
CUTTER CONSORTIUM

Validating Legacy Code:
Modernization Strategies Through
Technical Debt Assessments

by John Heintz, Technical Consultant,
Cutter Consortium

What strategies do you apply to modernizing a product
code base? What results do you get with those strate-
gies? This Executive Update takes a retrospective look
at a past project, both to describe the strategies my
colleagues and I used to rearchitect the product and to
validate the effectiveness of those strategies with two
technical debt assessments via Cutter’s Technical Debt
Assessment and Valuation practice.1 The six strategies
we used are presented here. The two assessments are
used to evaluate the measured impact on the system
from the team’s efforts and compare it to the actual time
spent modernizing the code.

This is the story of the DeLorean2 system, a client’s
longtime production setup. This client had successfully
developed, evolved, and sustained this system, and its
business, for more than a handful of years. This Java
Struts3 Web application embodied the cumulative busi-
ness and technical experience of the whole company.
So far, so good.

A PREDICTABLE STORY

It’s easy to predict the next part of the story: slowing
down, inflexibility, and brittleness. After some point,
enough technical debt had settled into the system to
cause problems. In this case, the primary causes were
multiple inconsistent design approaches over time, sig-
nificant code duplication, no test automation or manual
test plans, and lack of discipline managing technical
debt in the code. New features took increasingly longer
to complete. Bugs were more difficult to track down
and really fix. Changes made to the system needed to

be carefully tested by many individuals (manually) and
often had nonlocal failures. Getting an accurate estimate
of effort for planned changes became difficult. Finally,
each new release became an all-hands-on-deck event
in which many individuals were prepared to deal with
production failures.

All of this made it more difficult to capitalize on busi-
ness opportunities with both new customer features
and partner integrations — the situation was recog-
nized to be affecting the business.

BUY VS. REWRITE VS. REARCHITECT

Given a consensus view that something must be done,
the choices simply boiled down to three options:

1. Buy a commercial replacement system, and
customize as needed.

2. Rewrite from scratch.

3. Rearchitect the current production system in place.

When the time came to choose among options, the
company had no empirical data to base a decision on,
but relied on evaluations and judgment based on the
following:

Suitability of commercial offerings for the business

Failure rates for big rewrite projects

Perceived effort to rearchitect the existing system

The management team chose option 3: rearchitect the
application. This choice was based primarily on (1) the
low suitability of commercial offerings and high risk of
a rewrite failure and (2) that proceeding with a rearchi-
tecture cleanup would reduce the risks of possibly
implementing options 1 and 2 in the future by provid-
ing a cleaner and better-defined platform to move from.

THE CHARTER

The DeLorean project was explicitly chartered with
cleaning up the architecture, removing duplication,
improving code quality, building in testing, and improv-
ing reliability; in short, to remove technical debt. The

Agile Product & Project Management Advisory Service
Executive Update Vol. 11, No. 20

http://www.cutter.com
http://www.cutter.com
http://www.cutter.com

AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE2

Vol. 11, No. 20 ©2010 Cutter Consortium

team also needed to support new business features and
integrating with a customer relationship management
(CRM) appliance. The team’s efforts were guided by
judgment and experience to balance the progress on all
of these goals; no tools were used at the time for meas-
uring the reduction of technical debt or complexity.

DeLorean lasted more than a year, with three to four
people at a time working concurrently. Team members
subjectively considered “at least half” of their time to
have been spent on making improvement to the code
and reducing the technical debt. The remaining time
focused on developing and integrating new features.

THE REARCHITECTURE APPROACH

The team’s strategies for reducing technical debt and
improving the system evolved over time. The six strate-
gies used on the DeLorean project were as follows:

1. “Fix it if you see it’s broken.” This rule gave the
team liberty to make the numerous small changes to
improve the code by reducing complexity, document-
ing, refactoring, and adding unit tests. In particular,
this meant fixing all bugs in any duplicated copy-
and-pasted code.

The team was very careful to keep the scope of
“fixes” balanced, neither too small nor too large. It
was particularly easy to bite off too large a change
when each fix would make visible more “broken”
code. Both timeboxes and ad hoc team reviews of
scope were used to maintain this balance, serving
as metaphorical brake pedals.

