought crusaders

who argue that Agile methods and practices are the way

to develop software. As a result, for the best part of the

last decade, we have witnessed trench warfare between

agilists and traditionalists.

What was missed in these disputes is the key role that

context plays in the lifecycle of a project. Each project

within each software development organization is sub-

ject to constraints imposed by the project’s reality. For

instance, a problem my colleagues and I have studied is

the impact of Agile practices in global software develop-

ment.2 In global software development environments,

teams are distributed, cultures are different, and the

customer can usually only be at one location at a time.

Does this mean that these projects cannot be Agile?

This same research revealed a flaw in the widespread

understanding of agile; namely, that there is no formal

definition of agility. There have been a few attempts at

defining the term in academia, 3-5 but each definition

brings its own vision to the term. Likewise, all case

studies that claim success are based on a self-proclaimed

definition or understanding of agility. In theory, this is

a problem for advancing empirical knowledge, since

results from different case studies cannot be aggregated.

In practice, it is also a problem since it is not possible to

separate successful Agile cases from false positives.

Our view is that agility is not a binary concept, but

rather a continuum of possibilities constrained by the

context in which a software development project must

operate. This view is currently supported by several

academic6, 7 and commercial8 attempts to measure the

“degree of agility.” The practical implications for this

outlook are that practitioners should be free to select

the solutions that best fit their problems, regardless of

whether those solutions come from Agile or traditional

settings.

This article presents five case studies in which the proj-

ect context posed some restrictions that prevented the

out-of-the-box application of an Agile methodology. In

each of these cases, my associates and I implemented

context-sensitive tweaks to the development practices

being followed in order to solve a pressing project prob-

lem while striving to maintain the values held by each

organization.

FIVE REAL-WORLD AGILE ADOPTIONS

In the real-world Agile adoptions recounted here, my

colleagues and I had to introduce practices that are not

strictly recommended by the standard Agile methodol-

ogies. In the following case studies, I will show how

we introduced these practices to mitigate a risk or con-

straint imposed by the project’s context and argue that

they did not have an impact on the project’s capacity to

“be Agile.”

Case 1: No Onsite Customer

Context

This Uruguay-based organization tailored e-commerce

solutions to clients. They had succeeded at implement-

ing a Scrum-based Agile process for projects when

the clients were located in Uruguay. Though they

never achieved the practice of an onsite customer, the

team had become accustomed to receiving the client’s

17Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

Five Process Tweaks That Won’t Prevent You
from Being Agile
by Santiago Matalonga

A TEAM’S GOTTA DO WHAT A TEAM’S GOTTA DO

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

©2014 Cutter Information LLCCUTTER IT JOURNAL October 201418

representative at key Scrum events, such as reviews

and most planning sessions. Unfortunately, Uruguayan

clients represented only a fraction of the organization’s

projects. They also had projects for nearshore clients

who were left outside the scope of the initial Agile

adoption. The organization’s strategy for dealing with

the geographic distance was to invest in improving their

telecommunications infrastructure. They envisioned

involving the nearshore client representative at the

Scrum events via a Web-based meeting space.

Problem Statement and Risk Evaluation

The organization’s first warning sign that the strategy

was off course was the amount of rework coming out

of review meetings. This included a fair amount of

defects, change requests, and even whole stories getting

rejected. This had seldom happened on projects with

Uruguayan clients. The situation was decreasing the

clients’ satisfaction levels and reducing their trust in

the development process.

Implemented Solution

After discussing alternatives, my associates and I

suggested implementing a new role within the Scrum

process. The “proxy product owner” (PPO) role was

assigned the responsibility of looking after the customer’s

best interests in the Scrum events where the customer

was not able to attend.

Results

The introduction of the PPO helped the flow of those

Scrum events. At Scrum planning, the team had an

interlocutor who could provide a view of the business.

During the sprints, the PPO provided the necessary

feedback on the progress of user stories. The PPO also

established more fluent communication with the client

representative.

Discussion

The PPO solution to the lack of an onsite customer had

already been reported in the literature,9, 10 and according

to our research,11 it is the second most-used strategy to

mitigate problems associated with geographical dis-

tance. In this case study, a key factor in ensuring the

success of the strategy was the selection and training

of the appointed PPO. At each project, we chose indi-

viduals who had experience doing business analysis to

appoint a PPO. In four one-hour sessions, we coached

them on the responsibilities of this new role and its

importance in the success of the project. During the

coaching, which took place over a one-month period,

we also determined that they needed training on how

to write user stories with their acceptance criteria.

It is worth noting that the introduction of a PPO tends

to weaken the bond between the team and the product

owner. In a textbook Scrum implementation, a trust

relationship is usually generated between the product

owner and the team. The product owner trusts that the

team is able to deliver the stories he or she selects to

give value to the business, while the team trusts that the

product owner has the ability to make that choice. The

introduction of a PPO comes with the risk that he or she

won’t understand what value is to the product owner.

In this case, though, it was a necessary tradeoff to miti-

gate the constraint of not having an onsite customer.

Case 2: Specialists over Generalists

Context

This organization specialized in B2B solutions using

J2EE technologies. They had failed at implementing

Scrum-based Agile methods in the past, reverting to

previous methods of project management. Nonetheless,

senior managers were confident that Agile should work

for their organization, and my associates and I were

asked to lead the transition.

Internally, the organization was divided into service

areas. An independent testing team was in charge of

providing functional testing services to the projects.

Technical experts and usability/graphic design groups

were two other groups the teams had to interface with.

Development teams were formed on demand to serve

new customers. The organization provided training

for personnel within each service area, and there were

virtually no cross-training events.

Problem Statement and Risk Evaluation

The problem was whether Agile project management

practices were a good fit for the organization. Having

failed at previous attempts to adopt Agile methods,

there was certain disbelief among the organization

members that they would succeed this time.

Implemented Solution

Our working hypothesis was that previous consultants

were pushing Agile solutions without regard for the

organization’s context. So we started by evaluating the

values and practices of the organization against those

stated in the Agile Manifesto. To do this, we adapted

a collaborative scheme we use for process appraisals,12

tailoring it so we could appraise values and practices

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

19Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

instead of process requirements. The results showed

that the organization held no values that came into

conflict with those of the Agile Manifesto, but they did

have some practices that were not recommended by —

and even conflicted with — some of the manifesto’s 12

principles. Not surprisingly, their reliance on specialists

was one of them.