2. Flexible schedule commitments. The scheduled
delivery of new features was not cast in stone, and
often the date and features of a production release
were altered to support ongoing cleanup activities.
The two primary factors that triggered this were
(1) wrapping up refactoring of a significant subsystem
or (2) taking the time to clean up and test a region of
code newly recognized as high risk for failure.

3. Technical management. The manager of the
DeLorean team was also a senior technical contribu-
tor. This enabled decisions to be made that accurately
balanced customer demand/value, technical risk/

reward, and schedule. There was little conflict or
justification needed when balancing these forces.

4. Technically competent and experienced team
members. The team had no junior members. The
risks associated with modifying untested production
code required that each member of the team be able
to judge (1) the likelihood of nonlocal effects, (2)
what refactoring and test strategies to apply, and
(3) when to call in help from the rest of the team.

5. Tracking lines of code removed. Every few days
the team would calculate the total lines of code and
celebrate when dozens or hundreds of line were
removed. Code was removed by refactoring to better
design abstractions, through the use of application
frameworks, and by deleting copy-and-pasted code.

6. Defining unit test and coverage rules for different
parts of the code base. New code was written into a
new package namespace. This new namespace was
the focus of unit testing, held to high craftsmanship
standards. Generally, the team code reviewed new
modules. A best-effort attempt would be made to
refactor legacy code at hand into this new package
namespace while adhering to the code, test, and
design standards. Any legacy code not moved was
given much less attention and focus until the next
opportunity for refactoring appeared.

Examples of the standards applied to the new code
namespace include: (1) greater than 80% unit test cov-
erage, (2) design modules with DI4 into a layered code
model, and (3) a preference for clear readable code, a
subjective judgment. These standards evolved over
time. At the beginning of the project, there were no
such rules, and it took some time to understand the
testing and refactoring options for the legacy code.
Initially, we’d assumed that a single global percent
measure of unit test coverage would be desirable, but
after creating the new package namespace, the team
realized only that code should have testing standards.

Both management and the DeLorean project team
maintained a disciplined balance between the pri-
orities of business features and continuing to apply
these strategies for reducing technical debt. The
day-to-day focus of the team was either blended

The Executive Update is a publication of the Agile Product & Project Management Advisory Service. ©2010 by Cutter Consortium. All rights
reserved. Unauthorized reproduction in any form, including photocopying, downloading electronic copies, posting on the Internet, image
scanning, and faxing is against the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter
Consortium publications, call +1 781 648 8700 or e-mail service@cutter.com. Print ISSN: 1946-7338 (Executive Report, Executive Summary, and
Executive Update); online/electronic ISSN: 1554-706X.

mailto:service@cutter.com

EXECUTIVE UPDATE 3

www.cutter.com Vol. 11, No. 20

across those goals or would soon return to a balance
after a necessary focus of fixing a bug or releasing an
important feature. Where possible, the team applied
the strategies for reducing technical debt while
implementing new features or fixing bugs.

WHAT IS A TECHNICAL DEBT ASSESSMENT?

Cutter’s Technical Debt Assessment is two distinct
things: (1) an automaton-assisted analysis of code5

and (2) an ongoing input to project governance and
management. The automated analysis is both dynamic
(unit testing and code coverage) and static (rule con-
formance, code complexity, duplication of code, docu-
mentation, and design characteristics). Every deficit
identified in the analysis is added to a total time effort,
measured both in person-days and dollars.

TECHNICAL DEBT ASSESSMENT: HISTORIC ANALYSIS

The Technical Debt Assessment was conducted, post
hoc, on a 12-month period during the DeLorean project.

Both the accounting records and source code repository
were examined during that time frame to enable a com-
parison of the actual effort to the assessed reduction in
technical debt.

Assessments of the source code repository at the start
and end of the 12-month period indicate how much
technical debt had existed when the team started work-
ing on the DeLorean project. As shown in Figure 1, the
total starting technical debt was 740 person-days, con-
sisting mostly of lack of coverage, code duplications,
and code violations.