Results

The aforementioned activity helped reduce resistance

in the subsequent change toward Scrum-based project

management. It also made clear that since some skills

(e.g., testing, usability design) would remain outside

the development teams’ skill set, they would have to

implement communication interfaces to those service

providers. We designed this interface as a kanban board

through which teams could signal work requests to the

service areas. When we left this organization, they had

successfully adopted a Scrum-based project manage-

ment process.

Discussion

The appraisal process helped to explicitly uncover

the organization’s value of specialists. We agreed with

senior management that this value was so rooted in the

organizational culture that it would require consider-

able effort to change it. Furthermore, to the best of our

knowledge, there is little or no empirical evidence in the

software development realm to convince them other-

wise. So the best course of action was to give them the

tools to evaluate this belief for themselves.

In retrospect, we believe the success of the Agile trans-

formation in this setting was due to our respect of the

organization’s values. Practices are a lower level of

abstraction; they are easier to change when they conflict

with each other. In contrast, when different values come

into conflict, individuals must make hard choices in

order to prioritize one over the other.13 We removed

this hard choice by introducing Agile practices that

did not go against the organization’s values.

Case 3: Interfacing with Service Areas

Context

This organization was producing software using a

Scrum methodology. As in the previous case, project

teams had to interface with service areas from the orga-

nization in order to access specialized skills such as

quality assurance (QA) and technological support. In

contrast to the previous organization, these teams were

used to the Scrum process, and their main concern was

to integrate the skill set from the service areas into their

planning cycle.

Problem Statement and Risk Evaluation

Most of the teams we met had identified a problem of

delayed feedback when interfacing with the organiza-

tion’s service areas. This was especially evident with

QA, as it could not guarantee the allocation of person-

nel to test the user stories that were being finished

toward the end of sprints. This resulted in unfinished

stories, defects carrying over to the following sprint,

and a fluctuation in the teams’ velocity. Figure 1 shows

an example project with initial unsustainable velocity

values, due to the team’s not being able to gauge their

defect injection rate.

0

5

10

15

20

25

30

35

40

45

0

20

40

60

80

100

120

140

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
u

m
b

e
r

o
f

d
e

fe
c

ts

V
e

lo
c

it
y

Sprints

Open

defects

by sprint

Closed

defects

by sprint

Velocity

Figure 1 — Effect of defects carryover on sprint velocity.

©2014 Cutter Information LLCCUTTER IT JOURNAL October 201420

Implemented Solution

We “gamified”14 several retrospectives to guide the

teams into discussing the effects of the problems they

had identified. The emerging solution was to introduce

two practices to the development process:

1. Sprint goal

2. User story prioritization

Teams were only using a velocity goal as their goal for a

sprint. To distinguish their practice from the sprint goal

as defined in the Scrum Guide,15 we introduced the term

“qualitative sprint goal” (QSG) to describe a product

owner’s high-level expectation of the value of the sprint.

Achieving the QSG required the prioritization of user

stories. A two-level MoSCoW16 approach was intro-

duced to signal which stories were key to the product

owner and which ones could be carried over to the

following sprint.

Results

The tweaks had the effect of stabilizing sprint velocity,

thereby making the team’s output more predictably

aligned to the product owner’s expectations.

Discussion

Though the problem of this and the previous case study

seemed similar, the latter organization’s maturity was a

key differentiating factor. This organization had a strong

Agile practice and had already been able to identify the

effects of the problem with tangible data. However, they

were not using retrospectives efficiently. Pushing for

a kanban solution would probably have resulted in a

more thorough description of the symptoms of the cur-

rent problem (delayed feedback, fluctuating velocity,

etc.) but done little to resolve the underlying cause (the

ineffectiveness of the retrospectives).

In Scrum, retrospectives are events where process

improvements can be defined and implemented. A

great deal of Scrum’s effectiveness is lost when teams

cannot achieve a strong reflective practice during their

retrospectives. Therefore, we first put focus on using the

games that would train team members in performing

causal analysis.17 It was only then that we hinted at

a solution that would correct the current problem;

namely, clarifying the interpretation of the “sprint goal”

so the team could achieve what the product owner

considered to be the value of the sprint. Requirements

prioritization was a natural follow-up to achieving the

sprint goal practice.

Case 4: Introducing Capacity Management for
Multitasking Teams

Context

This organization was building Ruby on Rails solutions

for a variety of clients. Projects were short, with very

few of them lasting longer than two months. Teams

were usually pairs; a four-developer team was hardly

ever seen at this organization. Team members were

assigned to multiple projects at the same time, and

some even had projects in maintenance to attend to. All

teams were using variations of the Scrum practices: they

organized work increments in sprints, had one planning

session per sprint, and usually asked customers to sign

off on working software at the end of the sprint. There

was no onsite customer and hardly any retrospectives.

Problem Statement and Risk Evaluation

The team was losing faith in their Agile methodology

because they were consistently failing to meet commit-

ments. Team members were sure that the culprit was

multitasking. In contrast, management thought that

assigning teams to multiple projects was the only way

to make the organization viable.

Implemented Solution

We worked this problem at two levels; with senior man-

agement to obtain commitment on project assignment

caps, and at team level to scale Scrum event durations

based on the total effort in a sprint. On the management

front, we obtained commitment for a maximum of three

projects per developer. On the project level, we set a max-

imum duration per Scrum event by using “rule of three”

cross-multiplication.18 We also implemented a velocity by

effort metric as a measure of productivity. Team members

now had to agree on which stories to work on according

to the number of story points involved and the effort

required to realize them. Commitments would be based

on both effort and story points.

Results

The introduction of the three-project limit provided a

reasonable starting point for defusing the conflict. It

allowed for a healthy flow of the Scrum process within

this organization. Furthermore, though we don’t have

sufficient data to be certain, the tweaks in the process

appear to have reduced the variation of sprint velocity

(see Figure 2).

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

21Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

Discussion

At first, the issue of multitasking appeared to be an

unresolvable conflict between the developers and senior

management. However, the three-project cap proved to

be a reasonable limit for the organization. Senior man-

agement agreed that it should not have an impact on

the bottom line; it allowed them to try WIP limits and

provided a good basis for bargaining with the develop-

ers. On the other side, introducing capacity manage-

ment practices at the developer level helped developers

realize the value of the measurement practice. They

related more to velocity by effort in a sprint than they

did to absolute velocity.

This case shows how a restriction that prevented

the smooth flow of an Agile project was successfully

circumvented. There is not a single statement in the

Agile Manifesto — values or principles — that asserts

only full-time developers can do Agile. Multitasking

has its costs, of course, but if it is deemed necessary,

this case shows that there are still ways to use Agile

processes in these settings.

Case 5: The Traveling Salesman
in a Distributed Scrum of Scrums

Context

This was a large organization trying a multisite Scrum

of Scrums process for one of its projects. The outer

Scrum was onsite with the US-based customer. That

team performed QA, defect correction, and deployment

of solutions that the other two Scrum teams delivered

on the previous sprint. The latter development teams

were based in Montevideo, three time zones away from

the US team. Each Scrum team had about six developers

each. Even though the process worked for a reasonable

time, conflicts were starting to appear, specifically

between the US team and the Uruguay-based devel-

opment teams.

Problem Statement and Risk Evaluation

The inter-Scrum rivalry was not evident in the project

measurements, but the organization leaders were afraid

poor morale would eventually cause staff turnover and

reduce customer satisfaction.

Implemented Solution

In this setting, we introduced the concept of the travel-

ing salesman. Every other sprint, one team member

would change projects so as to experience the different

work environments. We hoped that traveling (especially

international travel) would boost morale, while meeting

face-to-face would bring the team members together

and foster collaboration.

Results

The solution had the intended effect of boosting morale

and getting the team members acquainted.

Discussion

The traveling salesman approach to reducing geographic

distance is also one of the mitigation strategies we iden-

tified in our research.19 In this case, in order to reduce

the overhead cost of international travel, we also rotated

within the colocated teams. This meant that one team

member made one international trip every other week.

In this setting, communication was suffering from the

effects of distance in the teams. The traveling salesman

approach had the effect of getting everybody acquainted

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

5

10

15

20

25

30

35

40

45

Week

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

V
e

lo
c

it
y

 b
y

 e
ff

o
rt

 (
p

o
in

ts
/e

ff
o

rt
)

V
e

lo
c

it
y

Velocity

(teams average)

Velocity by effort

(teams average)

Figure 2 — Comparison of velocity and velocity by effort variation.

©2014 Cutter Information LLCCUTTER IT JOURNAL October 201422

face-to-face, and most importantly, of familiarizing

everyone with the problems of each team. It provided

a fresh outlook on one of the manifesto’s key values: to

collaborate, not compete.

CONCLUSIONS AND LESSONS LEARNED

In this article, I have tried to reinforce the view that

“agility” is not a state but a continuum. I believe that

Agile values, practices, and methodologies have pro-

vided value to the discipline of software engineering,

and some of these practices are widely applicable in a

wide variety of cases (e.g., automated testing). In con-

trast, I am also a firm believer that each context presents

its own restrictions on a software project, and these

must be understood before imposing out-of-the box

solutions. As the above case studies show, with an

understanding of the desired outcome and a view to the

context, Agile methodologies can be adapted to fit your

organization’s constraints. Of course, such adaptations

will often have cons as well as pros that organizations

will have to weigh. For example, the traveling salesman

approach will enhance face-to-face communication, but

it will also increase costs. It’s up to the practitioners

either to assume the cost of the tweak to reap the

intended benefits or work to remove the restriction.

ENDNOTES
1Begel, Andrew, and Nachiappan Nagappan. “Usage and

Perceptions of Agile Software Development in an Industrial

Context: An Exploratory Study.” Proceedings of the First

International Symposium on Empirical Software Engineering

and Measurement (ESEM 2007). IEEE Computer Society, 2007.

2Matalonga, Santiago, Martín Solari, and Gerardo Matturro.

“Factors Affecting Distributed Agile Projects: A Systematic

Review.” International Journal of Software Engineering and

Knowledge Engineering, Vol. 23, No. 9, November 2013.

3Pikkarainen, Minna. “Agile Assessment Framework.” Agile

VTT, Version_1.0.

4Boehm, Barry, and Richard Turner. Balancing Agility and

Discipline: A Guide for the Perplexed. Addison-Wesley/Pearson

Education, 2003.

5Leffingwell, Dean. Scaling Software Agility. Addison-Wesley

Professional, 2007.

6Pikkarainen, Minna, and Ula Passoja. “An Approach for

Assessing Suitability of Agile Solutions: A Case Study.”

Proceedings of the International Conference of Extreme Programming

and Agile Processes in Software Engineering. Springer-Verlag, 2005.

7Schweigert, Tomas, et al. “Agile Maturity Model: Analysing

Agile Maturity Characteristics from the SPICE Perspective.”

Journal of Software: Evolution and Process, Vol. 26, No. 5, May 2014.

8Kroll, Per, and William Krebs. “Introducing IBM Rational Self

Check for Software Teams.” The Rational Edge, 3 June 2008.

9Lee, Seiyoung, and Hwan-Seung Yong. “Distributed Agile:

Project Management in a Global Environment.” Empirical

Software Engineering, Vol. 15, No. 2, April 2010.

10Jalali, Samireh, and Claes Wohlin. “Agile Practices in Global

Software Engineering: A Systematic Map.” Proceedings of the

5th International Conference on Global Software Engineering

(ICGSE ‘10). IEEE Computer Society, 2010.

11Matalonga et al. (see 2).

12Alvarez, Amalia, and Santiago Matalonga. “Process

Appraisals: From Group Interviews to Socratic Circles, Ten

Years of Results.” Paper presented to the 6th World Conference

on Software Quality, London, UK, July 2014.

13Glazer, Hillel. High Performance Operations: Leverage Compliance

to Lower Costs, Increase Profits, and Gain Competitive Advantage.

FT Press, 2012.

14For inspiration for games to use in retrospectives, we use

TastyCupcakes.org.

15Schwaber, Ken, and Jeff Sutherland. “The Scrum Guide.”

ScrumGuides.org, 2013.

16MoSCOW stands for “Must have,” “Should have,” “Could

have,” and “Would like to have.” It is used to classify require-

ments according to their value or priority. In this case, user

stories were classified into “Must haves” and “Should haves.”