How did the DeLorean project fare at the end of the
period? As Figure 2 shows, the system was significantly
improved, reducing total assessed technical debt to 415
days, down 325 from the original 740 days. This was a
44% reduction from the year before.

In addition to the aggregated technical debt, other proj-
ect data changed in significant ways. Figure 3 visually
shows the relative changes from project start to finish
for coverage (shown as untested code percentage), com-
plexity, code duplication percentage, lines of code in

Figure 1 — Technical debt at start.

Technical Debt

25.9%

$369,994
740 person-days Complexity

Design

Violations

Comments

Coverage

Duplication

Figure 2 — Technical debt at finish.

Technical Debt

13.2%
$207,439
415 person-days Complexity

Design

Violations

Comments

Coverage

Duplication

Figure 3 — DeLorean project changes.

0

10

20

30

40

50

60

70

80

90

100

Untested Complexity Duplications (k)LoC Tech Debt Ratio

Start
Finish

http://www.cutter.com

AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE4

Vol. 11, No. 20 ©2010 Cutter Consortium

the thousands, and the technical debt ratio.6 In each
of these measures, the DeLorean project made visibly
significant progress.

The measured changes to the size of the project, com-
plexity, amount of code duplication, and test coverage
are shown in Table 1.

The accounting records for the DeLorean project were
used to assess the total effort as 337 person-days spent
reducing technical debt. This was based on the subjec-
tive evaluation that “at least half” of the team’s time
was spent on cleaning up the system and an accounting
of 674 total days.

CONCLUSION

The strategies applied helped the team rearchitect a
large portion of the product and maintain forward
momentum for the entire DeLorean project. I am cur-
rently applying these strategies to modernize code in
other projects.

The actual recorded effort (337 days) corresponds to the
analyzed improvement (325 days). This correspondence
is accurate within 4%, an astonishingly close result. This
accuracy is interpreted as success for both the DeLorean
team’s legacy modernization strategies as well as the
tools and process of the Technical Debt Assessments.

ENDNOTES
1See “Technical Debt Assessment and Valuation.”
(www.cutter.com/consulting-and-training/
technical-debt-assessment.html).

2While not the project’s real name, this reference to the time-
machine car from the 1985 movie Back to the Future provides an
analogy to the jumps from today to two points in the past for
each Technical Debt Assessment.

3Java Struts is a popular Web application framework for the
Java language (http://struts.apache.orgi).

4DI is dependency injection, a style of composing objects to
reduce coupling.

5Many tools can accomplish this. The Sonar tool is used here.
(http://sonarsource.org).

6This is a ratio of current technical debt compared with total
possible technical debt.

ABOUT THE AUTHOR

John Heintz is a Technical Consultant with Cutter Consortium’s
Agile Product & Project Management practice. He is an experi-
enced agile manager, particularly in lean and Kanban. In 2008,
Mr. Heintz founded Gist Labs to further focus on the essential
criteria for innovative success. This focus has led to Concrete
Reflective Tools, which are immediately useful, generate feed-
back information, and are backed by their own guiding princi-
ples. On a recent project, he coached a 100-person agile/lean
game studio, helping the organization increase its throughput
of game features per month while coordinating cross-team
communication paths, resulting in a doubling of features
in one year.

Mr. Heintz’s approach to systems and team building emerged
in 1999 as he led his first Scrum team, coaching XP and test-
driven development. He has consulted with clients on enterprise
architecture, development, and TDD practices; XP and Scrum
leadership; Kanban coaching; and RESTful/messaging architec-
ture. Mr. Heintz is a regular speaker at industry events, including
No Fluff Just Stuff (NFJS), Architecture and Design World, and
Dallas JavaMUG; he is the Program Chair for Agile Austin. Mr.
Heintz holds a BS in electrical engineering from the University
of Michigan. He can be reached at jheintz@cutter.com.

Table 1 — DeLorean Summary at Finish

Lines of Code Complexity/Class Duplications Test Coverage

At Start

At Finish

Improved by

91,969 23.4 22.1% 0%

73,610

20%

15.4

34%

7.6%

66%

19.9%

N/A