17Kalinowski, Marcos, David N. Card, and Guilherme H.

Travassos. “Evidence-Based Guidelines to Defect Causal

Analysis.” IEEE Software, Vol. 29, No. 4, July-August 2012.

18“Cross-multiplication (rule of three)” (Wikipedia).

19Matalonga et al. (see 2).

Santiago Matalonga is a researcher at Universidad ORT Uruguay.

Dr. Matalonga has a PhD in software and systems from the

Universidad Politécnica de Madrid. He has several publications in

international conference proceedings and journals on the subject of the

ROI of software process improvement. Dr. Matalonga was a member

of the team that translated CMMI v1.3 to the Spanish language.

Since 2010, he has been a graded researcher at the Uruguayan

national research system (SNI) and at the Uruguayan program for

the development of basic science (PEDECIBA).

Dr. Matalonga has strong ties to the Uruguayan software develop-

ment industry, where he has been working since 2002. In 2006, he was

part of the process group team that achieved the first CMMI Level 3

rating for a Uruguayan organization. Since then, he has been involved

in several process improvement initiatives in the software and service

industry. Dr. Matalonga is currently providing services as an inde-

pendent consultant, helping organizations achieve tangible business

results by introducing process improvement practices. Some of his

current projects include coaching in Agile application lifecycle

management, coaching Agile teams, and assisting organizations in

adopting Agile and traditional process models. He can be reached at

smatalonga@uni.ort.edu.uy, Twitter: @santimatalonga.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

THERE IS NO “RIGHT” WAY TO BE AGILE

When the Scrum trainers of the world got together to
decide how to create a Certified Scrum Trainer course,
they figured they would be in and out of the planning
room in one day. Instead, they found themselves
engaged in months of grueling discussions. Even
though there have been books written and techniques
employed in the service of creating an Agile toolkit, it
seems that understanding what goes into being Agile
is actually quite complicated.

Or is it?

Whether we want to say we are “Agile” or “Lean” or
“agnostic,” the heart of any good process is that it truly
delivers working software in a way that doesn’t disap-
point us. We’d like it on time, we’d like it on budget,
and we’d like to not get status meeting surprises like
“Oh, we were about to launch and realized the whole
platform is built of confusing and brittle code” or
“We were about to launch, but it turns out our security
model is utterly illegal in the EU.”

Agile rollouts tend to focus on how to do things: how to
release faster, how to use planning poker cards, how to
turn your product manager into a product owner, or
how to turn your project manager into a ScrumMaster.
We tend to send people out to be certified in Agile,
which we believe teaches them to do Agile “right.”

The bad news: there is no one right way to be Agile.

INSPECT AND ADAPT: LEAN’S CENTRAL TENET,
AGILE’S FORGOTTEN GIFT

We have access to a wide range of good practices, all
of which can be used in an Agile team, and all of which
can be ignored by an Agile team. What’s important to
remember is that all practices are suggestions, and all
practices have a range of implementation patterns. We
apply these practices when we need them and in ways
that they will help.

We inspect our current state. We plan a preferred future
state. We adapt our processes to transition from our

current state to our future state. That is Agile; that is
Lean. Everything else is a suggestion.

Lean uses a construct from W. Edwards Deming called
the plan-do-check-act (PDCA) or plan-do-study-act
(PDSA) cycle. Agile teams that take on this cycle
reorient toward evolving and improving their proc-
esses rather than relying on someone to tell them how
to do their work. Teams that actively inspect and adapt
are paying attention to their processes, their product,
and their customer. Figure 1 shows how it works.

This is all a Lean consultant way of saying something
very simple:

Pay attention to what you are doing and change your
processes to make work flow more smoothly.

In the end, Agile is a family of potential business
processes. Business processes exist for one reason only
— to facilitate the realization of value. Value takes
many forms: user satisfaction, sales, team satisfaction,
market acceptance, profit, and so on. If our business
processes are not meeting the value demands of our
business, they will fail and take us with them.

On the other hand, if our processes are constantly
making us inspect and adapt, we will make better
decisions, deal with change elegantly, and suffer fewer
catastrophic failures.

23Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

If It’s Broke, Fix It: Inspect and Adapt Is Real Agile
by Jim Benson

THINK (AND RETHINK) FOR YOURSELF

• Study• Act

• Do• Plan

Start with
Planned
Process

Test Run
(Inspect)

Study
Results
(Plan)

Augment
Process
for Better
Results
(Adapt)

Figure 1 — The plan-do-study-act cycle.

©2014 Cutter Information LLCCUTTER IT JOURNAL October 201424

WE ARE ALL UNIQUE!

There are many aspects of software development that

are fairly universal. We have created a large number of

good practices to respond to them. Tool vendors have

even created fairly good tools to implement those good

practices.

Good practices are not best practices.

There is only one best practice in software: treat nothing

as a best practice.

If we treat nothing as a best practice, suddenly we have

to do something uncomfortable. We need to pay atten-

tion to our projects and use our processes as controls to

steer our teams and our organization to success. We can

no longer buy “a box of Agile” from a cadre of coaches

and expect to make our goals.

Agile is not a taxi, it’s a steering wheel.

ENOUGH RANTING; LET’S TELL SOME STORIES

The following stories are about teams that were doing

prescriptive Agile and then inspected and adapted their

ways to better states or became stuck when inspection

and adaption broke down. Any Agile purist (myself

included) can — and will — say that these examples

show people doing Agile wrong. That’s true, but it’s also

completely false. It’s true and false for the same reason:

there is no way to do Agile “right” that doesn’t involve

inspecting and adapting.

Story 1: The Case of the Vile Velocity

In a large global firm, I visited a group of developers.

These were brilliant IT professionals who had done

amazing work in the previous months. I was consis-

tently impressed with not only how they were building

their software, but also how they were visualizing their

work and communicating throughout their organiza-

tion. These were clearly top-notch people.

This group had previously been in a traditional plan-

ning environment and had taken it upon themselves to

implement various Agile and Lean methods. Their kan-

ban and Personal Kanban boards were impressive. They

had many stories about breakdowns, bottlenecks, and

recurring failures that they had solved. In short, this

was a group of skilled coders and managers. I’d be

happy to have any of them on one of my teams.

But their inspection and adaption came to a halt in one

key location. They became fixated on an Agile tool and

metric. That fixation led them to spend hours trying to

fix something that wasn’t actually broken.

Here’s how it played out. They had a board that

showed all their sprints, the story points for each

sprint, and the user stories completed. It looked like

the board in Figure 2.

Them: We have a problem and we can’t figure out how

to solve it.

Me: What is your problem?

Them: We can’t get our velocity to stabilize. We get

our work done, but the story points are all over the

map — 16, 72, 21.... What’s wrong with us? Why can’t

we estimate?

Me: They sure are all over the place. Look at that.

Them: If we can’t get our velocity to stabilize, we’re

never going to have meaningful estimates.

Me: Yep. Sure looks that way.

Them: Can you offer any advice?

Me: No.

Them: …

Me: What do you notice when you look at the board?

Them: Our velocity is all over the place.

Me: That’s what you see when you look at this board.

Them: Yes. It’s clear. Just look at the numbers.

Me: You’re looking at the numbers.

Them (confused): Do you have any tips on how to get

them more uniform?

Me: You are aware you have no problem here and that

your estimation is as close to perfect as it’s going to get,

right?

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Figure 2 — The team’s kanban board.

25Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

Them: What?

Me: These features were in your sprint goals?

Them: Yes.

Me: You see how consistent your cards are? You have

a throughput of nine tickets. Make guarantees on six

tickets each time and have three or four nice-to-haves.

Them: … but the numbers!

Me: You’ve proven systematically and empirically that

the numbers were bogus from the start. Focus on the

work and not the ritual. These tickets are your real

work. These numbers are your imagination. The

company can’t run on your imagination.

Them: But some of those tickets were bigger than

others. They aren’t right-sized.

Me: Apparently they are. Your work is uniform and

unwavering.

Them: But the numbers … our velocity!

Me: Lies. It’s all lies, and it’s making you accept defeat

in the face of victory. You plan well. Velocity isn’t the

metric you want. Throughput is.

These developers had a beautifully proven and consis-

tent throughput. They knew their release cadence per-

fectly. Yet they were focused on a faulty metric — they

were looking at the proxy when they knew the reality.

In this case, they were fixated on what they erroneously

thought to be a “best practice.” Story points and veloc-

ity were, to them, immutable parts of being an Agile

team. Their metric was failing them, but there was a

very stable metric sitting right in front of them — the

actual number of cards: 7, 9, 9, 9, 7.

There is natural variation in these numbers, but the

trend is clear and actually fairly free of real variation.

The team didn’t have enough experience to promise

the full nine or even seven tickets, but six is clearly a

low-risk promise for at least the next sprint. Remember,

in business we aren’t looking for a guarantee, we’re

looking for an honest estimate.

Understanding that there is a comfort level with six

stories with a few other stories that are nice-to-haves

changes their conversation with their product owner or

customer. It goes from a “We think we can fit this much

stuff we don’t really understand into these two weeks”

to “Our history shows that we can reliably finish six

features in two weeks; please give us six things, and

we’ll get them done.”

What is worrying is that these very smart people, who

already got most of this, did not see that their delivery

was stable and consistent as it was. They were so

focused on the proxy metric of velocity that they

didn’t see the real metric of completed work.

Metric Fetishism and False Alignment

In this case, each time this team entered a planning

phase and began to throw down their planning poker

cards, they felt lost. This led to long conversations about

the upcoming release (not a bad thing) and false align-

ment (a very bad thing).

Conversations likely led them to come to the conclusion

that “We can do those cards” even though the numbers

were weird. That is a good thing, but everyone left the

table uneasy. Why was our proposed velocity so different

from last time? They would reach alignment and agree

on the set of features to be released, but this was always

a false alignment because they didn’t understand why.

Worse yet, when they would bring their recommenda-

tions to their bosses, they had to go to great lengths to

defend the upcoming sprint (projected to be 62 story

points) over the last sprint (which was 17). They were

having extremely long, wasteful conversations because

they believed velocity and story points to be the only

measures available to them.

Recommendations for Avoiding the Velocity Fetish

If you’d like to examine whether your team is truly

providing predictable value, I give this advice:

n Do what you are doing now.

n Set up a board like theirs that tracks story points

and tickets. (You should do this anyway.)

n Watch both the number of tickets and your velocity.

n Track when work is actually started and completed

(cycle time).

n Track the number of tickets per sprint (crude

deadline-driven throughput).

n When you’ve done this for five or six sprints, look

at the data.

What is worrying is that these very smart peo-

ple, who already got most of this, did not see

that their delivery was stable and consistent

as it was.

©2014 Cutter Information LLCCUTTER IT JOURNAL October 201426

The cards per sprint will give you some vital

information:

n Actual work completed every two weeks in number

of features or stories

n An idea of the natural variation in work items

produced every two weeks

n Work type breakdown (bugs to planned features

to unplanned features to emergencies)

By doing this, you’ll start to understand your team’s

work. When that happens, you can do some real estima-

tion. You can guarantee real results. And you can start

to focus on what’s really important: quality code, fewer

escaped defects, and work that relates more closely

to customer demands. This can be the basis for real

inspection and adaptation.

Story 2: Support This!

In America’s heartland, surrounded by deer and trees,

lies a 40-year-old software company. This software

company had a support team that was very, very, very

angry. There were 24 team members. They supported

over 30 products. They would go to work and break

things. They would punch holes in the walls, damage

their desks, and treat their chairs like bumper cars.

Angry.

Us: Why are you angry?

Them: Management hates us and no one cares about us

and we come in every day and try to get our work done

but we can’t because we’re not given any support and

we’re undertrained and our coworkers are idiots and …

(this went on for some time).

Us: That sounds bad.

Them: It’s worse than you think. And then there’s

the backlog ...

Us: The backlog?

Them: Yeah, we have 2,000 tickets in our backlog.

It sucks.

Us: How many are you doing a day?

Them: 250

Us: That doesn’t sound so bad. How many do you

take in per day?

Them (staring death at us): 250

Us: Ahhhhhh …

So there were 24 customer service staff struggling to

keep pace with the influx of tickets. Anything that

didn’t get satisfied right away was dropped into the

backlog, which meant a response was long in coming.

Every day, these professionals went to work and saw

the backlog and felt like failures.

Here’s the thing: they weren’t failures. Far from it.

These people had a reliable Net Promoter Score (NPS)

of 95. Time in and time out, they scored in the mid-to-

upper 90s. Their customers loved them.

Not what you’d expect from angry vandals.

The System Has Throughput

What was needed here was not for my partner

Tonianne and me to give them a new, Agile process.

Rather, the point was to employ some Agile or Lean

techniques in a way that encouraged these smart,

dedicated professionals to solve not only these, but

other problems themselves.

The support staff thought that they, personally, were

not processing enough tickets. But they clearly weren’t

the problem. If they were substandard support staff,

they would not have high NPS scores. Rather, their

processes were inhibiting them from doing their work

and from improving their situation.

So we gave them some suggestions:

n All tickets aren’t the same size. Try batching tickets

according to perceived effort.

n You are all working independently. Form teams that

really work together.

n Ask yourselves, “If I were on a real team, what roles

would that team have?”

n If your goal wasn’t to do as many tickets yourself as

possible, but to make sure the number of tickets in

the backlog shrunk with no degradation in service,

what would you do?

n Every morning, each team should strategize for

10 minutes on how the day will go.

n Every day, make one thing better than it was

yesterday.

And then we told them something novel:

You do whatever you need to do, within reason.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Every day, these professionals went to work

and saw the backlog and felt like failures.

27Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

“Within reason” meant that they couldn’t rent a new

building or move the support staff to Bermuda. Just

about anything else was okay.

They did not believe it at first.

Toni and I left for a month, and then we came back to

see how things had gone. The results still amaze us.

Without outside intervention, these 24 support people

came up with:

n Three teams, which they labeled red, green, and blue.

n Two new roles: the smooth operator and the ticket

slayer. The smooth operator does triage for a team

and tackles tickets taking less than five minutes. He

or she passes other tickets along to other support

staff. The ticket slayer handles tickets that the smooth

operator estimates will take 15 minutes or less. This

is a high burnout role, so people rotate in and out of

this position throughout the day.

n A display board showing who the active ticket

slayers are. This is important because ticket slayers

are quite busy and cannot be interrupted.

n The Deming Team, which is made up of representa-

tives of each team and the VP of services to discuss

improvement projects and their trajectory.

With this new structure, team members who were not

assigned to the new roles did not have to answer calls

at all, but instead moved directly on backlog tickets.

The Deming Team launched improvement initiatives

to clean up the backlog, remove tickets that aged out,

merge duplicates, and more.

Within three months, the backlog was half gone; within

a year, it was functionally all gone.

Within one month, team morale had improved

considerably.

Humans Adapt

For better or for worse, we naturally adapt to our

environment. If our processes are static and adaption

is impossible, we personally adapt to the inability to

improve. When we cannot improve, we react in a very

rational way: we shut down the part of our brain that wants

to improve.

Psychologists call this “learned helplessness.” We find

ourselves in situations where the system itself won’t

allow us to improve the system. At that point, we simply

look for rules to follow and follow them as best we can

to avoid personal harm.

It gets worse. Anyone who has had to pay taxes under-

stands that when we can’t change a system, we game

the system. We look at the system now in terms of

personal risk avoidance. We all do this.

The more rigid the system, the more likely it will be

gamed and the greater the toll on your corporate culture

that gaming will take. Earlier, this team’s management

had set specific performance goals and rewarded indi-

vidual contributors for completing the most tickets in

one day. This led to a combative culture where support

staff would hoard “easy” tickets, close tickets out early,

or create multiple tickets for the same problem simply

to increase their numbers.

Once this team was given the agency to improve their

own processes, they shed their learned helplessness,

ceased gaming the system, and began creating a

stronger organization.

Story 3: That’s for Us to Know ...
and for Us All to Find Out

In the early 2000s, I ran a software company called Gray

Hill Solutions that specialized in software-for-hire for

the government sector, specifically in transportation

management and traveler information. Among other

projects, we built the original 511.org site for the

Metropolitan Transportation Commission in the San

Francisco Bay Area. We specialized in rescuing govern-

ment projects that had spent most of their budget and

their time, yet had little to show for the effort.

Not surprisingly, most of our work had severe budget

and time pressures and high customer anxiety. We were

ostensibly an XP shop and took much of what Cutter

Senior Consultant Kent Beck wrote to heart. Our teams

were tight, distributed, and focused. Project-based

work with tight deadlines and a strong will to watch

and learn led us to regular deliveries and the ability to

immediately spot, communicate, negotiate, and correct

problems that arose.

This meant that with every project, indeed with every

stand-up meeting, we were evolving our version of XP.

In this case, “Agile” became the way we related to each

other, developed software, and communicated with our

clients.

For better or for worse, we naturally adapt to

our environment. If our processes are static

and adaption is impossible, we personally

adapt to the inability to improve.

©2014 Cutter Information LLCCUTTER IT JOURNAL October 201428

At one point, we had the opportunity to build a multi-

enterprise-scale software package that would allow

regional agencies to communicate the status of all road-

ways in real time and manage regional transportation

networks as one cohesive system. This had never been

done before. We would need to re-create from the

ground up how regional networks were conceived

and managed.

Our client asked us for a scope and budget.

We refused, telling them that this type of work had

never been attempted before.

They asked again.

We refused again, saying that any firm contract drawn

up with this number of unknowns would not be a nego-

tiation of work, but rather a negotiation of risk. We’d

write the document to push risk on them; they would

write it to push risk on us. No matter who “won” that

negotiation, we would both lose in the end by having a

contract with a firm scope that wouldn’t respond well

to the level of change we all knew was coming.

Instead, we created an Agile contract that focused on

inspecting and adapting. The rules of the contract were

simple:

1. Agreed: both parties wanted a good product.

2. Agreed: neither party knew what the final product

would look like.

3. The parties would aggressively collaborate:

a. The client would attend every stand-up meeting.

b. The client would be involved in every decision

made.

c. The client would have direct access to every

developer.

d. Every developer would have access to the client.

e. We would do 10-minute code commits. (Yes, we

did continuous release of enterprise-scale software

in 2006.)

f. The client could build at any time.

4. The parties would use a digital kanban board with

work-in-process limits set up in Groove 2.0:

a. The client and all staff would have access to

the board.

b. Decisions made in the daily stand-up would

be reflected immediately on the board.

c. No work was to be completed that wasn’t

encapsulated in a card on the board.

5. We would have regular two-week releases with

demos. (This rule was quickly dropped because

iterations became unnecessary.)

To say that our client was highly skeptical would be an

understatement. For our first delivery, we proposed

to have a mock-up of the UI with fake processes running

on it in three months. The customer led with a statement

about how that would be impossible.

In fact, the team finished that in six weeks, which left

us another six weeks in which to include a few real

working systems in the UI.

In this case, we were not only inspecting and adapting

as we built the system — that was a daily and routine

event. What was interesting was that we were also

inspecting and adapting the relationship between client

and contractor. Ostensibly, we were working with no

budget. We had a daily burn rate we could not exceed,

but that burn rate was actually greater than the sum

total of salaries of everyone working on the project. So

we were safe there.

We were, every day, making new decisions about the

product based on what we’d learned the day before.

Some days, course corrections were small; other days,

they were pronounced. None of them were threatening,

however, because the client was intimately involved

in the project merely by spending 5-15 minutes a day

on Skype.

Allowing the client firsthand, unfiltered knowledge of

the decisions being made about the software had the

following advantages, all of which are part of inspection

and necessary to be able to comfortably adapt:

n Understanding. By simply being present while dis-

coveries and decisions were being made, the client

never needed a status briefing, excuses, or a demo.

They knew in real time what was being done and

what challenges we were facing, and they were

making decisions with the team on direction.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

To say that our client was highly skeptical

would be an understatement.

29Get The Cutter Edge free: www.cutter.com Vol. 27, No. 10 CUTTER IT JOURNAL

n Empathy. Engagement led to understanding, which

led to questions like “How is that going?” rather than

“Why didn’t you do this?” Real-time involvement

removed opportunities for second guessing.

n Participation. The client’s direct participation led

to their doing things like calling up in the middle

of the day and offering suggestions. It also led them

to immediately conduct acceptance testing of code,

because they were as excited to find a solution to

whatever issue was plaguing the team as the team

was. In this case, participation didn’t merely mean

showing up, it meant acting.

With these elements in place, our project had active

engagement on both sides. There was no passive party.

We were all actively inspecting the processes, relation-

ships, and products of the project and offering hypothe-

ses for improvement.

This did not slow us down, because most suggestions

were made at the stand-up. Since stand-ups were

daily, suggestions could be small, implementable, and

reportable. Because of this, our backlog of work could

easily change as the project progressed. We were able

to quickly onboard contractors with specific skill sets

when we discovered a need, and we were able to test

potential solutions and determine whether they worked.

If they didn’t, we’d back them out and try again. There

were no commits of worthless or sketchy code.

CLOSING: ADAPT OR DIE

For me, above all things, inspect and adapt is the golden

rule of process management.

The goal of all process control or project management

should be nothing more or less than making sure

that all stakeholders remain involved, invested, and

integrated.

Your Agile, Lean, or [fill in buzzword here] method

either adapts to change and improves over time, or it

remains stagnant and resists opportunities. Every ele-

ment of change that presents itself to your team or your

organization is an opportunity to deliver a better prod-

uct in a better way.

Make the most of these opportunities.

Jim Benson, CEO of Modus Cooperandi, specializes in Lean project

management and the management of knowledge work. He is the

creator of Personal Kanban and, with Tonianne DeMaria Barry,

coauthored the book Personal Kanban, which won a Shingo Research

Award for Excellence in 2012. He is the 2012 winner of the Brickell

Key Award for excellence in Lean thinking.

For the past two decades, Mr. Benson has worked at uncovering ways

for groups to find clarity in unpredictable and amorphous knowledge

work environments. Since starting Modus, he has helped the World

Bank, NBC Universal, the United Nations, Spotify, Riot Games,

Comcast, R.W. Baird, and others improve their kanban systems,

implement collaborative solutions, identify and implement improve-

ments, and create more innovative cultures. He can be reached at

jim@moduscooperandi.com.

ACCESS TO THE EXPERTS

Cutter Membership
The ultimate Access to the Experts

With unlimited access to Cutter’s research,
inquiry privileges with Cutter Senior
Consultants and Fellows, regular strategy
meetings for your team with a Cutter
Practice Director, virtual roundtables
with Cutter experts and peer-to-peer
networking, free or discounted
admission to events, and more, your
Cutter Membership opens up multiple
avenues to interact with Cutter’s experts
to brainstorm and gain guidance aimed
at boosting success.

Like everything IT, one size does not fit all.
That’s why we encourage you to choose
the Membership level that’s right for your
organization:

Full Membership
Best for organizations seeking personal,
real-time guidance on the full gamut
of business technology and software
engineering issues and dedicated to
investing in the career development
of their entire staff.

Business Technology Strategies
Best for organizations developing
operationally sound strategies and
plans that link and align business and
IT, and harnessing the latest leadership
and management techniques to ensure IT
is furthering the mission of the business.

Agile Product & Project
Management
Best for software and product develop-
ment organizations that are seeking to
create and capture lasting value through
end-to-end Agile initiatives.

Business & Enterprise Architecture
Best for organizations interested in using
architectural approaches to manage the
complexity and cost of IT and to pave the
way for strategic planning and portfolio
management.

Data Insight & Social BI
Best for organizations challenged with
data collection, analysis, and integration

CUTTER CONSORTIUM

“I am amazed that this venue exists; that I can
listen and interact with these individuals. I am
more amazed that I have not done this before.”

— Mark Rubin,
Fidelity Investments,

USA

“Cutter seems to be unique in consistently
providing information one can immediately
put into action or clarify one’s thinking on
day-to-day problems. The service provides
tremendous value for the money.”

— Lloyd Fletcher,
Information Systems Manager,
Institute of Physics Publishing,

Bristol, UK

as well as internal- or external-facing
information sharing via social, mobile,
or legacy apps.

CIO Add-On
Ongoing, one-to-one relationships with
seasoned expert mentors; research and
analysis specially curated to support
high-level decision making; peer-to-peer
networking.

Membership Benefits
Continuous flow of advice, insight, and
answers via enterprise access to written
and multimedia research from Cutter’s
top experts

Priority Access to the Experts: get near-
real-time answers to your questions

Regular strategy sessions with Cutter
Practice Directors or Senior Consultants

Admission to client-only online
Q&A sessions

Participation in peer-to-peer discussions
led by Cutter’s experts

Cutter events

Add-on options for consulting and
training offerings

And more ...

To arrange for a free trial membership
or to discuss how Cutter’s consultants
can help your organization, contact
our team today: sales@cutter.com or
+1 781 648 8700

What’s Unique About Cutter?

CUTTER MEMBERSHIP

Cutter’s internationally recognized
expert practitioners provide all of
Cutter’s research and analysis. You
get to tap into this brain trust whose
written words have been likened to a
“consultancy in print.”

Without exception, every single
inquiry is fielded by a Cutter Senior
Consultant, Fellow, or Practice
Director.

Cutter approaches every consulting
or training assignment as unique,
requiring a tailor-made solution, and
creates a team for you that includes
only its best-in-class experts. We
focus on knowledge transfer, so you
can leverage our work together and
move forward on your own.

With Cutter, you get cutting-edge
thinking from multiple viewpoints
so you can determine what’s best
for your situation.

Emphasis is on strategies and
processes, so you can be sure
your success is not dependent
on vendor/product detail.

Cutter is unique in having no ties to
vendors. Rest assured that the advice
you get is unbiased and in the best
interest of your organization alone.

Focus includes the business manage-
ment of IT — you’re plugged into the
research from top business thought
leaders.

“I have personally been able to leverage Cutter’s
services since 1999. Among the attributes that
differentiate Cutter from other firms, two remain
at the top of my list — Thought Leadership and
Real Value — executed in a practical way.

Thought Leadership is driven by Cutter’s experts.
The advantage is that Cutter doesn’t pitch a
single best practice for a given area. Instead,
Cutter provides multiple good practices/options
that come from both academic rigor as well as
on-the-ground experience. This provides several
benefits for Dairy Farmers of America:

Exposure and awareness of proven good-
practices — particularly for IT, but also for
overall business leadership and management

A finger on the pulse of emerging good
practices and IT-impacting trends

Options for improving our performance

The opportunity to develop relationships
with the experts

The last, ‘Access to the Experts,’ drives the Real
Value, letting us go beyond just understanding
the options. We can develop relationships with
the experts and tailor the options so that they
can be quickly and practically executed within
our organization, enabling our Business
Technology team to continually improve,
engage, and contribute to business growth.”

— Doug Mikaelian,
VP Business Technology,

Dairy Farmers of America

Cutter
IT Journal

About Cutter Consortium
Cutter Consortium is a truly unique IT advisory firm, comprising a group of more than

100 internationally recognized experts who have come together to offer content,

consulting, and training to our clients. These experts are committed to delivering top-

level, critical, and objective advice. They have done, and are doing, groundbreaking

work in organizations worldwide, helping companies deal with issues in the core areas

of software development and Agile project management, enterprise architecture, business

technology trends and strategies, enterprise risk management, metrics, and sourcing.

Cutter offers a different value proposition than other IT research firms: We give you

Access to the Experts. You get practitioners’ points of view, derived from hands-on

experience with the same critical issues you are facing, not the perspective of a desk-

bound analyst who can only make predictions and observations on what’s happening in

the marketplace. With Cutter Consortium, you get the best practices and lessons learned

from the world’s leading experts, experts who are implementing these techniques at

companies like yours right now.

Cutter’s clients are able to tap into its expertise in a variety of formats, including content

via online advisory services and journals, mentoring, workshops, training, and consulting.

And by customizing our information products and training/consulting services, you get

the solutions you need, while staying within your budget.

Cutter Consortium’s philosophy is that there is no single right solution for all enterprises,

or all departments within one enterprise, or even all projects within a department. Cutter

believes that the complexity of the business technology issues confronting corporations

today demands multiple detailed perspectives from which a company can view its

opportunities and risks in order to make the right strategic and tactical decisions. The

simplistic pronouncements other analyst firms make do not take into account the unique

situation of each organization. This is another reason to present the several sides to each

issue: to enable clients to determine the course of action that best fits their unique

situation.

For more information, contact Cutter Consortium at +1 781 648 8700 or

sales@cutter.com.

The Cutter Business

Technology Council
The Cutter Business Technology Council

was established by Cutter Consortium to

help spot emerging trends in IT, digital

technology, and the marketplace. Its

members are IT specialists whose ideas

have become important building blocks of

today’s wide-band, digitally connected,

global economy. This brain trust includes:

• Rob Austin
• Ron Blitstein
• Tom DeMarco
• Lynne Ellyn
• Israel Gat
• Vince Kellen
• Tim Lister
• Lou Mazzucchelli
• Ken Orr
• Robert D. Scott

	Opening Statement
	IN THIS ISSUE
	AGILE METHODS ARE A STARTING POINT
	ENDNOTE

	The Best Project Ever
	CONTEXT
	OUR “PROCESS”
	OUR DEVELOPMENT TEAM
	LIGHT-TOUCH MANAGEMENT
	TECHNICAL PRACTICES
	HOW AGILE WAS THAT?
	WHY “BEST PROJECT EVER”?
	EPILOGUE
	ENDNOTES

	Near-Agile Software Development Before Agile
	WORKING CLOSELY WITH CLIENTS
	CONTINUOUS INTEGRATION
	TESTING AND FIXING ALL THROUGH THE RELEASE
	REUSING CODE AND KEEPING IT SIMPLE
	CONCLUSION

	Agile Team 0: The Journey
	THE TEAM
	A ROCKY BEGINNING
	ORGANIZATIONAL CHANGE
	FORMING
	STORMING
	NORMING
	THE END OF AN ERA
	LOOKING BACK
	CONCLUSION
	ENDNOTE

	Five Process Tweaks That Won’t Prevent You from Being Agile
	WHAT IS AGILITY?
	FIVE REAL-WORLD AGILE ADOPTIONS
	CONCLUSIONS AND LESSONS LEARNED
	ENDNOTES

	If It’s Broke, Fix It: Inspect and Adapt Is Real Agile
	THERE IS NO “RIGHT” WAY TO BE AGILE
	INSPECT AND ADAPT: LEAN’S CENTRAL TENET, AGILE’S FORGOTTEN GIFT
	WE ARE ALL UNIQUE!
	ENOUGH RANTING; LET’S TELL SOME STORIES
	CLOSING: ADAPT OR DIE

